Isolation and Characterization of Highly Pure Type A Spermatogonia From Sterlet (Acipenser ruthenus) Using Flow-Cytometric Cell Sorting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34957105
PubMed Central
PMC8708567
DOI
10.3389/fcell.2021.772625
PII: 772625
Knihovny.cz E-zdroje
- Klíčová slova
- PLZF, fluorescence-activated cell sorting, germ stem cell, gonad, spermatogonia, sturgeon,
- Publikační typ
- časopisecké články MeSH
Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.
Biology Center of the Czech Academy of Sciences Institute of Entomology České Budějovice Czechia
Department of Pharmacology C_DAT University Medicine Greifswald Greifswald Germany
University of South Bohemia Faculty of Science České Budějovice Czechia
Zobrazit více v PubMed
Aramaki S., Kato T., Soh T., Yamauchi N., Hattori M. A. (2008). Molecular Cloning and Expression of Dead End Homologue in Chicken Germ Cells. Cell Tissue Res 330, 45–52. 10.1093/biolreprod/78.s1.298d PubMed DOI
Baloch A. R., Franěk R., Tichopád T., Fučíková M., Rodina M., Pšenička M. (2019a). Dnd1 Knockout in Sturgeons by CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals 9, 174. 10.3390/ani9040174 PubMed DOI PMC
Bellaiche J., Lareyre J.-J., Cauty C., Yano A., Allemand I., Le Gac F. (2014). Spermatogonial Stem Cell Quest: Nanos2, Marker of a Subpopulation of Undifferentiated A Spermatogonia in Trout Testis1. Biol. Reprod. 90, 1–6. 10.1095/biolreprod.113.116392 PubMed DOI
Bemis W. E., Findeis E. K., Grande L. (1997). An Overview of Acipenseriformes. Environ. Biol. Fishes 48, 25–71. 10.1023/A:1007370213924 DOI
Bemis W. E., Kynard B. (1997). Sturgeon Rivers: an Introduction to Acipenseriform Biogeography and Life History. Environ. Biol. Fishes 48, 167–183. 10.1023/a:1007312524792 DOI
Berbejillo J., Martinez-Bengochea A., Bedo G., Brunet F., Volff J.-N., Vizziano-Cantonnet D. (2012). Expression and Phylogeny of Candidate Genes for Sex Differentiation in a Primitive Fish Species, the Siberian sturgeon, Acipenser baerii . Mol. Reprod. Dev. 79, 504–516. 10.1002/mrd.22053 PubMed DOI
Bronzi P., Rosenthal H. (2014). Present and Future sturgeon and Caviar Production and Marketing: A Global Market Overview. J. Appl. Ichthyol. 30, 1536–1546. 10.1111/jai.12628 DOI
Buaas F. W., Kirsh A. L., Sharma M., McLean D. J., Morris J. L., Griswold M. D., et al. (2004). Plzf Is Required in Adult Male Germ Cells for Stem Cell Self-Renewal. Nat. Genet. 36, 647–652. 10.1038/ng1366 PubMed DOI
De Rooij D. G., Russell L. D. (2000). All You Wanted to Know about Spermatogonia but Were Afraid to Ask. J. Androl. 21, 776–798. PubMed
Dolci S., Williams D. E., Ernst M. K., Resnick J. L., Brannan C. I., Lock L. F., et al. (1991). Requirement for Mast Cell Growth Factor for Primordial Germ Cell Survival in Culture. Nature 352, 809–811. 10.1038/352809a0 PubMed DOI
Eberhart C. G., Maines J. Z., Wasserman S. A. (1996). Meiotic Cell Cycle Requirement for a Fly Homologue of Human Deleted in Azoospermia. Nature 381, 783–785. 10.1038/381783a0 PubMed DOI
Fajkowska M., Głowacka D. K., Adamek-Urbańska D., Ostaszewska T., Krajnik K. A., Rzepkowska M. (2019). Sex-related Gene Expression Profiles in Various Tissues of Juvenile Russian sturgeon (Acipenser gueldenstaedtii). Aquaculture 500, 532–539. 10.1016/j.aquaculture.2018.10.066 DOI
Fajkowska M., Ostaszewska T., Rzepkowska M. (2020). Review: Molecular Mechanisms of Sex Differentiation in Sturgeons. Rev. Aquacult 12, 1003–1027. 10.1111/raq.12369 DOI
Fajkowska M., Rzepkowska M., Adamek D., Ostaszewska T., Szczepkowski M. (2016). Expression of Dmrt1 and Vtg Genes during Gonad Formation, Differentiation and Early Maturation in Cultured Russian sturgeon Acipenser gueldenstaedtii . J. Fish. Biol. 89, 1441–1449. 10.1111/jfb.12992 PubMed DOI
Franěk R., Marinović Z., Lujić J., Urbányi B., Fučíková M., Kašpar V., et al. (2019). Cryopreservation and Transplantation of Common Carp Spermatogonia. PLoS One 14, e0205481. 10.1371/journal.pone.0205481 PubMed DOI PMC
Franěk R., Kašpar V., Shah M. A., Gela D., Pšenička M. (2021). Production of Common Carp Donor-Derived Offspring from Goldfish Surrogate Broodstock. Aquaculture 534, 736252. 10.1016/j.aquaculture.2020.736252 DOI
Gautier A., Bosseboeuf A., Auvray P., Sourdaine P. (2014). Maintenance of Potential Spermatogonial Stem Cells In Vitro by GDNF Treatment in a Chondrichthyan Model (Scyliorhinus canicula L.)1. Biol. Reprod. 91. 10.1095/biolreprod.113.116020 PubMed DOI
Hagihara S., Yamashita R., Yamamoto S., Ishihara M., Abe T., Ijiri S., et al. (2014). Identification of Genes Involved in Gonadal Sex Differentiation and the Dimorphic Expression Pattern in Undifferentiated Gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833. J. Appl. Ichthyol. 30, 1557–1564. 10.1111/jai.12588 DOI
Hayashi M., Sato M., Nagasaka Y., Sadaie S., Kobayashi S., Yoshizaki G. (2014). Enrichment of Spermatogonial Stem Cells Using Side Population in Teleost1. Biol. Reprod. 91, 1–8. 10.1095/biolreprod.113.114140 PubMed DOI
Higuchi K., Takeuchi Y., Miwa M., Yamamoto Y., Tsunemoto K., Yoshizaki G. (2011). Colonization, Proliferation, and Survival of Intraperitoneally Transplanted Yellowtail Seriola quinqueradiata Spermatogonia in Nibe Croaker Nibea mitsukurii Recipient. Fish. Sci. 77, 69–77. 10.1007/s12562-010-0314-7 DOI
Horvay K., Claußen M., Landgrebe J., Pieler T. (2006). Clau?EnXenopus Dead End mRNA Is a Localized Maternal Determinant that Serves a Conserved Function in Germ Cell Development. Developmental Biol. 291, 1–11. 10.1016/j.ydbio.2005.06.013 PubMed DOI
Ichida K., Kawamura W., Miwa M., Iwasaki Y., Kubokawa T., Hayashi M., et al. (2019). Specific Visualization of Live Type A Spermatogonia of Pacific Bluefin Tuna Using Fluorescent Dye-Conjugated Antibodies†. Biol. Reprod. 100, 1637–1647. 10.1093/biolre/ioz047 PubMed DOI
Ichida K., Kise K., Morita T., Yazawa R., Takeuchi Y., Yoshizaki G. (2017). Flow-cytometric Enrichment of Pacific Bluefin Tuna Type A Spermatogonia Based on Light-Scattering Properties. Theriogenology 101, 91–98. 10.1016/j.theriogenology.2017.06.022 PubMed DOI
Inoue J. G., Miya M., Venkatesh B., Nishida M. (2005). The Mitochondrial Genome of Indonesian Coelacanth Latimeria Menadoensis (Sarcopterygii: Coelacanthiformes) and Divergence Time Estimation between the Two Coelacanths. Gene 349, 227–235. 10.1016/J.GENE.2005.01.008 PubMed DOI
Iwasaki-Takahashi Y., Shikina S., Watanabe M., Banba A., Yagisawa M., Takahashi K., et al. (2020). Production of Functional Eggs and Sperm from In Vitro-expanded Type A Spermatogonia in Rainbow trout. Commun. Biol. 3, 308. 10.1038/s42003-020-1025-y PubMed DOI PMC
Kanatsu-Shinohara M., Morimoto H., Shinohara T. (2012). Enrichment of Mouse Spermatogonial Stem Cells by Melanoma Cell Adhesion Molecule Expression. Biol. Reprod. 87, 139. 10.1095/biolreprod.112.103861 PubMed DOI
Kise K., Yoshikawa H., Sato M., Tashiro M., Yazawa R., Nagasaka Y., et al. (2012). Flow-Cytometric Isolation and Enrichment of Teleost Type A Spermatogonia Based on Light-Scattering Properties1. Biol. Reprod. 86. 10.1095/biolreprod.111.093161 PubMed DOI
Kokkinaki M., Djourabtchi A., Golestaneh N. (2011). Long-term Culture of Human SSEA-4 Positive Spermatogonial Stem Cells (SSCs). J. Stem Cell Res. Ther. 01. 10.4172/2157-7633.S2-003 PubMed DOI PMC
Lacerda S. M. d. S. N., Costa G. M. J., de França L. R. (2014). Biology and Identity of Fish Spermatogonial Stem Cell. Gen. Comp. Endocrinol. 207, 56–65. 10.1016/J.YGCEN.2014.06.018 PubMed DOI
Lacerda S. M. S. N., Batlouni S. R., Costa G. M. J., Segatelli T. M., Quirino B. R., Queiroz B. M., et al. (2010). A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile tilapia (Oreochromis niloticus) Model. PLoS One 5, e10740. 10.1371/journal.pone.0010740 PubMed DOI PMC
Lacerda S. M. S. N., Martinez E. R. M., Mura I. L. D. D., Doretto L. B., Costa G. M. J., Silva M. A., et al. (2019). Duration of Spermatogenesis and Identification of Spermatogonial Stem Cell Markers in a Neotropical Catfish, Jundiá (Rhamdia quelen). Gen. Comp. Endocrinol. 273, 249–259. 10.1016/j.ygcen.2018.10.018 PubMed DOI
Linhartová Z., Rodina M., Guralp H., Gazo I., Saito T., Pšenička M. (2014). Pšenička M.: Isolation and Cryopreservation of Early Stages of Germ Cells of Tench (Tinca tinca). Czech J. Anim. Sci. 59, 381–390. 10.17221/7589-cjas DOI
Linhartová Z., Saito T., Kašpar V., Rodina M., Prášková E., Hagihara S., et al. (2015). Sterilization of Sterlet Acipenser ruthenus by Using Knockdown Agent, Antisense Morpholino Oligonucleotide, against Dead End Gene. Theriogenology 84, 1246–1255. 10.1016/j.theriogenology.2015.07.003 PubMed DOI
Liu L., Hong N., Xu H., Li M., Yan Y., Purwanti Y., et al. (2009). Medaka Dead End Encodes a Cytoplasmic Protein and Identifies Embryonic and Adult Germ Cells. Gene Expr. Patterns 9, 541–548. 10.1016/j.gep.2009.06.008 PubMed DOI
Lujić J., Marinović Z., Bajec S. S., Djurdjevič I., Urbányi B., Horváth Á. (2018). Interspecific Germ Cell Transplantation: a New Light in the Conservation of Valuable Balkan trout Genetic Resources? Fish. Physiol. Biochem. 44, 1487–1498. 10.1007/s10695-018-0510-4 PubMed DOI
Maouche A., Curran E., Goupil A.-S., Sambroni E., Bellaiche J., Le Gac F., et al. (2018). New Insights into the Evolution, Hormonal Regulation, and Spatiotemporal Expression Profiles of Genes Involved in the Gfra1/Gdnf and Kit/Kitlg Regulatory Pathways in Rainbow trout Testis. Fish. Physiol. Biochem. 44, 1599–1616. 10.1007/s10695-018-0547-4 PubMed DOI
Mohapatra C., Barman H. K. (2014). Identification of Promoter within the First Intron of Plzf Gene Expressed in Carp Spermatogonial Stem Cells. Mol. Biol. Rep. 41, 6433–6440. 10.1007/s11033-014-3525-7 PubMed DOI
Morita T., Morishima K., Miwa M., Kumakura N., Kudo S., Ichida K., et al. (2015). Functional Sperm of the Yellowtail (Seriola quinqueradiata) Were Produced in the Small-Bodied Surrogate, jack Mackerel (Trachurus Japonicus). Mar. Biotechnol. 17, 644–654. 10.1007/s10126-015-9657-5 PubMed DOI
Nagasawa K., Fernandes J. M. O., Yoshizaki G., Miwa M., Babiak I. (2013). Identification and Migration of Primordial Germ Cells in Atlantic salmon, Salmo salar : Characterization of Vasa , Dead End , and Lymphocyte Antigen 75 Genes. Mol. Reprod. Dev. 80, 118–131. 10.1002/mrd.22142 PubMed DOI PMC
Nayak S., Ferosekhan S., Sahoo S. K., Sundaray J. K., Jayasankar P., Barman H. K. (2016). Production of fertile Sperm from In Vitro Propagating Enriched Spermatogonial Stem Cells of Farmed Catfish, Clarias batrachus . Zygote 24, 814–824. 10.1017/S0967199416000149 PubMed DOI
Okutsu T., Shikina S., Kanno M., Takeuchi Y., Yoshizaki G. (2007). Production of trout Offspring from Triploid salmon Parents. Science 317, 1517. 10.1126/science.1145626 PubMed DOI
Ozaki Y., Saito K., Shinya M., Kawasaki T., Sakai N. (2011). Evaluation of Sycp3, Plzf and Cyclin B3 Expression and Suitability as Spermatogonia and Spermatocyte Markers in Zebrafish. Gene Expr. Patterns 11, 309–315. 10.1016/j.gep.2011.03.002 PubMed DOI
Panda R. P., Barman H. K., Mohapatra C. (2011). Isolation of Enriched Carp Spermatogonial Stem Cells from Labeo Rohita Testis for In Vitro Propagation. Theriogenology 76, 241–251. 10.1016/j.theriogenology.2011.01.031 PubMed DOI
Pšenička M., Saito T., Linhartová Z., Gazo I. (2015). Isolation and Transplantation of sturgeon Early-Stage Germ Cells. Theriogenology 83, 1085–1092. 10.1016/J.THERIOGENOLOGY.2014.12.010 PubMed DOI
Pšenička M., Saito T., Rodina M., Dzyuba B. (2016). Cryopreservation of Early Stage Siberian sturgeon Acipenser baerii Germ Cells, Comparison of Whole Tissue and Dissociated Cells. Cryobiology 72, 119–122. 10.1016/j.cryobiol.2016.02.005 PubMed DOI
Ramirez J.-M., Bai Q., Péquignot M., Becker F., Kassambara A., Bouin A., et al. (2013). Side Scatter Intensity Is Highly Heterogeneous in Undifferentiated Pluripotent Stem Cells and Predicts Clonogenic Self-Renewal. Stem Cell Development 22, 1851–1860. 10.1089/scd.2012.0658 PubMed DOI PMC
Rolland A. D., Lareyre J.-J., Goupil A.-S., Montfort J., Ricordel M.-J., Esquerré D., et al. (2009). Expression Profiling of Rainbow trout Testis Development Identifies Evolutionary Conserved Genes Involved in Spermatogenesis. BMC Genomics 10. 10.1186/1471-2164-10-546 PubMed DOI PMC
Runyan C., Schaible K., Molyneaux K., Wang Z., Levin L., Wylie C. (2006). Steel Factor Controls Midline Cell Death of Primordial Germ Cells and Is Essential for Their normal Proliferation and Migration. Development 133 (24), 4861–4869. 10.1242/dev.02688 PubMed DOI
Santos Nassif Lacerda S. M., Costa G. M. J., da Silva M. d. A., Almeida Campos-Junior P. H., Segatelli T. M., Peixoto M. T. D., et al. (2013). Phenotypic Characterization and In Vitro Propagation and Transplantation of the Nile tilapia (Oreochromis niloticus) Spermatogonial Stem Cells. Gen. Comp. Endocrinol. 192, 95–106. 10.1016/J.YGCEN.2013.06.013 PubMed DOI
Satoh R., Bando H., Sakai N., Kotani T., Yamashita M. (2019). Function of Leukaemia Inhibitory Factor in Spermatogenesis of a Teleost Fish, the Medaka Oryzias latipes . Zygote 27, 423–431. 10.1017/S0967199419000558 PubMed DOI
Schulz R. W., de França L. R., Lareyre J.-J., LeGac F., Chiarini-Garcia H., Nobrega R. H., et al. (2010). Spermatogenesis in Fish. Gen. Comp. Endocrinol. 165, 390–411. 10.1016/j.ygcen.2009.02.013 PubMed DOI
Schulz R. W., Menting S., Bogerd J., França L. R., Vilela D. A. R., Godinho H. P. (2005). Sertoli Cell Proliferation in the Adult Testis-Evidence from Two Fish Species Belonging to Different Orders1. Biol. Reprod. 73, 891–898. 10.1095/biolreprod.105.039891 PubMed DOI
Shang M., Su B., Lipke E. A., Perera D. A., Li C., Qin Z., et al. (2015). Spermatogonial Stem Cells Specific Marker Identification in Channel Catfish, Ictalurus punctatus and Blue Catfish, I. furcatus . Fish. Physiol. Biochem. 41, 1545–1556. 10.1007/s10695-015-0106-1 PubMed DOI
Shang M., Su B., Perera D. A., Alsaqufi A., Lipke E. A., Cek S., et al. (2018). Testicular Germ Line Cell Identification, Isolation, and Transplantation in Two North American Catfish Species. Fish. Physiol. Biochem. 44, 717–733. 10.1007/s10695-018-0467-3 PubMed DOI
Takeuchi Y., Yoshizaki G., Takeuchi T. (2004). Surrogate Broodstock Produces Salmonids. Nature 430, 629–630. 10.1038/430629a PubMed DOI
Valli H., Sukhwani M., Dovey S. L., Peters K. A., Donohue J., Castro C. A., et al. (2014). Fluorescence- and Magnetic-Activated Cell Sorting Strategies to Isolate and Enrich Human Spermatogonial Stem Cells. Fertil. Sterility 102, 566–580. 10.1016/J.FERTNSTERT.2014.04.036 PubMed DOI PMC
Vizziano-Cantonnet D., Lasalle A., Di Landro S., Klopp C., Genthon C. (2018). De Novo transcriptome Analysis to Search for Sex-Differentiation Genes in the Siberian sturgeon. Gen. Comp. Endocrinol. 268, 96–109. 10.1016/j.ygcen.2018.08.007 PubMed DOI
Wang W., Zhu H., Dong Y., Dong T., Tian Z., Hu H. (2019). Identification and Dimorphic Expression of Sex-Related Genes during Gonadal Differentiation in Sterlet Acipenser ruthenus, a Primitive Fish Species. Aquaculture 500, 178–187. 10.1016/j.aquaculture.2018.10.001 PubMed DOI
Wang W., Zhu H., Dong Y., Tian Z., Dong T., Hu H., et al. (2017). Dimorphic Expression of Sex-Related Genes in Different Gonadal Development Stages of Sterlet, Acipenser ruthenus, a Primitive Fish Species. Fish. Physiol. Biochem. 43, 1557–1569. 10.1007/s10695-017-0392-x PubMed DOI
Weidinger G., Stebler J., Slanchev K., Dumstrei K., Wise C., Lovell-Badge R., et al. (2003). Dead End, a Novel Vertebrate Germ Plasm Component, Is Required for Zebrafish Primordial Germ Cell Migration and Survival. Curr. Biol. 13, 1429–1434. 10.1016/s0960-9822(03)00537-2 PubMed DOI
Wong T.-T., Saito T., Crodian J., Collodi P. (2011). Zebrafish Germline Chimeras Produced by Transplantation of Ovarian Germ Cells into Sterile Host Larvae1. Biol. Reprod. 84, 1190–1197. 10.1095/biolreprod.110.088427 PubMed DOI PMC
Xie X., Li P., Pšenička M., Ye H., Steinbach C., Li C., et al. (2019). Optimization of In Vitro Culture Conditions of sturgeon Germ Cells for Purpose of Surrogate Production. Animals 9, 106. 10.3390/ani9030106 PubMed DOI PMC
Xie X., Nóbrega R., Pšenička M. (2020). Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 10, 644. 10.3390/biom10040644 PubMed DOI PMC
Xu E. Y., Moore F. L., Pera R. A. R. (2001). A Gene Family Required for Human Germ Cell Development Evolved from an Ancient Meiotic Gene Conserved in Metazoans. Proc. Natl. Acad. Sci. 98, 7414–7419. 10.1073/pnas.131090498 PubMed DOI PMC
Xu H., Li Z., Li M., Wang L., Hong Y., Laura R. (2009). Boule Is Present in Fish and Bisexually Expressed in Adult and Embryonic Germ Cells of Medaka. PLoS One 4, e6097. 10.1371/journal.pone.0006097 PubMed DOI PMC
Yang X., Yue H., Ye H., Li C., Wei Q. (2015). Identification of a Germ Cell Marker Gene, the Dead End Homologue, in Chinese sturgeon Acipenser Sinensis. Gene 558, 118–125. 10.1016/j.gene.2014.12.059 PubMed DOI
Ye H., Li C.-J., Yue H.-M., Du H., Yang X.-G., Yoshino T., et al. (2017). Establishment of Intraperitoneal Germ Cell Transplantation for Critically Endangered Chinese sturgeon Acipenser Sinensis. Theriogenology 94, 37–47. 10.1016/j.theriogenology.2017.02.009 PubMed DOI
Ye H., Li C.-J., Yue H.-M., Yang X.-G., Wei Q.-W. (2015). Differential Expression of Fertility Genes Boule and Dazl in Chinese sturgeon (Acipenser Sinensis), a Basal Fish. Cell Tissue Res 360, 413–425. 10.1007/s00441-014-2095-2 PubMed DOI
Ye H., Zhou C., Yue H., Wu M., Ruan R., Du H., et al. (2021). Cryopreservation of Germline Stem Cells in American Paddlefish (Polyodon spathula). Anim. Reprod. Sci. 224, 106667. 10.1016/j.anireprosci.2020.106667 PubMed DOI
Yoshikawa H., Takeuchi Y., Ino Y., Wang J., Iwata G., Kabeya N., et al. (2017). Efficient Production of Donor-Derived Gametes from Triploid Recipients Following Intra-peritoneal Germ Cell Transplantation into a marine Teleost, Nibe Croaker ( Nibea mitsukurii ). Aquaculture 478, 35–47. 10.1016/j.aquaculture.2016.05.011 DOI
Yoshizaki G., Okutsu T., Morita T., Terasawa M., Yazawa R., Takeuchi Y. (2012). Biological Characteristics of Fish Germ Cells and Their Application to Developmental Biotechnology. Reprod. Domest. Anim. 47, 187–192. 10.1111/j.1439-0531.2012.02074.x PubMed DOI
Youngren K. K., Coveney D., Peng X., Bhattacharya C., Schmidt L. S., Nickerson M. L., et al. (2005). The Ter Mutation in the Dead End Gene Causes Germ Cell Loss and Testicular Germ Cell Tumours. Nature 435, 360–364. 10.1038/nature03595 PubMed DOI PMC
Yue H., Li C., Du H., Zhang S., Wei Q. (2015). Sequencing and De Novo Assembly of the Gonadal Transcriptome of the Endangered Chinese sturgeon (Acipenser Sinensis). PLoS One 10, e0127332–22. 10.1371/journal.pone.0127332 PubMed DOI PMC
Zhang F., Hao Y., Li X., Li Y., Ye D., Zhang R., et al. (2021). Surrogate Production of Genome-Edited Sperm from a Different Subfamily by Spermatogonial Stem Cell Transplantation. Sci. China Life Sci. 1–19. 10.1007/s11427-021-1989-9 PubMed DOI
Zhang F., Li X., He M., Ye D., Xiong F., Amin G., et al. (2020a). Efficient Generation of Zebrafish Maternal-Zygotic Mutants through Transplantation of Ectopically Induced and Cas9/gRNA Targeted Primordial Germ Cells. J. Genet. Genomics 47, 37–47. 10.1016/j.jgg.2019.12.004 PubMed DOI
Zhang X., Zhou J., Li L., Huang W., Ahmad H. I., Li H., et al. (2020b). Full-length Transcriptome Sequencing and Comparative Transcriptomic Analysis to Uncover Genes Involved in Early Gametogenesis in the Gonads of Amur sturgeon (Acipenser Schrenckii). Front. Zool. 17, 1–21. 10.1186/s12983-020-00355-z PubMed DOI PMC
Zhuang P., Wei Q., He X., Cen Y. (1997). Biology and Life History of Dabry’s sturgeon, Acipenser Dabryanus, in the Yangtze River. Environ. Biol. Fishes 48, 257–264. 10.1023/a:1007399729080 DOI