Cryopreservation and transplantation of common carp spermatogonia

. 2019 ; 14 (4) : e0205481. [epub] 20190418

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30998742

Common carp (Cyprinus carpio) is one of the most cultured fish species over the world with many different breeds and plenty of published protocols for sperm cryopreservation. However, data regarding preservation of gonadal tissue and surrogate production is still missing. A protocol for freezing common carp spermatogonia was developed through varying different factors along a set of serial subsequent experiments. Among the six cryoprotectants tested, the best survival was achieved with dimethyl sulfoxide (Me2SO). In the next experiment, a wide range of cooling rates (0.5-10°C/min) and different concentrations of Me2SO were tested resulting in the highest survival achieved using 2 M Me2SO and cooling rate of -1°C/min. When testing different tissue sizes and incubation times in the cryomedia, the highest viability was observed when incubating 100 mg tissue fragments for 30 min. Finally, sugar supplementation did not yield significant differences. When testing different equilibration (ES) and vitrification solutions (VS) used for needle-immersed vitrification, no significant differences were observed between the tested groups. Additionally, varied exposure time to VS did not improve the vitrification outcome where the viability was 4-fold lower than that of freezing. The functionality of cryopreserved cells was tested by interspecific transplantation into sterilized goldfish recipients. The exogenous origin of the germ cells in gonads of goldfish recipient was confirmed by molecular markers and incorporation rate was over 40% at 3 months post-transplantation. Results of this study can serve for long-term preservation of germplasm in carp which can be recovered in a surrogate recipient.

Zobrazit více v PubMed

FAO: Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2018—Meeting the sustainable development goals. Rome; 2018.

Balon EK. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture. 1995; 129: 3–48. 10.1016/0044-8486(94)00227-F DOI

Gorda S, Bakos J, Liska J, Kakuk C. Live gene bank of common carp strains at the Fish Culture Research Institute, Szarvas. Aquaculture. 1995; 129: 199–202. 10.1016/0044-8486(94)00248-M DOI

Bakos J, Gorda S. Genetic resources of common carp at the Fish Culture Research Institute, Szarvas, Hungary. FAO Fisheries Technical Paper. No. 417. Rome; 2001.

Flajšhans M, Linhart O, Šechta V. Genetic resources of commercially important fish species in the Czech Republic: present state and future strategy. Aquaculture. 1999; 173: 471–483. 10.1016/S0044-8486(98)00477-3 DOI

Hulak M, Kaspar V, Kohlmann K, Coward K, Tešitel J, Rodina M, et al. Microsatellite-based genetic diversity and differentiation of foreign common carp (Cyprinus carpio) strains farmed in the Czech Republic. Aquaculture. 2010; 298: 194–201. 10.1016/j.aquaculture.2009.10.021 DOI

Kohlmann K, Kersten P, Flajšhans M. Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture. 2005; 247: 253–266. 10.1016/j.aquaculture.2005.02.024 DOI

Crooijmans RPMA Bierbooms VAF, Komen J Poel JJ Van Der. Microsatellite markers in common carp (Cyprinus carpio L.). Anim Genet. 2005; 21: 129–134. 10.1111/j.1365-2052.1997.00097.x DOI

Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 2014; 46: 1212–1219. 10.1038/ng.3098 PubMed DOI

Horváth Á, Miskolczi E, Mihálffy S, Osz K, Szabó K, Urbányi B. Cryopreservation of common carp (Cyprinus carpio) sperm in 1.2 and 5 ml straws and occurrence of haploids among larvae produced with cryopreserved sperm. Cryobiology. 2007; 54: 251–257. 10.1016/j.cryobiol.2007.02.003 PubMed DOI

Kurokura H, Hirano R, Tomita M, Iwahashi M. Cryopreservation of carp sperm. Aquaculture. 1984; 37: 267–273. 10.1016/0044-8486(84)90159-5 DOI

Linhart O, Rodina M, Cosson J. Cryopreservation of sperm in common carp Cyprinus carpio: sperm motility and hatching success of embryos. Cryobiology. 2000; 41: 241–250. 10.1006/cryo.2000.2284 PubMed DOI

Lubzens E, Daube N, Pekarsky I, Magnus Y, Cohen A, Yusefovich F, et al. Carp (Cyprinus carpio L.) spermatozoa cryobanks—Strategies in research and application. Aquaculture. 1997; 155: 13–30. 10.1016/S0044-8486(97)00106-3 DOI

Warnecke D, Pluta HJ. Motility and fertilizing capacity of frozen/thawed common carp (Cyprinus carpio L.) sperm using dimethyl-acetamide as the main cryoprotectant. Aquaculture. 2003; 215: 167–185. 10.1016/S0044-8486(02)00371-X DOI

Okutsu T, Shikina S, Sakamoto T, Mochizuki M, Yoshizaki G. Successful production of functional Y eggs derived from spermatogonia transplanted into female recipients and subsequent production of YY supermales in rainbow trout, Oncorhynchus mykiss. Aquaculture. 2015; 446: 298–302. 10.1016/j.aquaculture.2015.05.020 DOI

Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. U S A. 2006; 103: 2725–2729. 10.1073/pnas.0509218103 PubMed DOI PMC

Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G. Production of Trout Offspring from Triploid Salmon Parents. Science. 2007; 317: 1517 10.1126/science.1145626 PubMed DOI

Takeuchi Y, Yoshizaki G, Takeuchi T. Biotechnology: surrogate broodstock produces salmonids. Nature. 2004; 430: 629–630. 10.1038/430629a PubMed DOI

Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, et al. Sexual plasticity of ovarian germ cells in rainbow trout. Development. 2010; 137: 1227–30. 10.1242/dev.044982 PubMed DOI

Lee S, Iwasaki Y, Shikina S, Yoshizaki G. Generation of functional eggs and sperm from cryopreserved whole testes. Proc. Natl. Acad. Sci. U S A. 2013; 110: 1640–1645. 10.1073/pnas.1218468110 PubMed DOI PMC

Lee S, Katayama N, Yoshizaki G. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem Biophys Res Commun. 2016; 478: 6–11. 10.1016/j.bbrc.2016.08.156 PubMed DOI

Lee S, Iwasaki Y, Yoshizaki G. Long-term (5 years) cryopreserved spermatogonia have high capacity to generate functional gametes via interspecies transplantation in salmonids. Cryobiology. 2016; 73: 5–9. 10.1016/j.cryobiol.2016.08.001 PubMed DOI

Lee S, Yoshizaki G. Successful cryopreservation of spermatogonia in critically endangered Manchurian trout (Brachymystax lenok). Cryobiology. 2016; 72: 165–168. 10.1016/j.cryobiol.2016.01.004 PubMed DOI

Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016; 72:119–122. 10.1016/j.cryobiol.2016.02.005 PubMed DOI

Marinović Z, Lujić J, Kása E, Bernáth G, Urbányi B, Horváth Á. Cryosurvival of isolated testicular cells and testicular tissue of tench Tinca tinca and goldfish Carassius auratus following slow-rate freezing. Gen. Comp. Endocrinol. 2016; 245: 77–83. 10.1016/j.ygcen.2016.07.005 PubMed DOI

Lujić J, Marinović Z, Sušnik Bajec S, Djurdjevič I, Kása E, Urbányi B, et al. First successful vitrification of salmonid ovarian tissue. Cryobiology. 2017; 76: 154–157. 10.1016/j.cryobiol.2017.04.005 PubMed DOI

Seki S, Kusano K, Lee S, Iwasaki Y, Yagisawa M, Ishida M, et al. Production of the medaka derived from vitrified whole testes by germ cell transplantation. Sci. Rep. 2017; 7: 43185 10.1038/srep43185 PubMed DOI PMC

Higaki S, Todo T, Teshima R, Tooyama I, Fujioka Y, Sakai N, et al. Cryopreservation of male and female gonial cells by vitrification in the critically endangered cyprinid honmoroko Gnathopogon caerulescens. Fish Physiol. Biochem. 2018; 44: 503–513. 10.1007/s10695-017-0449-x PubMed DOI

Marinović Z, Lujić J, Kása E, Csenki Z, Urbányi B, Horváth Á. Cryopreservation of zebrafish spermatogonia by whole testes needle immersed ultra-rapid cooling. J Vis. Exp. 2018; 133 10.3791/56118 PubMed DOI PMC

Goto R, Saito T, Takeda T, Fujimoto T, Takagi M, Arai K, et al. Germ cells are not the primary factor for sexual fate determination in goldfish. Dev. Biol. 2012; 370: 98–109. 10.1016/j.ydbio.2012.07.010 PubMed DOI

Saito T, Fujimoto T, Maegawa S, Inoue K, Tanaka M, Arai K, et al. Visualization of primordial germ cells in vivo using GFP-nos1 3′UTR mRNA. Int. J. Dev. Biol. 2006; 50: 691–700. 10.1387/ijdb.062143ts PubMed DOI

Pšenička M, Saito T, Linhartová Z, Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015; 83: 1085–1092. 10.1016/j.theriogenology.2014.12.010 PubMed DOI

Goto-Kazeto R, Abe Y, Masai K, Yamaha E, Adachi S, Yamauchi K. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture. 2006; 254: 617–624. 10.1016/j.aquaculture.2005.10.009 DOI

Lee S, Katayama N, Yoshizaki G. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem. Biophys. Res. Commun. 2016; 478: 1478–1483. 10.1016/j.bbrc.2016.08.156 PubMed DOI

Linhartova Z, Saito T, Psenicka M. Embryogenesis, visualization and migration of primordial germ cells in tench (Tinca tinca). J. Appl. Ichthyol. 2014; 30: 29–39. 10.1111/jai.12429 DOI

Mazur P. Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing. J. Gen. Physiol. 1963; 47: 347–369. 10.1085/jgp.47.2.347 PubMed DOI PMC

Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000; 41: 187–196. 10.1093/ilar.41.4.187 PubMed DOI

Franks F. The Properties of Aqueous Solutions at Subzero Temperatures In: Franks S, editor. Water and Aqueous Solutions at Subzero Temperatures. Boston, MA: Springer US; 1982. pp. 215–338. 10.1007/978-1-4757-6952-4_3 DOI

Wang Y, Xiao Z, Li L, Fan W, Li SW. Novel needle immersed vitrification: A practical and convenient method with potential advantages in mouse and human ovarian tissue cryopreservation. Hum. Reprod. 2008; 23: 2256–2265. 10.1093/humrep/den255 PubMed DOI

Liu J, Cheng KM, Silversides FG. Production of live offspring from testicular tissue cryopreserved by vitrification procedures in Japanese quail (Coturnix japonica). Biol. Reprod. 2013; 88: 1–6. 10.1095/biolreprod.112.105957 PubMed DOI

Kása E, Lujić J, Marinović Z, Kollár T, Bernáth G, Bokor Z, et al. Development of sperm vitrification protocols for two endangered salmonid species: the Adriatic grayling, Thymallus thymallus, and the marble trout, Salmo marmoratus. Fish. Physiol. Biochem. 2018; 44: 1499–1507. 10.1007/s10695-018-0516-y PubMed DOI

Ye H, Li C-J, Yue H-M, Du H, Yang X-G, Yoshino T, et al. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology. 2017; 94: 37–47. 10.1016/j.theriogenology.2017.02.009 PubMed DOI

Hamasaki M, Takeuchi Y, Yazawa R, Yoshikawa S, Kadomura K, Yamada T, et al. Production of tiger puffer Takifugu rubripes offspring from triploid grass puffer Takifugu niphobles parents. Mar Biotechnol. Springer US; 2017; 1–13. 10.1007/s10126-017-9777-1 PubMed DOI

Lorenzoni M, Corboli M, Ghetti L, Pedicillo G, Carosi A. Growth and reproduction of the goldfish Carassius auratus: a case study from Italy In: Gherardi F, editor. Biological invaders in inland waters: Profiles, distribution, and threats. Invading Nature—Springer Series In Invasion Ecology, vol 2 Dordrecht: Springer; 2007. pp. 259–273.

Ortega-Salas AA, Reyes-Bustamante H. Initial sexual maturity and fecundity of the goldfish Carassius auratus (Perciformes: Cyprynidae) under semi-controlled conditions. Rev. Biol. Trop. 2006; 54: 1113–1116. PubMed

Brzuska E. Characteristics of the reproduction effectiveness of four Hungarian breeding lines of carp Cyprinus carpio (L.). Aquac. Int. 2014; 22: 149–158. 10.1007/s10499-013-9675-0 DOI

Taylor J, Mahon R. Hybridization of Cyprinus carpio and Carassius auratus, the first two exotic species in the lower Laurentian Great Lakes. Environ. Biol. Fishes. 1977; 1: 205–208. 10.1007/BF00000412 DOI

Yuasa K, Sano M, Oseko N. Goldfish is not a susceptible host of koi herpesvirus (KHV) disease. Fish Pathol. 2013; 48: 52–55. 10.3147/jsfp.48.52 DOI

Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, et al. Production of germ cell-deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Mol Reprod Dev. 2016;83: 298–311. 10.1002/mrd.22625 PubMed DOI

Linhartová Z, Saito T, Kašpar V, Rodina M, Prášková E, Hagihara S, et al. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology. 2015; 84: 1246–1255. 10.1016/j.theriogenology.2015.07.003 PubMed DOI

Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, et al. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl. Acad. Sci. U S A. 2002; 99: 14919–14924. 10.1073/pnas.222459999 PubMed DOI PMC

Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, et al. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci. Rep. 2016; 6: 21284 10.1038/srep21284 PubMed DOI PMC

Škugor A, Tveiten H, Krasnov A, Andersen Ø. Knockdown of the germ cell factor Dead end induces multiple transcriptional changes in Atlantic cod (Gadus morhua) hatchlings. Anim. Reprod. Sci. 2014; 144: 129–137. 10.1016/j.anireprosci.2013.12.010 PubMed DOI

Li Q, Fujii W, Naito K, Yoshizaki G. Application of dead end -knockout zebrafish as recipients of germ cell transplantation. Mol. Reprod. Dev. 2017; 83: 238–311. 10.1002/mrd.22870 PubMed DOI

Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol. Reprod. 2008; 78: 159–166. 10.1095/biolreprod.107.060038 PubMed DOI

Wong T-T, Zohar Y. Production of reproductively sterile fish by a non-transgenic gene silencing technology. Sci. Rep. 2015; 5: 15822 10.1038/srep15822 PubMed DOI PMC

Wong T-T, Saito T, Crodian J, Collodi P. Zebrafish germline chimeras produced by transplantation of ovarian germ cells into sterile host larvae. Biol. Reprod. 2011; 84: 1190–1197. 10.1095/biolreprod.110.088427 PubMed DOI PMC

Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Urbányi B, Horváth Á. Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources? Fish Physiology and Biochemistry. 2018: 44: 1487–1498. 10.1007/s10695-018-0510-4 PubMed DOI

Lujić J, Marinović Z, Kása E, Šćekić I, Urbányi B, Horváth Á. Preservation of common carp germ cells under hypothermic conditions: Whole tissue vs isolated cells. Reprod Domest Anim. 2018; 53: 1253–1258. 10.1111/rda.13220 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...