Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems

. 2020 Apr 22 ; 10 (4) : . [epub] 20200422

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32331205

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007370 Ministry of Education, Youth and Sports of the Czech Republic-Biodiversity - International
LM2018099 Ministry of Education, Youth and Sports of the Czech Republic-CENAKVA - International
14/07620-7 São Paulo Research Foundation - International

Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.

Zobrazit více v PubMed

De Rooij D.G., Russell L.D. All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 2000;21:776–798. PubMed

De Rooij D.G. Proliferation and differentiation of spermatogonial stem cells. Reproduction-Cambridge- 2001;121:347–354. doi: 10.1530/rep.0.1210347. PubMed DOI

De Rooij D.G. Rapid expansion of the spermatogonial stem cell tool box. Proc. Natl. Acad. Sci. USA. 2006;103:7939–7940. doi: 10.1073/pnas.0602432103. PubMed DOI PMC

De Rooij D.G. Regulation of spermatogonial stem cell behavior in vivo and in vitro. Anim. Reprod. 2018;3:130–134.

Ehmcke J., Wistuba J., Schlatt S. Spermatogonial stem cells: Questions, models and perspectives. Hum. Reprod. Update. 2006;12:275–282. doi: 10.1093/humupd/dmk001. PubMed DOI

Baloch A.R., Franěk R., Tichopád T., Fučíková M., Rodina M., Pšenička M. Dnd1 knockout in sturgeons by CRISPR/Cas9 generates germ cell free host for surrogate production. Animals. 2019;9:174. doi: 10.3390/ani9040174. PubMed DOI PMC

Franěk R., Marinović Z., Lujić J., Urbányi B., Fučíková M., Kašpar V., Pšenička M., Horváth Á. Cryopreservation and transplantation of common carp spermatogonia. PLoS ONE. 2019;14:e0205481. doi: 10.1371/journal.pone.0205481. PubMed DOI PMC

Fatira E., Havelka M., Labbé C., Depincé A., Iegorova V., Pšenička M., Saito T. Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-24376-1. PubMed DOI PMC

Nayak S., Ferosekhan S., Sahoo S.K., Sundaray J.K., Jayasankar P., Barman H.K. Production of fertile sperm from in vitro propagating enriched spermatogonial stem cells of farmed catfish, Clarias batrachus. Zygote. 2016;24:814–824. doi: 10.1017/S0967199416000149. PubMed DOI

Schulz R.W., de França L.R., Lareyre J.J., LeGac F., Chiarini-Garcia H., Nobrega R.H., Miura T. Spermatogenesis in fish. Gen. Comp. Endocrinol. 2010;165:390–411. doi: 10.1016/j.ygcen.2009.02.013. PubMed DOI

Fawcett D.W. Intercellular bridges. Exp. Cell Res. 1961;8:174–187. doi: 10.1016/0014-4827(61)90347-0. PubMed DOI

Grier H.J. Comparative organization of Sertoli cells including the Sertoli cell barrier. The Sertoli Cell. 1993:703–739.

Loir M. Trout steroidogenic testicular cells in primary culture: II. Steroidogenic activity of interstitial cells, Sertoli cells, and spermatozoa. Gen. Comp. Endocrinol. 1990;78:388–398. doi: 10.1016/0016-6480(90)90028-K. PubMed DOI

Maekawa M., Kamimura K., Nagano T. Peritubular Myoid Cells in the Testis: Their Structure and Function. Arch. Histol. Cytol. 1996;59:1–13. doi: 10.1679/aohc.59.1. PubMed DOI

França L.R., Nóbrega R.H., Morais R.D.V.S., Assis L.H.D.C., Schulz R.W. Sertoli Cell Biology. Academic Press; Oxford, UK: 2015. Sertoli cell structure and function in anamniote vertebrates; pp. 385–407.

Hess R.A., De Franca L.R. Molecular Mechanisms in Spermatogenesis. Springer; New York, NY, USA: 2009. Spermatogenesis and cycle of the seminiferous epithelium; pp. 1–15.

Figueiredo A.F.A., França L.R., Hess R.A., Costa G.M.J. Sertoli cells are capable of proliferation into adulthood in the transition region between the seminiferous tubules and the rete testis in Wistar rats. Cell Cycle. 2016;15:2486–2496. doi: 10.1080/15384101.2016.1207835. PubMed DOI PMC

Callard G.V. Endocrinology of Leydig cells in nonmammalian vertebrates. Leydig Cell. 1996:308–331.

Wistuba J., Schlatt S. Transgenic mouse models and germ cell transplantation: Two excellent tools for the analysis of genes regulating male fertility. Mol. Genet. Metab. 2002;77:61–67. doi: 10.1016/S1096-7192(02)00142-7. PubMed DOI

Nóbrega R.H., De Souza Morais R.D.V., Crespo D., De Waal P.P., De França L.R., Schulz R.W., Bogerd J. Fsh stimulates spermatogonial proliferation and differentiation in zebrafish via Igf3. Endocrinology. 2015;156:3804–3817. doi: 10.1210/en.2015-1157. PubMed DOI

Safian D., Bogerd J., Schulz R.W. Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. Gen. Comp. Endocrinol. 2019;284:1–11. doi: 10.1016/j.ygcen.2019.113244. PubMed DOI

Nóbrega R.H., Greebe C.D., van de Kant H., Bogerd J., de França L.R., Schulz R.W. Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS ONE. 2010;5:e0012808. doi: 10.1371/journal.pone.0012808. PubMed DOI PMC

De Cuevas M., Matunis E.L. The stem cell niche: Lessons from the Drosophila testis. Development. 2011;138:2861–2869. doi: 10.1242/dev.056242. PubMed DOI PMC

Lacerda S.M.S.N., Aponte P.M., Costa G.M.J., Segatelli T.M. An overview of spermatogonial stem cell physiology, niche and transplantation in fish. Anim. Reprod. 2012;9:798–808.

De Siqueira-Silva D.H., da Silva Rodrigues M., Nóbrega R.H. Testis structure, spermatogonial niche and Sertoli cell efficiency in Neotropical fish. Gen. Comp. Endocrinol. 2019;273:218–226. doi: 10.1016/j.ygcen.2018.09.004. PubMed DOI

Spradling A., Drummond-Barbosa D., Kai T. Stem cells find their niche. Nature. 2001;414:98–104. doi: 10.1038/35102160. PubMed DOI

Fuchs E., Tumbar T., Guasch G. Socializing with the neighbors: Stem cells and their niche. Cell. 2004;116:769–778. doi: 10.1016/S0092-8674(04)00255-7. PubMed DOI

Smith A. A glossary for stem-cell biology. Nature. 2006;441:1060. doi: 10.1038/nature04954. DOI

McLean D.J. Spermatogonial stem cell transplantation and testicular function. Cell Tissue Res. 2005;322:21–31. doi: 10.1007/s00441-005-0009-z. PubMed DOI

Hess R.A., Cooke P.S., Hofmann M.-C., Murphy K.M. Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle. 2006;5:1164–1170. doi: 10.4161/cc.5.11.2775. PubMed DOI PMC

Cooke P.S., Hess R.A., Simon L., Schlesser H.N., Carnes K., Tyagi G., Hofmann M.C., Murphy K.M. The transcription factor Ets-related molecule (ERM) is essential for spermatogonial stem cell maintenance and self-renewal. Anim. Reprod. 2018;3:98–107.

Oatley J.M., Oatley M.J., Avarbock M.R., Tobias J.W., Brinster R.L. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development. 2009;136:1191–1199. doi: 10.1242/dev.032243. PubMed DOI PMC

Mäkelä J.-A., Hobbs R.M. Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction. 2019;1:169–187. doi: 10.1530/REP-18-0476. PubMed DOI

Mayerhofer A. Peritubular cells of the human testis: Prostaglandin E2 and more. Andrology. 2019:1–5. doi: 10.1111/andr.12669. PubMed DOI

Chiarini-Garcia H., Hornick J.R., Griswold M.D., Russell L.D. Distribution of type A spermatogonia in the mouse is not random. Biol. Reprod. 2001;65:1179–1185. doi: 10.1095/biolreprod65.4.1179. PubMed DOI

Chiarini-Garcia H., Raymer A.M., Russell L.D. Non-random distribution of spermatogonia in rats: Evidence of niches in the seminiferous tubules. Reproduction-Cambridge- 2003;126:669–680. doi: 10.1530/rep.0.1260669. PubMed DOI

Yoshida S., Sukeno M., Nabeshima Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science. 2007;317:1722–1726. doi: 10.1126/science.1144885. PubMed DOI

De Rooij D.G., Griswold M.D. Questions about spermatogonia posed and answered since 2000. J. Androl. 2012;33:1085–1095. doi: 10.2164/jandrol.112.016832. PubMed DOI

Hara K., Nakagawa T., Enomoto H., Suzuki M., Yamamoto M., Simons B.D., Yoshida S. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell. 2014;14:658–672. doi: 10.1016/j.stem.2014.01.019. PubMed DOI PMC

Kitadate Y., Jörg D.J., Tokue M., Maruyama A., Ichikawa R., Tsuchiya S., Segi-Nishida E., Nakagawa T., Uchida A., Kimura-Yoshida C. Competition for mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell. 2019;24:79–92. doi: 10.1016/j.stem.2018.11.013. PubMed DOI PMC

De Siqueira-Silva D.H., Saito T., dos Santos-Silva A.P., da Silva Costa R., Psenicka M., Yasui G.S. Biotechnology applied to fish reproduction: Tools for conservation. Fish Physiol. Biochem. 2018;44:1469–1485. doi: 10.1007/s10695-018-0506-0. PubMed DOI

Schulze C. Response of the human testis to long-term estrogen treatment: Morphology of Sertoli cells, Leydig cells and spermatogonial stem cells. Cell Tissue Res. 1988;251:31–43. doi: 10.1007/BF00215444. PubMed DOI

Schulze C. Morphological characteristics of the spermatogonial stem cells in man. Cell Tissue Res. 1979;198:191–199. doi: 10.1007/BF00232003. PubMed DOI

Nakamura S., Kobayashi K., Nishimura T., Higashijima S.I., Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science. 2010;328:1561–1563. doi: 10.1126/science.1185473. PubMed DOI

De Paiva Camargo M., Cassel M., Oliveira de Jesus L.W., Nóbrega R.H., Borella M.I. Characterization of undifferentiated spermatogonia and the spermatogonial niche in the lambari fish Astyanax altiparanae. Theriogenology. 2017;96:97–102. doi: 10.1016/j.theriogenology.2017.03.027. PubMed DOI

Brinster R.L., Zimmermann J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA. 1994;91:11298–11302. doi: 10.1073/pnas.91.24.11298. PubMed DOI PMC

Majhi S.K., Hattori R.S., Yokota M., Watanabe S., Strüssmann C.A. Germ cell transplantation using sexually competent fish: An approach for rapid propagation of endangered and valuable germlines. PLoS ONE. 2009;4:e0006132. doi: 10.1371/journal.pone.0006132. PubMed DOI PMC

Lacerda S.M.S.N., Batlouni S.R., Costa G.M.J., Segatelli T.M., Quirino B.R., Queiroz B.M., Kalapothakis E., França L.R. A new and fast technique to generate offspring after germ cells transplantation in adult fish: The nile tilapia (Oreochromis niloticus) model. PLoS ONE. 2010;5:e0010740. doi: 10.1371/journal.pone.0010740. PubMed DOI PMC

Ye H., Li C.-J., Yue H.-M., Du H., Yang X.-G., Yoshino T., Hayashida T., Takeuchi Y., Wei Q.-W. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology. 2017;94:37–47. doi: 10.1016/j.theriogenology.2017.02.009. PubMed DOI

Hattori R.S., Yoshinaga T.T., Katayama N., Hattori-Ihara S., Tsukamoto R.Y., Takahashi N.S., Tabata Y.A. Surrogate production of Salmo salar oocytes and sperm in triploid Oncorhynchus mykiss by germ cell transplantation technology. Aquaculture. 2019;506:238–245. doi: 10.1016/j.aquaculture.2019.03.037. DOI

Okutsu T., Shikina S., Kanno M., Takeuchi Y., Yoshizaki G. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517. doi: 10.1126/science.1145626. PubMed DOI

Lacerda S.M., Dos S.N., Costa G.M.J., de França L.R. Biology and identity of fish spermatogonial stem cell. Gen. Comp. Endocrinol. 2014;207:56–65. doi: 10.1016/j.ygcen.2014.06.018. PubMed DOI

Nagano M.C., Yeh J.R. Current Topics in Developmental Biology. Volume 102. Academic Press; Oxford, UK: 2013. The identity and fate decision control of spermatogonial stem cells: Where is the point of no return; pp. 61–95. PubMed

Yano A., Suzuki K., Yoshizaki G. Flow-Cytometric Isolation of Testicular Germ Cells from Rainbow Trout (Oncorhynchus mykiss) Carrying the Green Fluorescent Protein Gene Driven by Trout vasa Regulatory Regions. Biol. Reprod. 2008;78:151–158. doi: 10.1095/biolreprod.107.064667. PubMed DOI

Okutsu T., Suzuki K., Takeuchi Y., Takeuchi T., Yoshizaki G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA. 2006;103:2725–2729. doi: 10.1073/pnas.0509218103. PubMed DOI PMC

Buaas F.W., Kirsh A.L., Sharma M., McLean D.J., Morris J.L., Griswold M.D., de Rooij D.G., Braun R.E. Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 2004;36:647–652. doi: 10.1038/ng1366. PubMed DOI

Panda R.P., Barman H.K., Mohapatra C. Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology. 2011;76:241–251. doi: 10.1016/j.theriogenology.2011.01.031. PubMed DOI

Ozaki Y., Saito K., Shinya M., Kawasaki T., Sakai N. Evaluation of Sycp3, Plzf and Cyclin B3 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. Gene Expr. Patterns. 2011;11:309–315. doi: 10.1016/j.gep.2011.03.002. PubMed DOI

Mohapatra C., Barman H.K. Identification of promoter within the first intron of Plzf gene expressed in carp spermatogonial stem cells. Mol. Biol. Rep. 2014;41:6433–6440. doi: 10.1007/s11033-014-3525-7. PubMed DOI

Gautier A., Bosseboeuf A., Auvray P., Sourdaine P. Maintenance of Potential Spermatogonial Stem Cells In Vitro by GDNF Treatment in a Chondrichthyan Model (Scyliorhinus canicula L.)1. Biol. Reprod. 2014;91:91–105. doi: 10.1095/biolreprod.113.116020. PubMed DOI

Bellaiche J., Lareyre J.-J., Cauty C., Yano A., Allemand I., Le Gac F. Spermatogonial Stem Cell Quest: nanos2, Marker of a Subpopulation of Undifferentiated a Spermatogonia in Trout Testis1. Biol. Reprod. 2014;90:1–6. doi: 10.1095/biolreprod.113.116392. PubMed DOI

Shang M., Su B., Lipke E.A., Perera D.A., Li C., Qin Z., Li Y., Dunn D.A., Cek S., Peatman E. Spermatogonial stem cells specific marker identification in channel catfish, Ictalurus punctatus and blue catfish, I. furcatus. Fish Physiol. Biochem. 2015;41:1545–1556. doi: 10.1007/s10695-015-0106-1. PubMed DOI

Lacerda S.M.S.N., Martinez E.R.M., Mura I.L.D.D., Doretto L.B., Costa G.M.J., Silva M.A., Digmayer M., Nóbrega R.H., França L.R. Duration of spermatogenesis and identification of spermatogonial stem cell markers in a Neotropical catfish, Jundiá (Rhamdia quelen) Gen. Comp. Endocrinol. 2019;273:249–259. doi: 10.1016/j.ygcen.2018.10.018. PubMed DOI

Meng X., Lindahl M., Hyvönen M.E., Parvinen M., de Rooij D.G., Hess M.W., Raatikainen-Ahokas A., Sainio K., Rauvala H., Lakso M. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287:1489–1493. doi: 10.1126/science.287.5457.1489. PubMed DOI

Nakagawa T., Sharma M., Nabeshima Y., Braun R.E., Yoshida S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science. 2010;328:62–67. doi: 10.1126/science.1182868. PubMed DOI PMC

Costa G.M.J., Avelar G.F., Guimarães D.A., França L.R. Postnatal testis development in the collared peccary (Tayassu tajacu), with emphasis on spermatogonial stem cells markers and niche. Gen. Comp. Endocrinol. 2019;273:98–107. PubMed

Savvulidi F., Ptacek M., Savvulidi Vargova K., Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J. Anim. Sci. Biotechnol. 2019;10:46–63. doi: 10.1186/s40104-019-0355-4. PubMed DOI PMC

Santos Nassif Lacerda S.M., Costa G.M.J., da Silva M.D.A., Almeida Campos-Junior P.H., Segatelli T.M., Peixoto M.T.D., Resende R.R., de França L.R. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen. Comp. Endocrinol. 2013;192:95–106. doi: 10.1016/j.ygcen.2013.06.013. PubMed DOI

Nakajima S., Hayashi M., Kouguchi T., Yamaguchi K., Miwa M., Yoshizaki G. Expression patterns of gdnf and gfrα1 in rainbow trout testis. Gene Expr. Patterns. 2014;14:111–120. doi: 10.1016/j.gep.2014.01.006. PubMed DOI

Froschauer A., Khatun M.M., Sprott D., Franz A., Rieger C., Pfennig F., Gutzeit H.O. oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka. Mol. Reprod. Dev. 2013;80:48–58. doi: 10.1002/mrd.22135. PubMed DOI

Sánchez-Sánchez A.V., Camp E., Mullor J.L. Fishing pluripotency mechanisms in vivo. Int. J. Biol. Sci. 2011;7:410–417. doi: 10.7150/ijbs.7.410. PubMed DOI PMC

Wang D., Manali D., Wang T., Bhat N., Hong N., Li Z., Wang L., Yan Y., Liu R., Hong Y. Identification of pluripotency genes in the fish medaka. Int. J. Biol. Sci. 2011;7:440–451. doi: 10.7150/ijbs.7.440. PubMed DOI PMC

Baumann K. A gated exit from pluripotency. Nat. Rev. Mol. Cell Biol. 2013;14:324. doi: 10.1038/nrm3585. PubMed DOI

Lengner C.J., Camargo F.D., Hochedlinger K., Welstead G.G., Zaidi S., Gokhale S., Scholer H.R., Tomilin A., Jaenisch R. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell. 2007;1:403–415. doi: 10.1016/j.stem.2007.07.020. PubMed DOI PMC

Hayashi M., Ichida K., Sadaie S., Miwa M., Fujihara R., Nagasaka Y., Yoshizaki G. Establishment of novel monoclonal antibodies for identification of type A spermatogonia in teleosts†. Biol. Reprod. 2019;101:478–491. doi: 10.1093/biolre/ioz080. PubMed DOI

Ichida K., Hayashi M., Miwa M., Kitada R., Takahashi M., Fujihara R., Boonanuntanasarn S., Yoshizaki G. Enrichment of transplantable germ cells in salmonids using a novel monoclonal antibody by magnetic-activated cell sorting. Mol. Reprod. Dev. 2019;86:1810–1821. doi: 10.1002/mrd.23275. PubMed DOI

Ichida K., Kawamura W., Miwa M., Iwasaki Y., Kubokawa T., Hayashi M., Yazawa R., Yoshizaki G. Specific visualization of live type A spermatogonia of Pacific bluefin tuna using fluorescent dye-conjugated antibodies†. Biol. Reprod. 2019;100:1637–1647. doi: 10.1093/biolre/ioz047. PubMed DOI

Kobayashi T., Kajiura-Kobayashi H., Nagahama Y. A novel stage-specific antigen is expressed only in early stages of spermatogonia in Japanese eel, Anguilla japonica testis. Mol. Reprod. Dev. 1998;51:355–361. doi: 10.1002/(SICI)1098-2795(199812)51:4<355::AID-MRD1>3.0.CO;2-G. PubMed DOI

Yano A., Von Schalburg K., Cooper G., Koop B.F., Yoshizaki G. Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from pvasa-GFP transgenic rainbow trout (Oncorhynchus mykiss) Mol. Reprod. Dev. Inc. Gamete Res. 2009;76:246–254. doi: 10.1002/mrd.20947. PubMed DOI

Nagasawa K., Shikina S., Takeuchi Y., Yoshizaki G. Lymphocyte antigen 75 (Ly75/CD205) is a surface marker on mitotic germ cells in rainbow trout. Biol. Reprod. 2010;83:597–606. doi: 10.1095/biolreprod.109.082081. PubMed DOI

Nagasawa K., Miwa M., Yazawa R., Morita T., Takeuchi Y., Yoshizaki G. Characterization of lymphocyte antigen 75 (Ly75/CD205) as a potential cell-surface marker on spermatogonia in Pacific bluefin tuna Thunnus orientalis. Fish. Sci. 2012;78:791–800. doi: 10.1007/s12562-012-0501-9. DOI

Aoki Y., Nakamura S., Ishikawa Y., Tanaka M. Expression and syntenic analyses of four nanos genes in medaka. Zoolog. Sci. 2009;26:112–118. doi: 10.2108/zsj.26.112. PubMed DOI

Pierce J.G., Parsons T.F. Glycoprotein hormones: Structure and function. Annu. Rev. Biochem. 1981;50:465–495. doi: 10.1146/annurev.bi.50.070181.002341. PubMed DOI

McLachlan R.I., Wreford N.G., O’donnell L., De Kretser D.M., Robertson D.M. The endocrine regulation of spermatogenesis: Independent roles for testosterone and FSH. J. Endocrinol. 1996;148:1–9. doi: 10.1677/joe.0.1480001. PubMed DOI

Panneerdoss S., Chang Y.-F., Buddavarapu K.C., Chen H.-I.H., Shetty G., Wang H., Chen Y., Kumar T.R., Rao M.K. Androgen-responsive microRNAs in mouse Sertoli cells. PLoS ONE. 2012;7:e0041146. doi: 10.1371/journal.pone.0041146. PubMed DOI PMC

Shirakawa T., Yaman-Deveci R., Tomizawa S., Kamizato Y., Nakajima K., Sone H., Sato Y., Sharif J., Yamashita A., Takada-Horisawa Y. An epigenetic switch is crucial for spermatogonia to exit the undifferentiated state toward a Kit-positive identity. Development. 2013;140:3565–3576. doi: 10.1242/dev.094045. PubMed DOI

Nagano M., Ryu B.-Y., Brinster C.J., Avarbock M.R., Brinster R.L. Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 2003;68:2207–2214. doi: 10.1095/biolreprod.102.014050. PubMed DOI

Ohta T., Miyake H., Miura C., Kamei H., Aida K., Miura T. Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica. Biol. Reprod. 2007;77:970–977. doi: 10.1095/biolreprod.107.062299. PubMed DOI

García-López Á., De Jonge H., Nóbrega R.H., De Waal P.P., Van Dijk W., Hemrika W., Taranger G.L., Bogerd J., Schulz R.W. Studies in zebrafish reveal unusual cellular expression patterns of gonadotropin receptor messenger ribonucleic acids in the testis and unexpected functional differentiation of the gonadotropins. Endocrinology. 2010;151:2349–2360. doi: 10.1210/en.2009-1227. PubMed DOI PMC

García-Lopez A., Bogerd J., Granneman J.C.M., van Dijk W., Trant J.M., Taranger G.L., Schulz R.W. Leydig cells express follicle-stimulating hormone receptors in African catfish. Endocrinology. 2009;150:357–365. doi: 10.1210/en.2008-0447. PubMed DOI PMC

Chauvigné F., Zapater C., Gasol J.M., Cerdà J. Germ-line activation of the luteinizing hormone receptor directly drives spermiogenesis in a nonmammalian vertebrate. Proc. Natl. Acad. Sci. USA. 2014;111:1427–1432. PubMed PMC

Safian D., Ryane N., Bogerd J., Schulz R.W. Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. J. Endocrinol. 2018;239:351–363. doi: 10.1530/JOE-18-0447. PubMed DOI

Assis L.H.C., Crespo D., Morais R.D.V.S., França L.R., Bogerd J., Schulz R.W. INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio) Cell Tissue Res. 2016;363:579–588. doi: 10.1007/s00441-015-2213-9. PubMed DOI PMC

Planas J.V., Swanson P., Dickhoff W.W. Regulation of testicular steroid production in vitro by gonadotropins (GTH I and GTH II) and cyclic AMP in coho salmon (Oncorhynchus kisutch) Gen. Comp. Endocrinol. 1993;91:8–24. doi: 10.1006/gcen.1993.1099. PubMed DOI

Crespo D., Assis L.H.C., Furmanek T., Bogerd J., Schulz R.W. Expression profiling identifies Sertoli and Leydig cell genes as Fsh targets in adult zebrafish testis. Mol. Cell. Endocrinol. 2016;437:237–251. doi: 10.1016/j.mce.2016.08.033. PubMed DOI

Sambroni E., Rolland A.D., Lareyre J.J., Le Gac F. Fsh and Lh have common and distinct effects on gene expression in rainbow trout testis. J. Mol. Endocrinol. 2013;50:1–18. doi: 10.1530/JME-12-0197. PubMed DOI

Skaar K.S., Nobrega R.H., Magaraki A., Olsen L.C., Schulz R.W., Male R. Proteolytically activated, recombinant Anti-Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures. Endocrinology. 2011;152:3527–3540. doi: 10.1210/en.2010-1469. PubMed DOI

Morais R.D.V.S., Crespo D., Nóbrega R.H., Lemos M.S., van de Kant H.J.G., de França L.R., Male R., Bogerd J., Schulz R.W. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol. Cell. Endocrinol. 2017;454:112–124. doi: 10.1016/j.mce.2017.06.017. PubMed DOI

Adolfi M.C., Nakajima R.T., Nóbrega R.H., Schartl M. Intersex, hermaphroditism, and gonadal plasticity in vertebrates: Evolution of the Müllerian duct and Amh/Amhr2 signaling. Annu. Rev. Anim. Biosci. 2019;7:149–172. doi: 10.1146/annurev-animal-020518-114955. PubMed DOI

Pfennig F., Standke A., Gutzeit H.O. The role of Amh signaling in teleost fish–multiple functions not restricted to the gonads. Gen. Comp. Endocrinol. 2015;223:87–107. doi: 10.1016/j.ygcen.2015.09.025. PubMed DOI

Miura T., Miura C., Konda Y., Yamauchi K. Spermatogenesis-preventing substance in Japanese eel. Development. 2002;129:2689–2697. PubMed

Li M., Liu X., Dai S., Xiao H., Qi S., Li Y., Zheng Q., Jie M., Cheng C.H.K., Wang D. Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell. Mol. Life Sci. 2020:1–18. doi: 10.1007/s00018-019-03439-0. PubMed DOI PMC

Safian D., Bogerd J., Schulz R.W. Igf3 activates β-catenin signaling to stimulate spermatogonial differentiation in zebrafish. J. Endocrinol. 2018;238:245–257. doi: 10.1530/JOE-18-0124. PubMed DOI

Bellve A., Cavicchia J., Millette C., O’Brien D., Bhatnagar Y., Dym M. Spermatogenic cells of the prepuberal mouse: Isolation and morphological characterization. J. Cell Biol. 1977;74:68–85. doi: 10.1083/jcb.74.1.68. PubMed DOI PMC

Sakai N. Transmeiotic differentiation of zebrafish germ cells into functional sperm in culture. Development. 2002;129:3359–3365. PubMed

Kossack N., Meneses J., Shefi S., Nguyen H.N., Chavez S., Nicholas C., Gromoll J., Turek P.J., Reijo-Pera R.A. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells. 2009;27:138–149. doi: 10.1634/stemcells.2008-0439. PubMed DOI PMC

Kaul G., Kumar S., Kumari S. Enrichment of CD9+ spermatogonial stem cells from goat (Capra aegagrus hircus) testis using magnetic microbeads. Stem Cell Discov. 2012;2:92–99. doi: 10.4236/scd.2012.23014. DOI

Hong Y., Liu T., Zhao H., Xu H., Wang W., Liu R., Chen T., Deng J., Gui J. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA. 2004;101:8011–8016. doi: 10.1073/pnas.0308668101. PubMed DOI PMC

Sakai N. In vitro male germ cell cultures of zebrafish. Methods. 2006;39:239–245. doi: 10.1016/j.ymeth.2005.12.008. PubMed DOI

Shikina S., Yoshizaki G. Improved In Vitro Culture Conditions to Enhance the Survival, Mitotic Activity, and Transplantability of Rainbow Trout Type A Spermatogonia1. Biol. Reprod. 2010;83:268–276. doi: 10.1095/biolreprod.109.082123. PubMed DOI

Pšenička M., Saito T., Linhartová Z., Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83:1085–1092. doi: 10.1016/j.theriogenology.2014.12.010. PubMed DOI

Pšenička M., Saito T., Rodina M., Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72:119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI

Yoshizaki G., Ichikawa M., Hayashi M., Iwasaki Y., Miwa M., Shikina S., Okutsu T. Sexual plasticity of ovarian germ cells in rainbow trout. Development. 2010;137:1227–1230. doi: 10.1242/dev.044982. PubMed DOI

Wong T.-T., Saito T., Crodian J., Collodi P. Zebrafish Germline Chimeras Produced by Transplantation of Ovarian Germ Cells into Sterile Host Larvae1. Biol. Reprod. 2011;84:1190–1197. doi: 10.1095/biolreprod.110.088427. PubMed DOI PMC

Shikina S., Ihara S., Yoshizaki G. Culture conditions for maintaining the survival and mitotic activity of rainbow trout transplantable type A spermatogonia. Mol. Reprod. Dev. 2008;75:529–537. doi: 10.1002/mrd.20771. PubMed DOI

Zou K., Hou L., Sun K., Xie W., Wu J. Improved efficiency of female germline stem cell purification using fragilis-based magnetic bead sorting. Stem Cells Dev. 2011;20:2197–2204. doi: 10.1089/scd.2011.0091. PubMed DOI

Garcia T., Hofmann M.-C. Germline Development. Springer; New York, NY, USA: 2012. Isolation of Undifferentiated and Early Differentiating Type A Spermatogonia from Pou5f1-GFP Reporter Mice; pp. 31–44. PubMed PMC

Ohgawara H., Iwanaga T., Yui R., Nishijima S., Hirata Y. Monolayer-forming islet cell culture from neonatal pig pancreas: Using sequential treatment with EDTA-dispase and monoiodoacetic acid for preparation and purification. Tohoku, J. Exp. Med. 1987;153:375–382. doi: 10.1620/tjem.153.375. PubMed DOI

Diogo M.M., da Silva C.L., Cabral J.M.S. Separation Technologies for Stem Cell Bioprocessing. In: Al-Rubeai M., Naciri M., editors. Stem Cells and Cell Therapy. Springer; New York, NY, USA: 2014. pp. 157–181.

Bellaïche J., Goupil A.-S., Sambroni E., Lareyre J.-J., Le Gac F. Gdnf-Gfra1 Pathway Is Expressed in a Spermatogenetic-Dependent Manner and Is Regulated by Fsh in a Fish Testis1. Biol. Reprod. 2014;91:1–12. doi: 10.1095/biolreprod.114.119834. PubMed DOI

Yoshikawa H., Morishima K., Fujimoto T., Saito T., Kobayashi T., Yamaha E., Arai K. Chromosome Doubling in Early Spermatogonia Produces Diploid Spermatozoa in a Natural Clonal Fish1. Biol. Reprod. 2009;80:973–979. doi: 10.1095/biolreprod.108.075150. PubMed DOI

Wong T.T., Tesfamichael A., Collodi P. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells. PLoS ONE. 2013;8:e0062660. doi: 10.1371/journal.pone.0062660. PubMed DOI PMC

Shikina S., Nagasawa K., Hayashi M., Furuya M., Iwasaki Y., Yoshizaki G. Short-term in vitro culturing improves transplantability of type A spermatogonia in rainbow trout (Oncorhynchus mykiss) Mol. Reprod. Dev. 2013;80:763–773. doi: 10.1002/mrd.22208. PubMed DOI

Kise K., Yoshikawa H., Sato M., Tashiro M., Yazawa R., Nagasaka Y., Takeuchi Y., Yoshizaki G. Flow-Cytometric Isolation and Enrichment of Teleost Type A Spermatogonia Based on Light-Scattering Properties1. Biol. Reprod. 2012;86:1–12. doi: 10.1095/biolreprod.111.093161. PubMed DOI

Ichida K., Kise K., Morita T., Yazawa R., Takeuchi Y., Yoshizaki G. Flow-cytometric enrichment of Pacific bluefin tuna type A spermatogonia based on light-scattering properties. Theriogenology. 2017;101:91–98. doi: 10.1016/j.theriogenology.2017.06.022. PubMed DOI

Abascal F.J., Megina Martínez C., Medina A. Testicular development in migrant and spawning bluefin tuna (Thunnus thynnus (L.)) from the eastern Atlantic and Mediterranean. Fish. Bull. 2004;102:407–417.

Rodriguez-Sosa J.R., Dobson H., Hahnel A. Isolation and transplantation of spermatogonia in sheep. Theriogenology. 2006;66:2091–2103. doi: 10.1016/j.theriogenology.2006.03.039. PubMed DOI

Hermann B.P., Sukhwani M., Winkler F., Pascarella J.N., Peters K.A., Sheng Y., Valli H., Rodriguez M., Ezzelarab M., Dargo G., et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715–726. doi: 10.1016/j.stem.2012.07.017. PubMed DOI PMC

Liu S., Tang Z., Xiong T., Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod. Biol. Endocrinol. 2011;9:141–149. doi: 10.1186/1477-7827-9-141. PubMed DOI PMC

Rolland A.D., Lareyre J.J., Goupil A.S., Montfort J., Ricordel M.J., Esquerré D., Hugot K., Houlgatte R., Chalmel F., Le Gac F. Expression profiling of rainbow trout testis development identifies evolutionary conserved genes involved in spermatogenesis. BMC Genomics. 2009;10:1–22. doi: 10.1186/1471-2164-10-546. PubMed DOI PMC

Linhartová Z., Rodina M., Guralp H., Gazo I., Saito T., Pšenička M. Isolation and cryopreservation of early stages of germ cells of tench (Tinca tinca) Czech, J. Anim. Sci. 2014;59:381–390. doi: 10.17221/7589-CJAS. DOI

Sato M., Morita T., Katayama N., Yoshizaki G. Production of genetically diversified fish seeds using spermatogonial transplantation. Aquaculture. 2014;422:218–224. doi: 10.1016/j.aquaculture.2013.12.016. DOI

Elkouby Y.M., Mullins M.C. Methods for the analysis of early oogenesis in Zebrafish. Dev. Biol. 2017;430:310–324. doi: 10.1016/j.ydbio.2016.12.014. PubMed DOI PMC

Wong T.-T., Tesfamichael A., Collodi P. Identification of promoter elements responsible for gonad-specific expression of zebrafish Deadend and its application to ovarian germ cell derivation. Int. J. Dev. Biol. 2013;57:767–772. doi: 10.1387/ijdb.120234tw. PubMed DOI

Kanatsu-Shinohara M., Inoue K., Ogonuki N., Morimoto H., Ogura A., Shinohara T. Serum- and Feeder-Free Culture of Mouse Germline Stem Cells1. Biol. Reprod. 2011;84:97–105. doi: 10.1095/biolreprod.110.086462. PubMed DOI

Luo J., Megee S., Rathi R., Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: Application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 2006;73:1531–1540. doi: 10.1002/mrd.20529. PubMed DOI

Aponte P.M., De Rooij D.G. Biomanipulation of bovine spermatogonial stem cells. Anim. Reprod. 2018;5:16–22.

Julius M.H., Herzenberg L.A. Isolation of antigen-binding cells from unprimed mice: Demonstration of antibody-forming cell precursor activity and correlation between precursor and secreted antibody avidities. J. Exp. Med. 1974;140:904–920. doi: 10.1084/jem.140.4.904. PubMed DOI PMC

Ibrahim S.F., Van Den Engh G. Flow cytometry and cell sorting. Adv. Biochem. Eng. Biotechnol. 2007;106:19–39. PubMed

Ibrahim S.F., Van Den Engh G. High-speed cell sorting: Fundamentals and recent advances. Curr. Opin. Biotechnol. 2003;14:5–12. doi: 10.1016/S0958-1669(02)00009-5. PubMed DOI

Van Den Engh G. High speed cell sorting. Emerg. Tools Single Cell Anal. Adv. Opt. Meas. Technol. 2000;8:21–48.

Shinohara T., Orwig K.E., Avarbock M.R., Brinster R.L. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl. Acad. Sci. USA. 2000;97:8346–8351. doi: 10.1073/pnas.97.15.8346. PubMed DOI PMC

Oatley J.M., Brinster R.L. Regulation of spermatogonial stem cell self-renewal in mammals. Annu. Rev. Cell Dev. Biol. 2008;24:263–286. doi: 10.1146/annurev.cellbio.24.110707.175355. PubMed DOI PMC

Kanatsu-Shinohara M., Morimoto H., Shinohara T. Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression. Biol. Reprod. 2012;87:131–139. doi: 10.1095/biolreprod.112.103861. PubMed DOI

Kokkinaki M., Djourabtchi A., Golestaneh N. Long-term culture of human SSEA-4 positive spermatogonial stem cells (SSCs) J. Stem Cell Res. Ther. 2011;2 doi: 10.4172/2157-7633.S2-003. PubMed DOI PMC

Altman E., Yango P., Moustafa R., Smith J.F., Klatsky P.C., Tran N.D. Characterization of human spermatogonial stem cell markers in fetal, pediatric, and adult testicular tissues. Reproduction. 2014;148:417–427. doi: 10.1530/REP-14-0123. PubMed DOI PMC

Valli H., Sukhwani M., Dovey S.L., Peters K.A., Donohue J., Castro C.A., Chu T., Marshall G.R., Orwig K.E. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil. Steril. 2014;102:566–580. doi: 10.1016/j.fertnstert.2014.04.036. PubMed DOI PMC

Hermann B.P., Sukhwani M., Salati J., Sheng Y., Chu T., Orwig K.E. Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum. Reprod. 2011;26:3222–3231. doi: 10.1093/humrep/der343. PubMed DOI PMC

Tokalov S.V., Gutzeit H.O. Spermatogenesis in testis primary cell cultures of the tilapia (Oreochromis niloticus) Dev. Dyn. 2005;233:1238–1247. doi: 10.1002/dvdy.20379. PubMed DOI

Nagasawa K., Fernandes J.M.O., Yoshizaki G., Miwa M., Babiak I. Identification and migration of primordial germ cells in Atlantic salmon, Salmo salar: Characterization of vasa, dead end, and lymphocyte antigen 75 genes. Mol. Reprod. Dev. 2013;80:118–131. doi: 10.1002/mrd.22142. PubMed DOI PMC

Kobayashi T., Yoshizaki G., Takeuchi Y., Takeuchi T. Isolation of highly pure and viable primordial germ cells from rainbow trout by GFP-dependent flow cytometry. Mol. Reprod. Dev. Inc. Gamete Res. 2004;67:91–100. doi: 10.1002/mrd.20003. PubMed DOI

Owen C.S., Sykes N.L. Magnetic labeling and cell sorting. J. Immunol. Methods. 1984;73:41–48. doi: 10.1016/0022-1759(84)90029-2. PubMed DOI

Abbasi H., Tahmoorespur M., Hosseini S.M., Nasiri Z., Bahadorani M., Hajian M., Nasiri M.R., Nasr-Esfahani M.H. THY1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology. 2013;80:923–932. doi: 10.1016/j.theriogenology.2013.07.020. PubMed DOI

Kubota H., Avarbock M.R., Brinster R.L. Culture Conditions and Single Growth Factors Affect Fate Determination of Mouse Spermatogonial Stem Cells1. Biol. Reprod. 2004;71:722–731. doi: 10.1095/biolreprod.104.029207. PubMed DOI

Gassei K., Ehmcke J., Schlatt S. Efficient enrichment of undifferentiated GFR alpha 1+ spermatogonia from immature rat testis by magnetic activated cell sorting. Cell Tissue Res. 2009;337:177–183. doi: 10.1007/s00441-009-0799-5. PubMed DOI

Zhu B., Murthy S.K. Stem cell separation technologies. Curr. Opin. Chem. Eng. 2013;2:3–7. doi: 10.1016/j.coche.2012.11.002. PubMed DOI PMC

Schönfeldt V., von Krishnamurthy H., Foppiani L., Schlatt S. Magnetic Cell Sorting Is a Fast and Effective Method of Enriching Viable Spermatogonia from Djungarian Hamster, Mouse, and Marmoset Monkey Testes1. Biol. Reprod. 1999;61:582–589. doi: 10.1095/biolreprod61.3.582. PubMed DOI

Buageaw A., Sukhwani M., Ben-Yehudah A., Ehmcke J., Rawe V.Y., Pholpramool C., Orwig K.E., Schlatt S. GDNF Family Receptor alpha1 Phenotype of Spermatogonial Stem Cells in Immature Mouse Testes1. Biol. Reprod. 2005;73:1011–1016. doi: 10.1095/biolreprod.105.043810. PubMed DOI

Alipoor F.J., Gilani M.A.S., Eftekhari-Yazdi P., Hampa A.D., Hosseinifar H., Alipour H., Panah M.L. Achieving high survival rate following cryopreservation after isolation of prepubertal mouse spermatogonial cells. J. Assist. Reprod. Genet. 2009;26:143–149. doi: 10.1007/s10815-009-9298-6. PubMed DOI PMC

Nickkholgh B., Mizrak S.C., Korver C.M., van Daalen S.K.M., Meissner A., Repping S., van Pelt A.M.M. Enrichment of spermatogonial stem cells from long-term cultured human testicular cells. Fertil. Steril. 2014;102:558–565. doi: 10.1016/j.fertnstert.2014.04.022. PubMed DOI

Kanatsu-Shinohara M., Mori Y., Shinohara T. Enrichment of Mouse Spermatogonial Stem Cells Based on Aldehyde Dehydrogenase Activity1. Biol. Reprod. 2013;89:1–10. doi: 10.1095/biolreprod.113.114629. PubMed DOI

Zohni K., Zhang X., Tan S.L., Chan P., Nagano M. CD9 Is Expressed on Human Male Germ Cells That Have a Long-Term Repopulation Potential after Transplantation into Mouse Testes1. Biol. Reprod. 2012;87:1–8. doi: 10.1095/biolreprod.112.098913. PubMed DOI

Kubota H., Avarbock M.R., Brinster R.L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA. 2004;101:16489–16494. doi: 10.1073/pnas.0407063101. PubMed DOI PMC

Reding S.C., Stepnoski A.L., Cloninger E.W., Oatley J.M. THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction. 2010;139:893–903. doi: 10.1530/REP-09-0513. PubMed DOI

Poudineh M., Aldridge P.M., Ahmed S., Green B.J., Kermanshah L., Nguyen V., Tu C., Mohamadi R.M., Nam R.K., Hansen A., et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2017;12:274–281. doi: 10.1038/nnano.2016.239. PubMed DOI

Nery A.A., Wrenger C., Ulrich H. Recognition of biomarkers and cell-specific molecular signatures: Aptamers as capture agents. J. Sep. Sci. 2009;32:1523–1530. doi: 10.1002/jssc.200800695. PubMed DOI

Creemers L.B., den Ouden K., van Pelt A.M.M., de Rooij D.G. Maintenance of adult mouse type A spermatogonia in vitro: Influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture. Reproduction. 2002;124:791–799. doi: 10.1530/rep.0.1240791. PubMed DOI

Barnes D., Sato G. Serum-free cell culture: A unifying approach. Cell. 1980;22:649–655. doi: 10.1016/0092-8674(80)90540-1. PubMed DOI

Kanatsu-Shinohara M., Miki H., Inoue K., Ogonuki N., Toyokuni S., Ogura A., Shinohara T. Long-Term Culture of Mouse Male Germline Stem Cells Under Serum-or Feeder-Free Conditions1. Biol. Reprod. 2005;72:985–991. doi: 10.1095/biolreprod.104.036400. PubMed DOI

Kurita K., Burgess S.M., Sakai N. Transgenic zebrafish produced by retroviral infection of in vitro-cultured sperm. Proc. Natl. Acad. Sci. USA. 2004;101:1263–1267. doi: 10.1073/pnas.0304265101. PubMed DOI PMC

McClusky L.M. Fetal bovine serum simultaneously stimulates apoptosis and DNA synthesis in premeiotic stages of spermatogenesis in spiny dogfish (Squalus acanthias) in vitro: Modulation by androgen and spermatogenic activity status. Apoptosis. 2008;13:649–658. doi: 10.1007/s10495-008-0205-x. PubMed DOI

Bertolero F., Kaighn M.E., Camalier R.F., Saffiotti U. Effects of serum and serum-derived factors on growth and differentiation of mouse keratinocytes. Vitr. Cell. Dev. Biol. 1986;22:423–428. doi: 10.1007/BF02623533. PubMed DOI

Zheng X., Baker H., Hancock W.S., Fawaz F., McCaman M., Pungor E. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol. Prog. 2006;22:1294–1300. doi: 10.1021/bp060121o. PubMed DOI

Kodaira K., Imada M., Goto M., Tomoyasu A., Fukuda T., Kamijo R., Suda T., Higashio K., Katagiri T. Purification and identification of a BMP-like factor from bovine serum. Biochem. Biophys. Res. Commun. 2006;345:1224–1231. doi: 10.1016/j.bbrc.2006.05.045. PubMed DOI

Wong T.T., Collodi P. Dorsomorphin Promotes Survival and Germline Competence of Zebrafish Spermatogonial Stem Cells in Culture. PLoS ONE. 2013;8:e0071332. doi: 10.1371/journal.pone.0071332. PubMed DOI PMC

Neumann J.C., Chandler G.L., Damoulis V.A., Fustino N.J., Lillard K., Looijenga L., Margraf L., Rakheja D., Amatruda J.F. Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc. Natl. Acad. Sci. USA. 2011;108:13153–13158. doi: 10.1073/pnas.1102311108. PubMed DOI PMC

Pellegrini M., Grimaldi P., Rossi P., Geremia R., Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: A potential role of BMP4 in spermatogonia differentiation. J. Cell Sci. 2003;116:3363–3372. doi: 10.1242/jcs.00650. PubMed DOI

Aoshima K., Baba A., Makino Y., Okada Y. Establishment of Alternative Culture Method for Spermatogonial Stem Cells Using Knockout Serum Replacement. PLoS ONE. 2013;8:e0077715. doi: 10.1371/journal.pone.0077715. PubMed DOI PMC

Kawasaki T., Saito K., Sakai C., Shinya M., Sakai N. Production of zebrafish offspring from cultured spermatogonial stem cells. Genes Cells. 2012;17:316–325. doi: 10.1111/j.1365-2443.2012.01589.x. PubMed DOI

Miura T., Miura C., Yamauchi K. Eel biology. Springer; New York, NY, USA: 2003. Spermatogenesis in the Japanese eel; pp. 319–329.

Ohta H., Yomogida K., Dohmae K., Nishimune Y. Regulation of proliferation and differentiation in spermatogonial stem cells: The role of c-kit and its ligand SCF. Development. 2000;127:2125–2131. PubMed

Vincent S., Segretain D., Nishikawa S., Nishikawa S.-I., Sage J., Cuzin F., Rassoulzadegan M. Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: A Kit-KL interaction critical for meiosis. Development. 1998;125:4585–4593. PubMed

Loir M., Sourdaine P. Testes cells: Isolation and culture. Anal. Tech. 1994;3:249–272.

Miura C., Miura T., Yamashita M., Yamauchi K., Nagahama Y. Hormonal induction of all stages of spermatogenesis in germ-somatic cell coculture from immature Japanese eel testis. Dev. Growth Differ. 1996;38:257–262. doi: 10.1046/j.1440-169X.1996.t01-2-00004.x. PubMed DOI

Kurita K., Sakai N. Functionally Distinctive Testicular Cell Lines of Zebrafish to Support Male Germ Cell Development. Mol. Reprod. Dev. 2004;67:430–438. doi: 10.1002/mrd.20035. PubMed DOI

Song M., Gutzeit H.O. Primary culture of medaka (Oryzias latipes) testis: A test system for the analysis of cell proliferation and differentiation. Cell Tissue Res. 2003;313:107–115. doi: 10.1007/s00441-003-0729-x. PubMed DOI

Hamra F.K., Schultz N., Chapman K.M., Grellhesl D.M., Cronkhite J.T., Hammer R.E., Garbers D.L. Defining the spermatogonial stem cell. Dev. Biol. 2004;269:393–410. doi: 10.1016/j.ydbio.2004.01.027. PubMed DOI

Nasiri Z., Hosseini S.M., Hajian M., Abedi P., Bahadorani M., Baharvand H., Nasr-Esfahani M.H. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. Theriogenology. 2012;77:1519–1528. doi: 10.1016/j.theriogenology.2011.11.019. PubMed DOI

Takeuchi Y., Yoshizaki G., Takeuchi T. Biotechnology: Surrogate broodstock produces salmonids. Nature. 2004;430:629–630. doi: 10.1038/430629a. PubMed DOI

Okutsu T., Yano A., Nagasawa K., Shikina S., Kobayashi T., Takeuchi Y., Yoshizaki G. Manipulation of Fish Germ Cell: Visualization, Cryopreservation and Transplantation. J. Reprod. Dev. 2006;52:685–693. doi: 10.1262/jrd.18096. PubMed DOI

Hong Y., Winkler C., Schartl M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes) Mech. Dev. 1996;60:33–44. doi: 10.1016/S0925-4773(96)00596-5. PubMed DOI

Kanatsu-Shinohara M., Ogonuki N., Inoue K., Miki H., Ogura A., Toyokuni S., Shinohara T. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 2003;69:612–616. doi: 10.1095/biolreprod.103.017012. PubMed DOI

Wei J., Liu L., Fan Z., Hong Y., Zhao Y., Zhou L., Wang D. Identification, Prokaryote Expression of Medaka gdnfa/b and Their Biological Activity in a Spermatogonial Cell Line. Stem Cells Dev. 2017;26:197–205. doi: 10.1089/scd.2016.0248. PubMed DOI

Xie X., Li P., Pšenička M., Ye H., Steinbach C., Li C. Optimization of in vitro culture conditions of sturgeon germ cells for purpose of surrogate production. Animals. 2018;106:1–16. doi: 10.3390/ani9030106. PubMed DOI PMC

Satoh R., Bando H., Sakai N., Kotani T., Yamashita M. Function of leukaemia inhibitory factor in spermatogenesis of a teleost fish, the medaka Oryzias latipes. Zygote. 2019;2:423–431. doi: 10.1017/S0967199419000558. PubMed DOI

Kawasaki T., Siegfried K.R., Sakai N. Differentiation of zebrafish spermatogonial stem cells to functional sperm in culture. Development. 2016;143:566–574. doi: 10.1242/dev.129643. PubMed DOI

Jeong Y., Ryu J.H., Nam Y.K., Gong S.P., Kang S.M. Enhanced adhesion of fish ovarian germline stem cells on solid surfaces by mussel-inspired polymer coating. Mar. Drugs. 2019;17:1–11. doi: 10.3390/md17010011. PubMed DOI PMC

Loir M., Sourdaine P., Mendis-Handagama S.M.L.C., Jégou B. Cell-cell interactions in the testis of teleosts and elasmobranchs. Microsc. Res. Tech. 1995;32:533–552. doi: 10.1002/jemt.1070320606. PubMed DOI

Batlouni S.R., Carreno F.R., Romagosa E., Borella M.I. Cell junctions in the germinal epithelium may play an important role in spermatogenesis of the catfish P. fasciatum (Pisces, Siluriformes) J. Mol. Histol. 2005;36:97–110. doi: 10.1007/s10735-004-4115-0. PubMed DOI

Alves-Lopes J.P., Söder O., Stukenborg J.B. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials. 2017;130:76–89. doi: 10.1016/j.biomaterials.2017.03.025. PubMed DOI

Komeya M., Sato T., Ogawa T. In vitro spermatogenesis: A century-long research journey, still half way around. Reprod. Med. Biol. 2018;17:407–420. doi: 10.1002/rmb2.12225. PubMed DOI PMC

Trowell O.A. The culture of mature organs in a synthetic medium. Exp. Cell Res. 1959;16:118–147. doi: 10.1016/0014-4827(59)90201-0. PubMed DOI

Steinberger A., Steinberg E., Perloff W.H. Growth of rat testes fragments in organ culture. Aamer. Soc. Exp. Biol. Bethesda. 1963;22:372.

Steinberger A., Steinberger E., Perloff W.H. Mammalian testes in organ culture. Exp. Cell Res. 1964;36:19–27. doi: 10.1016/0014-4827(64)90156-9. PubMed DOI

Steinberger A., Steinberger E. Differentiation of rat seminiferous epithelium in organ culture. Reproduction. 1965;9:243–248. doi: 10.1530/jrf.0.0090243. PubMed DOI

Curtis D. In vitro differentiation of diakinesis figures in human testis. Hum. Genet. 1981;59:406–411. doi: 10.1007/BF00295480. PubMed DOI

Miura T., Yamauchi K., Takahashi H., Nagahama Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica) Proc. Natl. Acad. Sci. USA. 1991;88:5774–5778. doi: 10.1073/pnas.88.13.5774. PubMed DOI PMC

Leal M.C., de Waal P.P., García-López Á., Chen S.X., Bogerd J., Schulz R.W. Zebrafish primary testis tissue culture: An approach to study testis function ex vivo. Gen. Comp. Endocrinol. 2009;162:134–138. doi: 10.1016/j.ygcen.2009.03.003. PubMed DOI

Komeya M., Hayashi K., Nakamura H., Yamanaka H., Sanjo H., Kojima K., Sato T., Yao M., Kimura H., Fujii T., et al. Pumpless microfluidic system driven by hydrostatic pressure induces and maintains mouse spermatogenesis in vitro. Sci. Rep. 2017;7:15459–15466. doi: 10.1038/s41598-017-15799-3. PubMed DOI PMC

Amer M.A., Miura T., Miura C., Yamauchi K. Involvement of Sex Steroid Hormones in the Early Stages of Spermatogenesis in Japanese Huchen (Hucho perryi )1. Biol. Reprod. 2001;65:1057–1066. doi: 10.1095/biolreprod65.4.1057. PubMed DOI

Miura C., Higashino T., Miura T. A Progestin and an Estrogen Regulate Early Stages of Oogenesis in Fish1. Biol. Reprod. 2007;77:822–828. doi: 10.1095/biolreprod.107.061408. PubMed DOI

Morais R.D.V.S., Nóbrega R.H., Gómez-González N.E., Schmidt R., Bogerd J., França L.R., Schulz R.W. Thyroid hormone stimulates the proliferation of sertoli cells and single type A spermatogonia in adult zebrafish (danio rerio) testis. Endocrinology. 2013;154:4365–4376. doi: 10.1210/en.2013-1308. PubMed DOI

Kobayashi T. In vitro germ cell differentiation during sex differentiation in a teleost fish. Int. J. Dev. Biol. 2010;54:105–112. doi: 10.1387/ijdb.082836tk. PubMed DOI

Loir M. Spermatogonia of rainbow trout: I. Morphological characterization, mitotic activity, and survival in primary cultures of testicular cells. Mol. Reprod. Dev. 1999;53:422–433. doi: 10.1002/(SICI)1098-2795(199908)53:4<422::AID-MRD8>3.0.CO;2-V. PubMed DOI

Komeya M., Kimura H., Nakamura H., Yokonishi T., Sato T., Kojima K., Hayashi K., Katagiri K., Yamanaka H., Sanjo H. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci. Rep. 2016;6:21472–21481. doi: 10.1038/srep21472. PubMed DOI PMC

Haycock J.W. 3D Cell Culture: Methods & Protocols. Springer; New York, NY, USA: 2011.

Parent-Massin D. Relevance of clonogenic assays in hematotoxicology. Cell Biol. Toxicol. 2001;17:87–94. doi: 10.1023/A:1010906104558. PubMed DOI

Lee J.H., Kim H.J., Kim H., Lee S.J., Gye M.C. In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials. 2006;27:2845–2853. doi: 10.1016/j.biomaterials.2005.12.028. PubMed DOI

Lee J.H., Gye M.C., Choi K.W., Hong J.Y., Lee Y.B., Park D.W., Lee S.J., Min C.K. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertil. Steril. 2007;87:824–833. doi: 10.1016/j.fertnstert.2006.09.015. PubMed DOI

Stukenborg J.B., Wistuba J., Luetjens C.M., Elhija M.A., Huleihel M., Lunenfeld E., Gromoll J., Nieschlag E., Schlatt S. Coculture of spermatogonia with somatic cells in a novel three-dimensional Soft-Agar-Culture-System. J. Androl. 2008;29:312–329. doi: 10.2164/jandrol.107.002857. PubMed DOI

Stukenborg J.-B., Schlatt S., Simoni M., Yeung C.-H., Elhija M.A., Luetjens C.M., Huleihel M., Wistuba J. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol. Hum. Reprod. 2009;15:521–529. doi: 10.1093/molehr/gap052. PubMed DOI

Abu Elhija M., Lunenfeld E., Schlatt S., Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J. Androl. 2012;14:285–293. doi: 10.1038/aja.2011.112. PubMed DOI PMC

Huleihel M., Nourashrafeddin S., Plant T.M. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta) Asian J. Androl. 2015;17:972–980. doi: 10.4103/1008-682X.154994. PubMed DOI PMC

Legendre A., Froment P., Desmots S., Lecomte A., Habert R., Lemazurier E. An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials. 2010;31:4492–4505. doi: 10.1016/j.biomaterials.2010.02.029. PubMed DOI

Choi D.J., Choi S.M., Kang H.Y., Min H.J., Lee R., Ikram M., Subhan F., Jin S.W., Jeong Y.H., Kwak J.Y., et al. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture. J. Biotechnol. 2015;205:47–58. doi: 10.1016/j.jbiotec.2015.01.017. PubMed DOI

Sasaoka Y., Kishimura H., Adachi S., Takagi Y. Collagen peptides derived from the triple helical region of sturgeon collagen improve glucose tolerance in normal mice. J. Food Biochem. 2018;42:1–8. doi: 10.1111/jfbc.12478. DOI

Zhang X., Ookawa M., Tan Y., Ura K., Adachi S., Takagi Y. Biochemical characterisation and assessment of fibril-forming ability of collagens extracted from Bester sturgeon Huso huso × Acipenser ruthenus. Food Chem. 2014;160:305–312. doi: 10.1016/j.foodchem.2014.03.075. PubMed DOI

Mredha M.T.I., Kitamura N., Nonoyama T., Wada S., Goto K., Zhang X., Nakajima T., Kurokawa T., Takagi Y., Yasuda K., et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials. 2017;132:85–95. doi: 10.1016/j.biomaterials.2017.04.005. PubMed DOI

Sugiura H., Yunoki S., Kondo E., Ikoma T., Tanaka J., Yasuda K. In vivo biological responses and bioresorption of tilapia scale collagen as a potential biomaterial. J. Biomater. Sci. Polym. Ed. 2009;20:1353–1368. doi: 10.1163/092050609X12457418396658. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace