Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production

. 2019 Mar 21 ; 9 (3) : . [epub] 20190321

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30901855

Grantová podpora
201203086 Special Fund for Agro-scientific Research in the Public Interest of the Ministry of Agriculture of China
2015B02YQ01 Special Scientific Research Fund for Central Non-profit Institutes, Chinese Academy of Fishery Sciences
31402301 National Natural Science Foundation of China
CZ.1.05/2.1.00/01.0024 Ministry of Education, Youth and Sports of the Czech Republic
LO1205 Ministry of Education, Youth and Sports of the Czech Republic
16-02407Y Czech Science Foundation

To expand germ cell populations and provide a consistent supply for transplantation, we established basal culture conditions for sturgeon germ cells and subsequently increased their mitotic activity by eliminating gonad somatic cells, supplementing with growth factor, and replacing fetal bovine serum (FBS). The initial basal culture conditions were Leibovitz's L-15 medium (pH 8.0) supplemented with 5% FBS (p < 0.001) at 21 °C. Proliferation of germ cells was significantly enhanced and maintained for longer periods by elimination of gonad somatic cells and culture under feeder-cell free conditions, with addition of leukemia inhibitory factor and glial-cell-derived neurotrophic factor (p < 0.001). A serum-free culture medium improved germ cell proliferation compared to the L-15 with FBS (p < 0.05). Morphology remained similar to that of fresh germ cells for at least 40 d culture. Germline-specific gene expression analysis revealed no significant changes to germ cells before and after culture. Sterlet Acipenser ruthenus germ cells cultured more than 40 days showed development after transplant into Russian sturgeon Acipenser gueldenstaedtii. Polymerase chain reaction showed 33.3% of recipient gonads to contain sterlet cells after four months. This study developed optimal culture condition for sturgeon germ cells. Germ cells after 40 d culture developed in recipient gonads. This study provided useful information for culture of sturgeon germ cells.

Zobrazit více v PubMed

Lacerda S.M.S.N., Costa G.M.J., Campos P.H.A., Segatelli T.M., Yazawa R., Takeuchi Y., Morita T., Yoshizaki G., Franca L.R. Germ cell transplantation as a potential biotechnological approach to fish reproduction. Fish Physiol. Biochem. 2013;39:3–11. doi: 10.1007/s10695-012-9606-4. PubMed DOI

Okutsu T., Suzuki K., Takeuchi Y., Takeuchi T., Yoshizaki G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA. 2006;103:2725–2729. doi: 10.1073/pnas.0509218103. PubMed DOI PMC

Okutsu T., Shikina S., Kanno M., Takeuchi Y., Yoshizaki G. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517. doi: 10.1126/science.1145626. PubMed DOI

Hong Y., Liu T., Zhao H., Xu H., Wang W., Liu R., Chen T., Deng J., Gui J. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA. 2004;101:8011–8016. doi: 10.1073/pnas.0308668101. PubMed DOI PMC

Sakai N. In vitro male germ cell cultures of zebrafish. Methods. 2006;39:239–245. doi: 10.1016/j.ymeth.2005.12.008. PubMed DOI

Lacerda S.M., Batlouni S.R., Costa G.M., Segatelli T.M., Quirino B.R., Queiroz B.M., Kalapothakis E., França L.R. A new and fast technique to generate offspring after germ cells transplantation in adult fish: The Nile tilapia (Oreochromis niloticus) model. PLoS ONE. 2010;5:e10740. doi: 10.1371/journal.pone.0010740. PubMed DOI PMC

Shikina S., Yoshizaki G. Improved in vitro culture conditions to enhance the survival, mitotic activity, and transplantability of rainbow trout type A spermatogonia. Biol. Reprod. 2010;83:268–276. doi: 10.1095/biolreprod.109.082123. PubMed DOI

Bemis W.E. Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes. J. Vertebr. Paleontol. 1991;11:1–121.

Birstein V.J., Bemis W.E., Waldman J.R. Sturgeon Biodiversity and Conservation. Springer; Dordrecht, The Netherlands: 1997. The threatened status of acipenseriform species: A summary; pp. 427–435.

Wei Q., Ke F.e., Zhang J., Zhuang P., Luo J., Zhou R., Yang W. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environ. Biol. Fishes. 1997;48:241–255. doi: 10.1023/A:1007395612241. DOI

Zhang H., Wei Q., Du H., Li L. Present status and risk for extinction of the Dabry’s sturgeon (Acipenser dabryanus) in the Yangtze River watershed: A concern for intensified rehabilitation needs. J. Appl. Ichthyol. 2011;27:181–185. doi: 10.1111/j.1439-0426.2011.01674.x. DOI

Bemis W.E., Kynard B. Sturgeon rivers: An introduction to acipenseriform biogeography and life history. Environ. Biol. Fishes. 1997;48:167–184. doi: 10.1023/A:1007312524792. DOI

Zhuang P., Ke F.E., Wei Q., He X., Cen Y. Biology and life history of Dabry’s sturgeon, Acipenser dabryanus, in the Yangtze River. Environ. Biol. Fishes. 1997;48:257–264. doi: 10.1023/A:1007399729080. DOI

Shikina S., Ihara S., Yoshizaki G. Culture conditions for maintaining the survival and mitotic activity of rainbow trout transplantable type A spermatogonia. Mol. Reprod. Dev. 2008;75:529–537. doi: 10.1002/mrd.20771. PubMed DOI

Ye H., Yue H.M., Yang X.G., Li C.J., Wei Q.W. Identification and sexually dimorphic expression of vasa isoforms in Dabry’s sturgeon (Acipenser dabryanus), and functional analysis of vasa 3′-untranslated region. Cell Tissue Res. 2016;366:1–16. doi: 10.1007/s00441-016-2418-6. PubMed DOI

Pšenička M., Saito T., Linhartová Z., Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83:1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI

Havelka M., Fujimoto T., Hagihara S., Adachi S., Arai K. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Sci. Rep. 2017;7:1694. doi: 10.1038/s41598-017-01768-3. PubMed DOI PMC

Brinster R.L., Zimmermann J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA. 1994;91:11298–11302. doi: 10.1073/pnas.91.24.11298. PubMed DOI PMC

Shikina S., Nagasawa K., Hayashi M., Furuya M., Iwasaki Y., Yoshizaki G. Short-Term In Vitro Culturing Improves Transplantability of Type A Spermatogonia in Rainbow Trout (Oncorhynchus mykiss) Mol. Reprod. Dev. 2013;80:763–773. doi: 10.1002/mrd.22208. PubMed DOI

Grunow B., Noglick S., Kruse C., Gebert M. Isolation of cells from Atlantic sturgeon Acipenser oxyrinchus oxyrinchus and optimization of culture conditions. Aquat. Biol. 2011;14:67–75. doi: 10.3354/ab00383. DOI

Huleihel M., Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J. Androl. 2004;6:259–268. PubMed

Ham R.G. Albumin replacement by fatty acids in clonal growth of mammalian cells. Science. 1963;140:802–803. doi: 10.1126/science.140.3568.802. PubMed DOI

Nagano M., Ryu B.-Y., Brinster C.J., Avarbock M.R., Brinster R.L. Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 2003;68:2207–2214. doi: 10.1095/biolreprod.102.014050. PubMed DOI

Hamra F.K., Schultz N., Chapman K.M., Grellhesl D.M., Cronkhite J.T., Hammer R.E., Garbers D.L. Defining the spermatogonial stem cell. Dev. Boil. 2004;269:393–410. doi: 10.1016/j.ydbio.2004.01.027. PubMed DOI

Sakai N. Transmeiotic differentiation of zebrafish germ cells into functional sperm in culture. Development. 2002;129:3359–3365. PubMed

Kubota H., Avarbock M.R., Brinster R.L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA. 2004;101:16489–16494. doi: 10.1073/pnas.0407063101. PubMed DOI PMC

Kubota H., Avarbock M.R., Brinster R.L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 2004;71:722–731. doi: 10.1095/biolreprod.104.029207. PubMed DOI

Sadri-Ardekani H., Mizrak S.C., van Daalen S.K., Korver C.M., Roepers-Gajadien H.L., Koruji M., Hovingh S., de Reijke T.M., de la Rosette J.J., van der Veen F. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302:2127–2134. doi: 10.1001/jama.2009.1689. PubMed DOI

Tokalov S., Gutzeit H. Spermatogenesis in testis primary cell cultures of the tilapia (Oreochromis niloticus) Dev. Dyn. 2005;233:1238–1247. doi: 10.1002/dvdy.20379. PubMed DOI

Guan K., Nayernia K., Maier L.S., Wagner S., Dressel R., Lee J.H., Nolte J., Wolf F., Li M., Engel W. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006;440:1199–1203. doi: 10.1038/nature04697. PubMed DOI

Hofmann M.-C., Braydich-Stolle L., Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev. Biol. 2005;279:114–124. doi: 10.1016/j.ydbio.2004.12.006. PubMed DOI PMC

Campos-Junior P.H.A., Costa G.M., Lacerda S.M., Rezende-Neto J.V., de Paula A.M., Hofmann M.-C., de França L.R. The spermatogonial stem cell niche in the collared peccary (Tayassu tajacu) Biol. Reprod. 2012;86:155. doi: 10.1095/biolreprod.111.095430. PubMed DOI PMC

Costa G.M., Avelar G.F., Rezende-Neto J.V., Campos-Junior P.H.A., Lacerda S.M., Andrade B.S., Thomé R.G., Hofmann M.-C., Franca L.R. Spermatogonial stem cell markers and niche in equids. PLoS ONE. 2012;7:e44091. doi: 10.1371/journal.pone.0044091. PubMed DOI PMC

Lacerda S.M.S.N., Costa G.M.J., da Silva M.D., Campos-Junior P.H.A., Segatelli T.M., Peixoto M.T.D., Resende R.R., de França L.R. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen. Comp. Endocrinol. 2013;192:95–106. doi: 10.1016/j.ygcen.2013.06.013. PubMed DOI

Bosseboeuf A., Gautier A., Auvray P., Mazan S., Sourdaine P. Characterization of spermatogonial markers in the mature testis of the dogfish (Scyliorhinus canicula L.) Reproduction. 2014;147:125–139. doi: 10.1530/REP-13-0316. PubMed DOI

Nakajima S., Hayashi M., Kouguchi T., Yamaguchi K., Miwa M., Yoshizaki G. Expression patterns of gdnf and gfrα1 in rainbow trout testis. Gene Expr. Patterns. 2014;14:111–120. doi: 10.1016/j.gep.2014.01.006. PubMed DOI

Bellaïche J., Goupil A.-S., Sambroni E., Lareyre J.-J., Le Gac F. Gdnf-Gfra1 pathway is expressed in a spermatogenetic-dependent manner and is regulated by Fsh in a fish testis. Biol. Reprod. 2014;91:94. doi: 10.1095/biolreprod.114.119834. PubMed DOI

Gautier A., Bosseboeuf A., Auvray P., Sourdaine P. Maintenance of Potential Spermatogonial Stem Cells In Vitro by GDNF Treatment in a Chondrichthyan Model (Scyliorhinus canicula L.) Biol. Reprod. 2014;91:91. doi: 10.1095/biolreprod.113.116020. PubMed DOI

Hong Y., Winkler C., Schartl M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes) Mech. Dev. 1996;60:33–44. doi: 10.1016/S0925-4773(96)00596-5. PubMed DOI

Barnes D., Sato G. Serum-free cell culture: A unifying approach. Cell. 1980;22:649–655. doi: 10.1016/0092-8674(80)90540-1. PubMed DOI

Enat R., Jefferson D.M., Ruiz-Opazo N., Gatmaitan Z., Leinwand L.A., Reid L.M. Hepatocyte proliferation in vitro: Its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc. Natl. Acad. Sci. USA. 1984;81:1411–1415. doi: 10.1073/pnas.81.5.1411. PubMed DOI PMC

Bahadorani M., Hosseini S., Abedi P., Hajian M., Hosseini S., Vahdati A., Baharvand H., Nasr-Esfahani M.H. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J. Assist. Reprod. Genet. 2012;29:39–46. doi: 10.1007/s10815-011-9687-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...