Delivery of Iron Oxide Nanoparticles into Primordial Germ Cells in Sturgeon
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31375005
PubMed Central
PMC6724049
DOI
10.3390/biom9080333
PII: biom9080333
Knihovny.cz E-zdroje
- Klíčová slova
- Acipenser, caviar, hyperthermia, iron oxide nanoparticles, micro-CT, sterilization,
- MeSH
- nanočástice * MeSH
- ovum metabolismus MeSH
- rentgenová mikrotomografie MeSH
- ryby metabolismus MeSH
- spermie metabolismus MeSH
- železité sloučeniny chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferric oxide MeSH Prohlížeč
- železité sloučeniny MeSH
Nanoparticles are finding increasing applications in diagnostics, imaging and therapeutics in medicine. Iron oxide nanoparticles (IONs) have received significant interest of scientific community due to their distinctive properties. For the first time, we have delivered IONs into germ cells in any species. Our results showed that sturgeon primordial germ cells (PGCs) delivered with IONs could be detected until seven days post fertilization (dpf) under fluorescent microscope and at 22 dpf by micro-CT. Delivery of IONs into cells could be helpful for studying germ cell biology and the improvement of germ cell-based bio-technologies as isolation of PGCs using magnetic activated cell sorting or application of hyperthermia for a host sterilization purpose. Intriguingly, in our study, we did not find any toxic effects of IONs on the survival and hatching rates of sturgeon embryos when compared with embryos injected with FITC-dextran only.
Zobrazit více v PubMed
Johnston R.L., Wilcoxon J.P. Frontiers of Nanoscience. Elsevier; Oxford, UK: 2012.
McNamara K., Tofail S.A.M. Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys. Chem. Chem. Phys. 2015;17:27981–27995. doi: 10.1039/C5CP00831J. PubMed DOI
Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI
Hassan S. A review on Nanoparticles: Their synthesis and types. Res. J. Recent. Sci. 2015;4:9–11.
Machado S., Pacheco J., Nouws H., Albergaria J.T., Delerue-Matos C., Nouws H. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total. Environ. 2015;533:76–81. doi: 10.1016/j.scitotenv.2015.06.091. PubMed DOI
Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
Cardoso V.F., Francesko A., Ribeiro C., Bañobre-López M., Martins P., Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018;7:1–35. doi: 10.1002/adhm.201700845. PubMed DOI
Khanna L., Verma N., Tripathi S. Burgeoning tool of biomedical applications-Superparamagnetic nanoparticles. J. Alloy Compd. 2018;752:332–353. doi: 10.1016/j.jallcom.2018.04.093. DOI
Xie W., Guo Z., Gao F., Gao Q., Wang D., Liaw B.S., Cai Q., Sun X., Wang X., Zhao L. Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8:3284–3307. doi: 10.7150/thno.25220. PubMed DOI PMC
A Pankhurst Q., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003;36:R167–R181. doi: 10.1088/0022-3727/36/13/201. DOI
Huber D.L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;36:482–501. doi: 10.1002/smll.200500006. PubMed DOI
Vorotnikova E., Ivkov R., Foreman A., Tries M., Braunhut S.J. The magnitude and time-dependence of the apoptotic response of normal and malignant cells subjected to ionizing radiation versus hyperthermia. Int. J. Radiat. Biol. 2006;82:549–559. doi: 10.1080/09553000600876678. PubMed DOI
Harmon B., Takano Y., Winterford C., Gobe G. The Role of Apoptosis in the Response of Cells and Tumours to Mild Hyperthermia. Int. J. Radiat. Biol. 1991;59:489–501. doi: 10.1080/09553009114550441. PubMed DOI
Otte J. Hyperthermia in cancer therapy. Eur. J. Pediatr. 1988;147:560–569. doi: 10.1007/BF00442463. PubMed DOI
Issels R.D. Hyperthermia adds to chemotherapy. Eur. J. Cancer. 2008;44:2546–2554. doi: 10.1016/j.ejca.2008.07.038. PubMed DOI
Bednarikova Z., Marek J., Demjen E., Dutz S., Mocanu M.M., Wu J.W., Wang S.S.S., Gazova Z., Mocanu M.M. Effect of nanoparticles coated with different modifications of dextran on lysozyme amyloid aggregation. J. Magn. Magn. Mater. 2019;473:1–6. doi: 10.1016/j.jmmm.2018.10.018. DOI
Guzman R., Uchida N., Bliss T.M., He D., Christopherson K.K., Stellwagen D., Capela A., Greve J., Malenka R.C., Moseley M.E., et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. USA. 2007;104:10211–10216. doi: 10.1073/pnas.0608519104. PubMed DOI PMC
Hoehn M., Küstermann E., Blunk J., Wiedermann D., Trapp T., Wecker S., Föcking M., Arnold H., Hescheler J., Fleischmann B.K., et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA. 2002;99:16267–16272. doi: 10.1073/pnas.242435499. PubMed DOI PMC
Bemis W.E., Kynard B. Sturgeon rivers: An introduction to acipenseriform biogeography and life history. Environ. Biol. Fishes. 1997;48:167–183. doi: 10.1023/A:1007312524792. DOI
Pikitch E.K., Doukakis P., Lauck L., Chakrabarty P., Erickson D.L. Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish. 2005;6:233–265. doi: 10.1111/j.1467-2979.2005.00190.x. DOI
Billard R., Guillaume L. Biology and conservation of sturgeon and paddlefish. Rev. Fish. Biol. Fish. 2001;1:355–392.
Ludwig A., Belfiore N.M., Pitra C., Svirsky V., Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genet. 2001;158:1203–1215. PubMed PMC
Zhang H., Wei Q.W., Kyanrd B.E., Du H., Yang D.G., Chen X.H. Spatial structure and bottom characteristics of the only remaining spawning area of Chinese sturgeon in the Yangtze River. J. Appl. Ichthyol. 2011;27:251–256. doi: 10.1111/j.1439-0426.2011.01708.x. DOI
Hildebrand L., McLeod C., McKenzie S. Status and management of white sturgeon in the Columbia River in British Columbia, Canada: An overview. J. Appl. Ichthyol. 1999;15:164–172. doi: 10.1111/j.1439-0426.1999.tb00227.x. DOI
Dettlaff T.A., Ginsburg A.S., Schmalhausen O.I. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer; New York, NY, USA: 1993.
Ohinata Y. A Signaling Principle for the Specification of the Germ Cell Lineage in Mice. Cell. 2009;137:571–584. doi: 10.1016/j.cell.2009.03.014. PubMed DOI
Saito T., Pšenička M. Novel Technique for Visualizing Primordial Germ Cells in Sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso) Biol. Reprod. 2015;93:96. PubMed
Ewen-Campen B., Schwager E.E., Extavour C.G., Ewen-Campen B., Ewen-Campen B. The molecular machinery of germ line specification. Mol. Reprod. Dev. 2009;77:3–18. doi: 10.1002/mrd.21091. PubMed DOI
Baloch A.R., Franěk R., Saito T., Pšenička M. Dead-end (dnd) protein in fish—A review. Fish Physiol. Biochem. 2019:1–8. doi: 10.1007/s10695-018-0606-x. PubMed DOI
Lewis Z.R., McClellan M.C., Postlethwait J.H., Cresko W.A., Kaplan R.H. Female-specific increase in primordial germcells marks sex differentiation in threespine stickleback (Gasterosteus aculeatus) J. Morphol. 2008;269:909–921. doi: 10.1002/jmor.10608. PubMed DOI PMC
Saito D., Morinaga C., Aoki Y., Nakamura S., Mitani H., Furu-tani-Seiki M., Kondoh H., Tanaka M. Proliferation of germ cells during gonadal sex differentiation in medaka: In-sights from germ cell-depleted mutant zenzai. Dev. Biol. 2007;310:280–290. doi: 10.1016/j.ydbio.2007.07.039. PubMed DOI
Tzung K.-W., Goto R., Saju J.M., Sreenivasan R., Saito T., Arai K., Yamaha E., Hossain M.S., Calvert M.E., Orban L. Early Depletion of Primordial Germ Cells in Zebrafish Promotes Testis Formation. Stem Cell Rep. 2015;5:156. doi: 10.1016/j.stemcr.2015.07.001. PubMed DOI PMC
Yoshizaki G., Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem. Cell Res. 2018;29:103–110. doi: 10.1016/j.scr.2018.03.015. PubMed DOI
Yamaha E., Saito T., Goto-Kazeto R., Arai K. Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes. J. Sea Res. 2007;58:8–22. doi: 10.1016/j.seares.2007.02.003. DOI
Saito T., Pšenička M., Goto R., Adachi S., Inoue K., Arai K., Yamaha E. The Origin and Migration of Primordial Germ Cells in Sturgeons. PLoS ONE. 2014;9:e86861. doi: 10.1371/journal.pone.0086861. PubMed DOI PMC
Maeda H., Greish K., Fang J. Polymer Therapeutics II. The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century. Springer; Berlin/Heidelberg, Germany: 2006.
Krøvel A.V., Olsen L.C. Expression of avas:EGFPtransgene in primordialgerm cells of the zebrafish. Mech. Dev. 2002;116:141–150. doi: 10.1016/S0925-4773(02)00154-5. PubMed DOI
Tanaka M., Kinoshita M., Kobayashi D., Nagahama Y. Establishment ofmedaka (Oryzias latipes) transgenic lines with the expression of greenfluorescent protein fluorescence exclusively in germ cells: A useful modelto monitor germ cells in a live vertebrate. Proc. Natl. Acad. Sci. USA. 2001;98:2544–2549. doi: 10.1073/pnas.041315498. PubMed DOI PMC
Yoshizaki G., Takeuchi Y., Sakatani S., Takeuchi T. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int. J. Dev. Biol. 2000;44:323–326. PubMed
Zhu X., Tian S., Cai Z. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages. PLoS ONE. 2012;7:e46286. doi: 10.1371/journal.pone.0046286. PubMed DOI PMC
Di Corato R., Espinosa A., Lartigue L., Tharaud M., Chat S., Pellegrino T., Ménager C., Gazeau F., Wilhelm C. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 2014;35:6400–6411. doi: 10.1016/j.biomaterials.2014.04.036. PubMed DOI
Kolosnjaj-Tabi J., Javed Y., Lartigue L., Volatron J., Elgrabli D., Marangon I., Pugliese G., Caron B., Figuerola A., Luciani N., et al. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano. 2015;9:7925–7939. doi: 10.1021/acsnano.5b00042. PubMed DOI
Hedayatnasab Z., Abnisa F., Wan Daud W.M.A. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy. IOP Conf. Ser. Mater. Sci. Eng. 2017;334:012042. doi: 10.1088/1757-899X/334/1/012042. DOI
Grandi G., Chicca M. Histological and ultrastructural investigation of early gonad development and sex differentiation in Adriatic sturgeon (Acipenser naccarii, Acipenseriformes, Chondrostei) J. Morphol. 2008;269:1238–1262. doi: 10.1002/jmor.10657. PubMed DOI
Linhartová Z., Saito T., Kaspar V., Rodina M., Praskova E., Hagihara S., Pšenička M. Sterilization of sterlet Acipenser ruthenus by using knock-down agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology. 2015;84:1246–1255. doi: 10.1016/j.theriogenology.2015.07.003. PubMed DOI
Psenicka M., Saito T., Rodina M., Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72:119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI
Saito T., Guralp H., Iegorova V., Rodina M., Psenicka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol. Reprod. 2018;99:556–564. doi: 10.1093/biolre/ioy076. PubMed DOI PMC
Baloch A.R., Franěk R., Tichopád T., Fučíková M., Rodina M., Pšenička M. Dnd1 Knockout in Sturgeons by CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals. 2019;9:174. doi: 10.3390/ani9040174. PubMed DOI PMC
Xie X., Li P., Pšenička M., Ye H., Steinbach C., Li C., Wei Q. Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production. Animals. 2019;9:106. doi: 10.3390/ani9030106. PubMed DOI PMC