Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
201203086
Special Fund for Agro-scientific Research in the Public Interest of the Ministry of Agriculture of China
2015B02YQ01
Special Scientific Research Fund for Central Non-profit Institutes, Chinese Academy of Fishery Sciences
31402301
National Natural Science Foundation of China
CZ.1.05/2.1.00/01.0024
Ministry of Education, Youth and Sports of the Czech Republic
LO1205
Ministry of Education, Youth and Sports of the Czech Republic
16-02407Y
Czech Science Foundation
PubMed
30901855
PubMed Central
PMC6466142
DOI
10.3390/ani9030106
PII: ani9030106
Knihovny.cz E-zdroje
- Klíčová slova
- feeder cells, germ cell culture, glial-cell-derived neurotrophic factor, sturgeon, transplantation,
- Publikační typ
- časopisecké články MeSH
To expand germ cell populations and provide a consistent supply for transplantation, we established basal culture conditions for sturgeon germ cells and subsequently increased their mitotic activity by eliminating gonad somatic cells, supplementing with growth factor, and replacing fetal bovine serum (FBS). The initial basal culture conditions were Leibovitz's L-15 medium (pH 8.0) supplemented with 5% FBS (p < 0.001) at 21 °C. Proliferation of germ cells was significantly enhanced and maintained for longer periods by elimination of gonad somatic cells and culture under feeder-cell free conditions, with addition of leukemia inhibitory factor and glial-cell-derived neurotrophic factor (p < 0.001). A serum-free culture medium improved germ cell proliferation compared to the L-15 with FBS (p < 0.05). Morphology remained similar to that of fresh germ cells for at least 40 d culture. Germline-specific gene expression analysis revealed no significant changes to germ cells before and after culture. Sterlet Acipenser ruthenus germ cells cultured more than 40 days showed development after transplant into Russian sturgeon Acipenser gueldenstaedtii. Polymerase chain reaction showed 33.3% of recipient gonads to contain sterlet cells after four months. This study developed optimal culture condition for sturgeon germ cells. Germ cells after 40 d culture developed in recipient gonads. This study provided useful information for culture of sturgeon germ cells.
Zobrazit více v PubMed
Lacerda S.M.S.N., Costa G.M.J., Campos P.H.A., Segatelli T.M., Yazawa R., Takeuchi Y., Morita T., Yoshizaki G., Franca L.R. Germ cell transplantation as a potential biotechnological approach to fish reproduction. Fish Physiol. Biochem. 2013;39:3–11. doi: 10.1007/s10695-012-9606-4. PubMed DOI
Okutsu T., Suzuki K., Takeuchi Y., Takeuchi T., Yoshizaki G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA. 2006;103:2725–2729. doi: 10.1073/pnas.0509218103. PubMed DOI PMC
Okutsu T., Shikina S., Kanno M., Takeuchi Y., Yoshizaki G. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517. doi: 10.1126/science.1145626. PubMed DOI
Hong Y., Liu T., Zhao H., Xu H., Wang W., Liu R., Chen T., Deng J., Gui J. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA. 2004;101:8011–8016. doi: 10.1073/pnas.0308668101. PubMed DOI PMC
Sakai N. In vitro male germ cell cultures of zebrafish. Methods. 2006;39:239–245. doi: 10.1016/j.ymeth.2005.12.008. PubMed DOI
Lacerda S.M., Batlouni S.R., Costa G.M., Segatelli T.M., Quirino B.R., Queiroz B.M., Kalapothakis E., França L.R. A new and fast technique to generate offspring after germ cells transplantation in adult fish: The Nile tilapia (Oreochromis niloticus) model. PLoS ONE. 2010;5:e10740. doi: 10.1371/journal.pone.0010740. PubMed DOI PMC
Shikina S., Yoshizaki G. Improved in vitro culture conditions to enhance the survival, mitotic activity, and transplantability of rainbow trout type A spermatogonia. Biol. Reprod. 2010;83:268–276. doi: 10.1095/biolreprod.109.082123. PubMed DOI
Bemis W.E. Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes. J. Vertebr. Paleontol. 1991;11:1–121.
Birstein V.J., Bemis W.E., Waldman J.R. Sturgeon Biodiversity and Conservation. Springer; Dordrecht, The Netherlands: 1997. The threatened status of acipenseriform species: A summary; pp. 427–435.
Wei Q., Ke F.e., Zhang J., Zhuang P., Luo J., Zhou R., Yang W. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environ. Biol. Fishes. 1997;48:241–255. doi: 10.1023/A:1007395612241. DOI
Zhang H., Wei Q., Du H., Li L. Present status and risk for extinction of the Dabry’s sturgeon (Acipenser dabryanus) in the Yangtze River watershed: A concern for intensified rehabilitation needs. J. Appl. Ichthyol. 2011;27:181–185. doi: 10.1111/j.1439-0426.2011.01674.x. DOI
Bemis W.E., Kynard B. Sturgeon rivers: An introduction to acipenseriform biogeography and life history. Environ. Biol. Fishes. 1997;48:167–184. doi: 10.1023/A:1007312524792. DOI
Zhuang P., Ke F.E., Wei Q., He X., Cen Y. Biology and life history of Dabry’s sturgeon, Acipenser dabryanus, in the Yangtze River. Environ. Biol. Fishes. 1997;48:257–264. doi: 10.1023/A:1007399729080. DOI
Shikina S., Ihara S., Yoshizaki G. Culture conditions for maintaining the survival and mitotic activity of rainbow trout transplantable type A spermatogonia. Mol. Reprod. Dev. 2008;75:529–537. doi: 10.1002/mrd.20771. PubMed DOI
Ye H., Yue H.M., Yang X.G., Li C.J., Wei Q.W. Identification and sexually dimorphic expression of vasa isoforms in Dabry’s sturgeon (Acipenser dabryanus), and functional analysis of vasa 3′-untranslated region. Cell Tissue Res. 2016;366:1–16. doi: 10.1007/s00441-016-2418-6. PubMed DOI
Pšenička M., Saito T., Linhartová Z., Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83:1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI
Havelka M., Fujimoto T., Hagihara S., Adachi S., Arai K. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Sci. Rep. 2017;7:1694. doi: 10.1038/s41598-017-01768-3. PubMed DOI PMC
Brinster R.L., Zimmermann J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA. 1994;91:11298–11302. doi: 10.1073/pnas.91.24.11298. PubMed DOI PMC
Shikina S., Nagasawa K., Hayashi M., Furuya M., Iwasaki Y., Yoshizaki G. Short-Term In Vitro Culturing Improves Transplantability of Type A Spermatogonia in Rainbow Trout (Oncorhynchus mykiss) Mol. Reprod. Dev. 2013;80:763–773. doi: 10.1002/mrd.22208. PubMed DOI
Grunow B., Noglick S., Kruse C., Gebert M. Isolation of cells from Atlantic sturgeon Acipenser oxyrinchus oxyrinchus and optimization of culture conditions. Aquat. Biol. 2011;14:67–75. doi: 10.3354/ab00383. DOI
Huleihel M., Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J. Androl. 2004;6:259–268. PubMed
Ham R.G. Albumin replacement by fatty acids in clonal growth of mammalian cells. Science. 1963;140:802–803. doi: 10.1126/science.140.3568.802. PubMed DOI
Nagano M., Ryu B.-Y., Brinster C.J., Avarbock M.R., Brinster R.L. Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 2003;68:2207–2214. doi: 10.1095/biolreprod.102.014050. PubMed DOI
Hamra F.K., Schultz N., Chapman K.M., Grellhesl D.M., Cronkhite J.T., Hammer R.E., Garbers D.L. Defining the spermatogonial stem cell. Dev. Boil. 2004;269:393–410. doi: 10.1016/j.ydbio.2004.01.027. PubMed DOI
Sakai N. Transmeiotic differentiation of zebrafish germ cells into functional sperm in culture. Development. 2002;129:3359–3365. PubMed
Kubota H., Avarbock M.R., Brinster R.L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA. 2004;101:16489–16494. doi: 10.1073/pnas.0407063101. PubMed DOI PMC
Kubota H., Avarbock M.R., Brinster R.L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 2004;71:722–731. doi: 10.1095/biolreprod.104.029207. PubMed DOI
Sadri-Ardekani H., Mizrak S.C., van Daalen S.K., Korver C.M., Roepers-Gajadien H.L., Koruji M., Hovingh S., de Reijke T.M., de la Rosette J.J., van der Veen F. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302:2127–2134. doi: 10.1001/jama.2009.1689. PubMed DOI
Tokalov S., Gutzeit H. Spermatogenesis in testis primary cell cultures of the tilapia (Oreochromis niloticus) Dev. Dyn. 2005;233:1238–1247. doi: 10.1002/dvdy.20379. PubMed DOI
Guan K., Nayernia K., Maier L.S., Wagner S., Dressel R., Lee J.H., Nolte J., Wolf F., Li M., Engel W. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006;440:1199–1203. doi: 10.1038/nature04697. PubMed DOI
Hofmann M.-C., Braydich-Stolle L., Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev. Biol. 2005;279:114–124. doi: 10.1016/j.ydbio.2004.12.006. PubMed DOI PMC
Campos-Junior P.H.A., Costa G.M., Lacerda S.M., Rezende-Neto J.V., de Paula A.M., Hofmann M.-C., de França L.R. The spermatogonial stem cell niche in the collared peccary (Tayassu tajacu) Biol. Reprod. 2012;86:155. doi: 10.1095/biolreprod.111.095430. PubMed DOI PMC
Costa G.M., Avelar G.F., Rezende-Neto J.V., Campos-Junior P.H.A., Lacerda S.M., Andrade B.S., Thomé R.G., Hofmann M.-C., Franca L.R. Spermatogonial stem cell markers and niche in equids. PLoS ONE. 2012;7:e44091. doi: 10.1371/journal.pone.0044091. PubMed DOI PMC
Lacerda S.M.S.N., Costa G.M.J., da Silva M.D., Campos-Junior P.H.A., Segatelli T.M., Peixoto M.T.D., Resende R.R., de França L.R. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen. Comp. Endocrinol. 2013;192:95–106. doi: 10.1016/j.ygcen.2013.06.013. PubMed DOI
Bosseboeuf A., Gautier A., Auvray P., Mazan S., Sourdaine P. Characterization of spermatogonial markers in the mature testis of the dogfish (Scyliorhinus canicula L.) Reproduction. 2014;147:125–139. doi: 10.1530/REP-13-0316. PubMed DOI
Nakajima S., Hayashi M., Kouguchi T., Yamaguchi K., Miwa M., Yoshizaki G. Expression patterns of gdnf and gfrα1 in rainbow trout testis. Gene Expr. Patterns. 2014;14:111–120. doi: 10.1016/j.gep.2014.01.006. PubMed DOI
Bellaïche J., Goupil A.-S., Sambroni E., Lareyre J.-J., Le Gac F. Gdnf-Gfra1 pathway is expressed in a spermatogenetic-dependent manner and is regulated by Fsh in a fish testis. Biol. Reprod. 2014;91:94. doi: 10.1095/biolreprod.114.119834. PubMed DOI
Gautier A., Bosseboeuf A., Auvray P., Sourdaine P. Maintenance of Potential Spermatogonial Stem Cells In Vitro by GDNF Treatment in a Chondrichthyan Model (Scyliorhinus canicula L.) Biol. Reprod. 2014;91:91. doi: 10.1095/biolreprod.113.116020. PubMed DOI
Hong Y., Winkler C., Schartl M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes) Mech. Dev. 1996;60:33–44. doi: 10.1016/S0925-4773(96)00596-5. PubMed DOI
Barnes D., Sato G. Serum-free cell culture: A unifying approach. Cell. 1980;22:649–655. doi: 10.1016/0092-8674(80)90540-1. PubMed DOI
Enat R., Jefferson D.M., Ruiz-Opazo N., Gatmaitan Z., Leinwand L.A., Reid L.M. Hepatocyte proliferation in vitro: Its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc. Natl. Acad. Sci. USA. 1984;81:1411–1415. doi: 10.1073/pnas.81.5.1411. PubMed DOI PMC
Bahadorani M., Hosseini S., Abedi P., Hajian M., Hosseini S., Vahdati A., Baharvand H., Nasr-Esfahani M.H. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J. Assist. Reprod. Genet. 2012;29:39–46. doi: 10.1007/s10815-011-9687-5. PubMed DOI PMC
Delivery of Iron Oxide Nanoparticles into Primordial Germ Cells in Sturgeon