Delivery of Iron Oxide Nanoparticles into Primordial Germ Cells in Sturgeon

. 2019 Aug 01 ; 9 (8) : . [epub] 20190801

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31375005

Nanoparticles are finding increasing applications in diagnostics, imaging and therapeutics in medicine. Iron oxide nanoparticles (IONs) have received significant interest of scientific community due to their distinctive properties. For the first time, we have delivered IONs into germ cells in any species. Our results showed that sturgeon primordial germ cells (PGCs) delivered with IONs could be detected until seven days post fertilization (dpf) under fluorescent microscope and at 22 dpf by micro-CT. Delivery of IONs into cells could be helpful for studying germ cell biology and the improvement of germ cell-based bio-technologies as isolation of PGCs using magnetic activated cell sorting or application of hyperthermia for a host sterilization purpose. Intriguingly, in our study, we did not find any toxic effects of IONs on the survival and hatching rates of sturgeon embryos when compared with embryos injected with FITC-dextran only.

Zobrazit více v PubMed

Johnston R.L., Wilcoxon J.P. Frontiers of Nanoscience. Elsevier; Oxford, UK: 2012.

McNamara K., Tofail S.A.M. Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys. Chem. Chem. Phys. 2015;17:27981–27995. doi: 10.1039/C5CP00831J. PubMed DOI

Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI

Hassan S. A review on Nanoparticles: Their synthesis and types. Res. J. Recent. Sci. 2015;4:9–11.

Machado S., Pacheco J., Nouws H., Albergaria J.T., Delerue-Matos C., Nouws H. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total. Environ. 2015;533:76–81. doi: 10.1016/j.scitotenv.2015.06.091. PubMed DOI

Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC

Cardoso V.F., Francesko A., Ribeiro C., Bañobre-López M., Martins P., Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018;7:1–35. doi: 10.1002/adhm.201700845. PubMed DOI

Khanna L., Verma N., Tripathi S. Burgeoning tool of biomedical applications-Superparamagnetic nanoparticles. J. Alloy Compd. 2018;752:332–353. doi: 10.1016/j.jallcom.2018.04.093. DOI

Xie W., Guo Z., Gao F., Gao Q., Wang D., Liaw B.S., Cai Q., Sun X., Wang X., Zhao L. Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics. 2018;8:3284–3307. doi: 10.7150/thno.25220. PubMed DOI PMC

A Pankhurst Q., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003;36:R167–R181. doi: 10.1088/0022-3727/36/13/201. DOI

Huber D.L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;36:482–501. doi: 10.1002/smll.200500006. PubMed DOI

Vorotnikova E., Ivkov R., Foreman A., Tries M., Braunhut S.J. The magnitude and time-dependence of the apoptotic response of normal and malignant cells subjected to ionizing radiation versus hyperthermia. Int. J. Radiat. Biol. 2006;82:549–559. doi: 10.1080/09553000600876678. PubMed DOI

Harmon B., Takano Y., Winterford C., Gobe G. The Role of Apoptosis in the Response of Cells and Tumours to Mild Hyperthermia. Int. J. Radiat. Biol. 1991;59:489–501. doi: 10.1080/09553009114550441. PubMed DOI

Otte J. Hyperthermia in cancer therapy. Eur. J. Pediatr. 1988;147:560–569. doi: 10.1007/BF00442463. PubMed DOI

Issels R.D. Hyperthermia adds to chemotherapy. Eur. J. Cancer. 2008;44:2546–2554. doi: 10.1016/j.ejca.2008.07.038. PubMed DOI

Bednarikova Z., Marek J., Demjen E., Dutz S., Mocanu M.M., Wu J.W., Wang S.S.S., Gazova Z., Mocanu M.M. Effect of nanoparticles coated with different modifications of dextran on lysozyme amyloid aggregation. J. Magn. Magn. Mater. 2019;473:1–6. doi: 10.1016/j.jmmm.2018.10.018. DOI

Guzman R., Uchida N., Bliss T.M., He D., Christopherson K.K., Stellwagen D., Capela A., Greve J., Malenka R.C., Moseley M.E., et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. USA. 2007;104:10211–10216. doi: 10.1073/pnas.0608519104. PubMed DOI PMC

Hoehn M., Küstermann E., Blunk J., Wiedermann D., Trapp T., Wecker S., Föcking M., Arnold H., Hescheler J., Fleischmann B.K., et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA. 2002;99:16267–16272. doi: 10.1073/pnas.242435499. PubMed DOI PMC

Bemis W.E., Kynard B. Sturgeon rivers: An introduction to acipenseriform biogeography and life history. Environ. Biol. Fishes. 1997;48:167–183. doi: 10.1023/A:1007312524792. DOI

Pikitch E.K., Doukakis P., Lauck L., Chakrabarty P., Erickson D.L. Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish. 2005;6:233–265. doi: 10.1111/j.1467-2979.2005.00190.x. DOI

Billard R., Guillaume L. Biology and conservation of sturgeon and paddlefish. Rev. Fish. Biol. Fish. 2001;1:355–392.

Ludwig A., Belfiore N.M., Pitra C., Svirsky V., Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) Genet. 2001;158:1203–1215. PubMed PMC

Zhang H., Wei Q.W., Kyanrd B.E., Du H., Yang D.G., Chen X.H. Spatial structure and bottom characteristics of the only remaining spawning area of Chinese sturgeon in the Yangtze River. J. Appl. Ichthyol. 2011;27:251–256. doi: 10.1111/j.1439-0426.2011.01708.x. DOI

Hildebrand L., McLeod C., McKenzie S. Status and management of white sturgeon in the Columbia River in British Columbia, Canada: An overview. J. Appl. Ichthyol. 1999;15:164–172. doi: 10.1111/j.1439-0426.1999.tb00227.x. DOI

Dettlaff T.A., Ginsburg A.S., Schmalhausen O.I. Sturgeon Fishes: Developmental Biology and Aquaculture. Springer; New York, NY, USA: 1993.

Ohinata Y. A Signaling Principle for the Specification of the Germ Cell Lineage in Mice. Cell. 2009;137:571–584. doi: 10.1016/j.cell.2009.03.014. PubMed DOI

Saito T., Pšenička M. Novel Technique for Visualizing Primordial Germ Cells in Sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso) Biol. Reprod. 2015;93:96. PubMed

Ewen-Campen B., Schwager E.E., Extavour C.G., Ewen-Campen B., Ewen-Campen B. The molecular machinery of germ line specification. Mol. Reprod. Dev. 2009;77:3–18. doi: 10.1002/mrd.21091. PubMed DOI

Baloch A.R., Franěk R., Saito T., Pšenička M. Dead-end (dnd) protein in fish—A review. Fish Physiol. Biochem. 2019:1–8. doi: 10.1007/s10695-018-0606-x. PubMed DOI

Lewis Z.R., McClellan M.C., Postlethwait J.H., Cresko W.A., Kaplan R.H. Female-specific increase in primordial germcells marks sex differentiation in threespine stickleback (Gasterosteus aculeatus) J. Morphol. 2008;269:909–921. doi: 10.1002/jmor.10608. PubMed DOI PMC

Saito D., Morinaga C., Aoki Y., Nakamura S., Mitani H., Furu-tani-Seiki M., Kondoh H., Tanaka M. Proliferation of germ cells during gonadal sex differentiation in medaka: In-sights from germ cell-depleted mutant zenzai. Dev. Biol. 2007;310:280–290. doi: 10.1016/j.ydbio.2007.07.039. PubMed DOI

Tzung K.-W., Goto R., Saju J.M., Sreenivasan R., Saito T., Arai K., Yamaha E., Hossain M.S., Calvert M.E., Orban L. Early Depletion of Primordial Germ Cells in Zebrafish Promotes Testis Formation. Stem Cell Rep. 2015;5:156. doi: 10.1016/j.stemcr.2015.07.001. PubMed DOI PMC

Yoshizaki G., Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem. Cell Res. 2018;29:103–110. doi: 10.1016/j.scr.2018.03.015. PubMed DOI

Yamaha E., Saito T., Goto-Kazeto R., Arai K. Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes. J. Sea Res. 2007;58:8–22. doi: 10.1016/j.seares.2007.02.003. DOI

Saito T., Pšenička M., Goto R., Adachi S., Inoue K., Arai K., Yamaha E. The Origin and Migration of Primordial Germ Cells in Sturgeons. PLoS ONE. 2014;9:e86861. doi: 10.1371/journal.pone.0086861. PubMed DOI PMC

Maeda H., Greish K., Fang J. Polymer Therapeutics II. The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century. Springer; Berlin/Heidelberg, Germany: 2006.

Krøvel A.V., Olsen L.C. Expression of avas:EGFPtransgene in primordialgerm cells of the zebrafish. Mech. Dev. 2002;116:141–150. doi: 10.1016/S0925-4773(02)00154-5. PubMed DOI

Tanaka M., Kinoshita M., Kobayashi D., Nagahama Y. Establishment ofmedaka (Oryzias latipes) transgenic lines with the expression of greenfluorescent protein fluorescence exclusively in germ cells: A useful modelto monitor germ cells in a live vertebrate. Proc. Natl. Acad. Sci. USA. 2001;98:2544–2549. doi: 10.1073/pnas.041315498. PubMed DOI PMC

Yoshizaki G., Takeuchi Y., Sakatani S., Takeuchi T. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int. J. Dev. Biol. 2000;44:323–326. PubMed

Zhu X., Tian S., Cai Z. Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages. PLoS ONE. 2012;7:e46286. doi: 10.1371/journal.pone.0046286. PubMed DOI PMC

Di Corato R., Espinosa A., Lartigue L., Tharaud M., Chat S., Pellegrino T., Ménager C., Gazeau F., Wilhelm C. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials. 2014;35:6400–6411. doi: 10.1016/j.biomaterials.2014.04.036. PubMed DOI

Kolosnjaj-Tabi J., Javed Y., Lartigue L., Volatron J., Elgrabli D., Marangon I., Pugliese G., Caron B., Figuerola A., Luciani N., et al. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano. 2015;9:7925–7939. doi: 10.1021/acsnano.5b00042. PubMed DOI

Hedayatnasab Z., Abnisa F., Wan Daud W.M.A. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy. IOP Conf. Ser. Mater. Sci. Eng. 2017;334:012042. doi: 10.1088/1757-899X/334/1/012042. DOI

Grandi G., Chicca M. Histological and ultrastructural investigation of early gonad development and sex differentiation in Adriatic sturgeon (Acipenser naccarii, Acipenseriformes, Chondrostei) J. Morphol. 2008;269:1238–1262. doi: 10.1002/jmor.10657. PubMed DOI

Linhartová Z., Saito T., Kaspar V., Rodina M., Praskova E., Hagihara S., Pšenička M. Sterilization of sterlet Acipenser ruthenus by using knock-down agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology. 2015;84:1246–1255. doi: 10.1016/j.theriogenology.2015.07.003. PubMed DOI

Psenicka M., Saito T., Rodina M., Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72:119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI

Saito T., Guralp H., Iegorova V., Rodina M., Psenicka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol. Reprod. 2018;99:556–564. doi: 10.1093/biolre/ioy076. PubMed DOI PMC

Baloch A.R., Franěk R., Tichopád T., Fučíková M., Rodina M., Pšenička M. Dnd1 Knockout in Sturgeons by CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals. 2019;9:174. doi: 10.3390/ani9040174. PubMed DOI PMC

Xie X., Li P., Pšenička M., Ye H., Steinbach C., Li C., Wei Q. Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production. Animals. 2019;9:106. doi: 10.3390/ani9030106. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...