Manipulation of spermatogonial stem cells in livestock species

. 2019 ; 10 () : 46. [epub] 20190612

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31205688

We are entering an exciting epoch in livestock biotechnology during which the fundamental approaches (such as transgenesis, spermatozoa cryopreservation and artificial insemination) will be enhanced based on the modern understanding of the biology of spermatogonial stem cells (SSCs) combined with the outstanding recent advances in genomic editing technologies and in vitro cell culture systems. The general aim of this review is to outline comprehensively the promising applications of SSC manipulation that could in the nearest future find practical application in livestock breeding. Here, we will focus on 1) the basics of mammalian SSC biology; 2) the approaches for SSC isolation and purification; 3) the available in vitro systems for the stable expansion of isolated SSCs; 4) a discussion of how the manipulation of SSCs can accelerate livestock transgenesis; 5) a thorough overview of the techniques of SSC transplantation in livestock species (including the preparation of recipients for SSC transplantation, the ultrasonographic-guided SSC transplantation technique in large farm animals, and the perspectives to improve further the SSC transplantation efficiency), and finally, 6) why SSC transplantation is valuable to extend the techniques of spermatozoa cryopreservation and/or artificial insemination. For situations where no reliable data have yet been obtained for a particular livestock species, we will rely on the data obtained from studies conducted in rodents because the knowledge gained from rodent research is translatable to livestock species to a great extent. On the other hand, we will draw special attention to situations where such translation is not possible.

Zobrazit více v PubMed

Kennelly JJ, Foote RH. Sampling boar testes to study spermatogenesis quantitatively and to predict sperm production. J Anim Sci. 1964;23:160–167. doi: 10.2527/jas1964.231160x. DOI

Schanbacher BD, Ford JJ. Photoperiodic regulation of ovine spermatogenesis: relationship to serum hormones. Biol Reprod. 1979;20:719–726. doi: 10.1095/biolreprod20.4.719. PubMed DOI

Amann RP, Almquist JO. Reproductive capacity of dairy bulls. VIII. Direct and indirect measurement of testicular sperm production. J Dairy Sci. 1962;45:774–781. doi: 10.3168/jds.S0022-0302(62)89487-9. DOI

Gebauer MR, Pickett BW, Swierstra EE. Reproductive physiology of the stallion. II. Daily production and output of sperm. J Anim Sci. 1974;39:732–736. doi: 10.2527/jas1974.394732x. PubMed DOI

Ritar A. J., Mendoza G., Salamon S., White I. G. Frequent semen collection and sperm reserves of the male Angora goat (Capra hircus) Reproduction. 1992;95(1):97–102. doi: 10.1530/jrf.0.0950097. PubMed DOI

Berndtson WE. Sperm production and its harvest. In: Chenoweth P, Lorton S, editors. Animal andrology: theories and applications. Wallingford: CABI; 2014. pp. 11–33.

de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl. 2000. 10.1002/j.1939-4640.2000.tb03408.x. PubMed

Phillips Bart T., Gassei Kathrin, Orwig Kyle E. Spermatogonial stem cell regulation and spermatogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1546):1663–1678. doi: 10.1098/rstb.2010.0026. PubMed DOI PMC

De Felici Massimo. Primordial germ cell biology at the beginning of the XXI Century. The International Journal of Developmental Biology. 2009;53(7):891–894. doi: 10.1387/ijdb.082815mf. PubMed DOI

Kolasa Agnieszka, Misiakiewicz Kamila, Marchlewicz Mariola, Wiszniewska Barbara. The generation of spermatogonial stem cells and spermatogonia in mammals. Reproductive Biology. 2012;12(1):5–23. doi: 10.1016/S1642-431X(12)60074-6. PubMed DOI

Sahare Mahesh, Kim Sung-Min, Otomo Ayagi, Komatsu Kana, Minami Naojiro, Yamada Masayasu, Imai Hiroshi. Factors supporting long-term culture of bovine male germ cells. Reproduction, Fertility and Development. 2016;28(12):2039. doi: 10.1071/RD15003. PubMed DOI

Awang-Junaidi AH, Honaramooz A. Optimization of culture conditions for short-term maintenance, proliferation, and colony formation of porcine gonocytes. J Anim Sci Biotechnol. 2018. 10.1186/s40104-017-0222-0. PubMed PMC

Potter Sarah J, DeFalco Tony. Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction. 2017;153(4):R151–R162. doi: 10.1530/REP-16-0588. PubMed DOI PMC

Svingen T., Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes & Development. 2013;27(22):2409–2426. doi: 10.1101/gad.228080.113. PubMed DOI PMC

Oatley Jon M., Brinster Ralph L. The Germline Stem Cell Niche Unit in Mammalian Testes. Physiological Reviews. 2012;92(2):577–595. doi: 10.1152/physrev.00025.2011. PubMed DOI PMC

de Rooij Dirk G. The nature and dynamics of spermatogonial stem cells. Development. 2017;144(17):3022–3030. doi: 10.1242/dev.146571. PubMed DOI

Lord Tessa, Oatley Jon M. A revised Asingle model to explain stem cell dynamics in the mouse male germline. Reproduction. 2017;154(2):R55–R64. doi: 10.1530/REP-17-0034. PubMed DOI PMC

Takashima Seiji, Shinohara Takashi. Culture and transplantation of spermatogonial stem cells. Stem Cell Research. 2018;29:46–55. doi: 10.1016/j.scr.2018.03.006. PubMed DOI

Yoshida Shosei. Open niche regulation of mouse spermatogenic stem cells. Development, Growth & Differentiation. 2018;60(9):542–552. doi: 10.1111/dgd.12574. PubMed DOI PMC

Kitadate Yu, Jörg David J., Tokue Moe, Maruyama Ayumi, Ichikawa Rie, Tsuchiya Soken, Segi-Nishida Eri, Nakagawa Toshinori, Uchida Aya, Kimura-Yoshida Chiharu, Mizuno Seiya, Sugiyama Fumihiro, Azami Takuya, Ema Masatsugu, Noda Chiyo, Kobayashi Satoru, Matsuo Isao, Kanai Yoshiakira, Nagasawa Takashi, Sugimoto Yukihiko, Takahashi Satoru, Simons Benjamin D., Yoshida Shosei. Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche. Cell Stem Cell. 2019;24(1):79-92.e6. doi: 10.1016/j.stem.2018.11.013. PubMed DOI PMC

Kubota Hiroshi, Avarbock Mary R., Brinster Ralph L. Culture Conditions and Single Growth Factors Affect Fate Determination of Mouse Spermatogonial Stem Cells1. Biology of Reproduction. 2004;71(3):722–731. doi: 10.1095/biolreprod.104.029207. PubMed DOI

Jabarpour Masoome, Tajik Parviz. Evaluating the behavior of cultured sertoli cells in the presence and absence of spermatogonial stem cell. Stem Cell Investigation. 2018;5:1–1. doi: 10.21037/sci.2018.01.01. PubMed DOI PMC

Griswold Michael D. 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biology of Reproduction. 2018;99(1):87–100. doi: 10.1093/biolre/ioy027. PubMed DOI PMC

Huang Yen-Hua, Chin Cheng-Chieh, Ho Hong-Nerng, Chou Chuan-Kai, Shen Chia-Ning, Kuo Hung-Chih, Wu Tsai-Jung, Wu Yu-Chih, Hung Yu-Ching, Chang Chih-Cheng, Ling Thai-Yen. Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. The FASEB Journal. 2009;23(7):2076–2087. doi: 10.1096/fj.08-121939. PubMed DOI

Oatley J. M., Oatley M. J., Avarbock M. R., Tobias J. W., Brinster R. L. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development. 2009;136(7):1191–1199. doi: 10.1242/dev.032243. PubMed DOI PMC

Zheng Yi, Zhang Yaqing, Qu Rongfeng, He Ying, Tian Xiue, Zeng Wenxian. Spermatogonial stem cells from domestic animals: progress and prospects. REPRODUCTION. 2014;147(3):R65–R74. doi: 10.1530/REP-13-0466. PubMed DOI

Hutson James C. Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell and Tissue Research. 1992;267(2):385–389. doi: 10.1007/BF00302977. PubMed DOI

Nes W. David, Lukyanenko Yevgeniya O., Jia Zhong Hua, Quideau Stéphane, Howald William N., Pratum Thomas K., West Robert R., Hutson James C. Identification of the Lipophilic Factor Produced by Macrophages That Stimulates Steroidogenesis1. Endocrinology. 2000;141(3):953–958. doi: 10.1210/endo.141.3.7350. PubMed DOI

DeFalco Tony, Potter Sarah J., Williams Alyna V., Waller Brittain, Kan Matthew J., Capel Blanche. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Reports. 2015;12(7):1107–1119. doi: 10.1016/j.celrep.2015.07.015. PubMed DOI PMC

Caires Kyle C, de Avila Jeanene, McLean Derek J. Vascular endothelial growth factor regulates germ cell survival during establishment of spermatogenesis in the bovine testis. REPRODUCTION. 2009;138(4):667–677. doi: 10.1530/REP-09-0020. PubMed DOI

Tian R, Yang S, Zhu Y, Zou S, Li P, Wang J, et al. VEGF/VEGFR2 signaling regulates germ cell proliferation in vitro and promotes mouse testicular regeneration in vivo. Cells Tissues Organs. 2015. 10.1159/000440949. PubMed

Chen Liang-Yu, Willis William D., Eddy Edward M. Targeting theGdnfGene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proceedings of the National Academy of Sciences. 2016;113(7):1829–1834. doi: 10.1073/pnas.1517994113. PubMed DOI PMC

Helsel Aileen R., Yang Qi-En, Oatley Melissa J., Lord Tessa, Sablitzky Fred, Oatley Jon M. ID4 levels dictate the stem cell state in mouse spermatogonia. Development. 2017;144(4):624–634. doi: 10.1242/dev.146928. PubMed DOI PMC

Tagelenbosch Ruud A.J., de Rooij Dirk G. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1993;290(2):193–200. doi: 10.1016/0027-5107(93)90159-D. PubMed DOI

Bellvé AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977;74(1):68–85. doi: 10.1083/jcb.74.1.68. PubMed DOI PMC

McLean DJ, Russell LD, Griswold MD. Biological activity and enrichment of spermatogonial stem cells in vitamin A-deficient and hyperthermia-exposed testes from mice based on colonization following germ cell transplantation. Biol Reprod. 2002;66:1374–1379. doi: 10.1095/biolreprod66.5.1374. PubMed DOI

Shinohara Takashi, Avarbock Mary R., Brinster Ralph L. Functional Analysis of Spermatogonial Stem Cells in Steel and Cryptorchid Infertile Mouse Models. Developmental Biology. 2000;220(2):401–411. doi: 10.1006/dbio.2000.9655. PubMed DOI

Oatley M. J., Racicot K. E., Oatley J. M. Sertoli Cells Dictate Spermatogonial Stem Cell Niches in the Mouse Testis. Biology of Reproduction. 2010;84(4):639–645. doi: 10.1095/biolreprod.110.087320. PubMed DOI PMC

Herrid Muren, McFarlane James R. Application of Testis Germ Cell Transplantation in Breeding Systems of Food Producing Species: A Review. Animal Biotechnology. 2013;24(4):293–306. doi: 10.1080/10495398.2013.785431. PubMed DOI

Luo Jinping, Megee Susan, Rathi Rahul, Dobrinski Ina. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: Application to enrichment and culture of porcine spermatogonia. Molecular Reproduction and Development. 2006;73(12):1531–1540. doi: 10.1002/mrd.20529. PubMed DOI

Rodriguez-Sosa Jose Rafael, Dobson Howard, Hahnel Ann. Isolation and transplantation of spermatogonia in sheep. Theriogenology. 2006;66(9):2091–2103. doi: 10.1016/j.theriogenology.2006.03.039. PubMed DOI

Heidari Banafsheh, Rahmati-Ahmadabadi Maryam, Akhondi Mohammad Mehdi, Zarnani Amir Hassan, Jeddi-Tehrani Mahmood, Shirazi Abolfazl, Naderi Mohammad Mehdi, Behzadi Bahareh. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. Journal of Assisted Reproduction and Genetics. 2012;29(10):1029–1038. doi: 10.1007/s10815-012-9828-5. PubMed DOI PMC

ZHANG Yan, WU Sachula, LUO Fen-hua, Baiyinbatu, LIU Lin-hong, HU Tian-yuan, YU Boyang, LI Guang-peng, WU Ying-ji. CDH1, a Novel Surface Marker of Spermatogonial Stem Cells in Sheep Testis. Journal of Integrative Agriculture. 2014;13(8):1759–1765. doi: 10.1016/S2095-3119(13)60689-9. DOI

Pramod Ravindran Kumar, Lee Bo Ram, Kim Young Min, Lee Hong Jo, Park Young Hyun, Ono Tamao, Lim Jeong Mook, Han Jae Yong. Isolation, Characterization, and In Vitro Culturing of Spermatogonial Stem Cells in Japanese Quail (Coturnix japonica) Stem Cells and Development. 2017;26(1):60–70. doi: 10.1089/scd.2016.0129. PubMed DOI

Kise K, Yoshikawa H, Sato M, Tashiro M, Yazawa R, Nagasaka Y, et al. Flow-cytometric isolation and enrichment of teleost type a spermatogonia based on light-scattering properties. Biol Reprod. 2012. 10.1095/biolreprod.111.093161. PubMed

Tang Lin, Bondareva Alla, González Raquel, Rodriguez-Sosa Jose R., Carlson Daniel F., Webster Dennis, Fahrenkrug Scott, Dobrinski Ina. TALEN-mediated gene targeting in porcine spermatogonia. Molecular Reproduction and Development. 2018;85(3):250–261. doi: 10.1002/mrd.22961. PubMed DOI PMC

Martínez-Pastor F, Mata-Campuzano M, Álvarez-Rodríguez M, Álvarez M, Anel L, De Paz P. Probes and Techniques for Sperm Evaluation by Flow Cytometry. Reproduction in Domestic Animals. 2010;45:67–78. doi: 10.1111/j.1439-0531.2010.01622.x. PubMed DOI

Bryant JM, Meyer-Ficca ML, Dang VM, Berger SL, Meyer RG. Separation of spermatogenic cell types using STA-PUT velocity sedimentation. J Vis Exp. 2013. 10.3791/50648. PubMed PMC

Zeng W., Tang L., Bondareva A., Luo J., Megee S.O., Modelski M., Blash S., Melican D.T., Destrempes M.M., Overton S.A., Gavin W.G., Ayres S., Echelard Y., Dobrinski I. Non-viral transfection of goat germline stem cells by nucleofection results in production of transgenic sperm after germ cell transplantation. Molecular Reproduction and Development. 2012;79(4):255–261. doi: 10.1002/mrd.22014. PubMed DOI PMC

Binsila Krishnan B., Selvaraju Sellappan, Ghosh Subrata Kumar, Parthipan Sivashanmugam, Archana Santhanahalli Siddalingappa, Arangasamy Arunachalam, Prasad Jai Kishan, Bhatta Raghavendra, Ravindra Janivara Parameshwaraiah. Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Animal Reproduction Science. 2018;196:9–18. doi: 10.1016/j.anireprosci.2018.04.070. PubMed DOI

Honaramooz Ali, Yang Yanfei. Recent Advances in Application of Male Germ Cell Transplantation in Farm Animals. Veterinary Medicine International. 2011;2011:1–9. PubMed PMC

Aponte Pedro Manuel. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World Journal of Stem Cells. 2015;7(4):669. doi: 10.4252/wjsc.v7.i4.669. PubMed DOI PMC

Meng X. Regulation of Cell Fate Decision of Undifferentiated Spermatogonia by GDNF. Science. 2000;287(5457):1489–1493. doi: 10.1126/science.287.5457.1489. PubMed DOI

Nagano Makoto, Ryu Buom-Yong, Brinster Clayton J., Avarbock Mary R., Brinster Ralph L. Maintenance of Mouse Male Germ Line Stem Cells In Vitro1. Biology of Reproduction. 2003;68(6):2207–2214. doi: 10.1095/biolreprod.102.014050. PubMed DOI

Kanatsu-Shinohara Mito, Ogonuki Narumi, Inoue Kimiko, Miki Hiromi, Ogura Atsuo, Toyokuni Shinya, Shinohara Takashi. Long-Term Proliferation in Culture and Germline Transmission of Mouse Male Germline Stem Cells1. Biology of Reproduction. 2003;69(2):612–616. doi: 10.1095/biolreprod.103.017012. PubMed DOI

Suyatno, Kitamura Yuka, Ikeda Shuntaro, Minami Naojiro, Yamada Masayasu, Imai Hiroshi. Long-term culture of undifferentiated spermatogonia isolated from immature and adult bovine testes. Molecular Reproduction and Development. 2018;85(3):236–249. doi: 10.1002/mrd.22958. PubMed DOI

Li Chao-Hui, Yan Lan-Zhen, Ban Wen-Zan, Tu Qiu, Wu Yong, Wang Lin, Bi Rui, Ji Shuang, Ma Yu-Hua, Nie Wen-Hui, Lv Long-Bao, Yao Yong-Gang, Zhao Xu-Dong, Zheng Ping. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research. 2016;27(2):241–252. doi: 10.1038/cr.2016.156. PubMed DOI PMC

Kubota H., Avarbock M. R., Brinster R. L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences. 2004;101(47):16489–16494. doi: 10.1073/pnas.0407063101. PubMed DOI PMC

Kanatsu-Shinohara Mito, Inoue Kimiko, Ogonuki Narumi, Morimoto Hiroko, Ogura Atsuo, Shinohara Takashi. Serum- and Feeder-Free Culture of Mouse Germline Stem Cells1. Biology of Reproduction. 2011;84(1):97–105. doi: 10.1095/biolreprod.110.086462. PubMed DOI

Ryu B.-Y., Kubota H., Avarbock M. R., Brinster R. L. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proceedings of the National Academy of Sciences. 2005;102(40):14302–14307. doi: 10.1073/pnas.0506970102. PubMed DOI PMC

Aoshima Keisuke, Baba Ai, Makino Yoshinori, Okada Yuki. Establishment of Alternative Culture Method for Spermatogonial Stem Cells Using Knockout Serum Replacement. PLoS ONE. 2013;8(10):e77715. doi: 10.1371/journal.pone.0077715. PubMed DOI PMC

Zhang Pengfei, Chen Xiaoxu, Zheng Yi, Zhu Jinshen, Qin Yuwei, Lv Yinghua, Zeng Wenxian. Long-Term Propagation of Porcine Undifferentiated Spermatogonia. Stem Cells and Development. 2017;26(15):1121–1131. doi: 10.1089/scd.2017.0018. PubMed DOI PMC

Hamra F. K., Chapman K. M., Nguyen D. M., Williams-Stephens A. A., Hammer R. E., Garbers D. L. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proceedings of the National Academy of Sciences. 2005;102(48):17430–17435. doi: 10.1073/pnas.0508780102. PubMed DOI PMC

Liu Shixue, Tang Ziwei, Xiong Tao, Tang Wei. Isolation and characterization of human spermatogonial stem cells. Reproductive Biology and Endocrinology. 2011;9(1):141. doi: 10.1186/1477-7827-9-141. PubMed DOI PMC

Kushki D, Azarnia M, Gholami MR. Antioxidant effects of selenium on seminiferous tubules of immature mice testis. Zahedan J Res Med Sci. 2015. 10.17795/zjrms-5188.

Jafarnejad A, Aminafshar M, Zandi M, Sanjabi MR, Emamjomeh Kashan N. Optimization of in vitro culture and transfection condition of bovine primary spermatogonial stem cells. South African J Anim Sci. 2018. 10.4314/sajas.v48i1.13.

Kubota Hiroshi, Wu Xin, Goodyear Shaun M., Avarbock Mary R., Brinster Ralph L. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. The FASEB Journal. 2011;25(8):2604–2614. doi: 10.1096/fj.10-175802. PubMed DOI PMC

Oatley M. J., Kaucher A. V., Yang Q.-E., Waqas M. S., Oatley J. M. Conditions for Long-Term Culture of Cattle Undifferentiated Spermatogonia. Biology of Reproduction. 2016;95(1):14–14. doi: 10.1095/biolreprod.116.139832. PubMed DOI

Pramod R. Kumar, Mitra Abhijit. In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus) Journal of Assisted Reproduction and Genetics. 2014;31(8):993–1001. doi: 10.1007/s10815-014-0277-1. PubMed DOI PMC

Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A. 1980;77(12):7380–7384. doi: 10.1073/pnas.77.12.7380. PubMed DOI PMC

Behboodi E., Ayres S.L., Memili E., O'coin M., Chen L.H., Reggio B.C., Landry A.M., Gavin W.G., Meade H.M., Godke R.A., Echelard Y. Health and Reproductive Profiles of Malaria Antigen-Producing Transgenic Goats Derived by Somatic Cell Nuclear Transfer. Cloning and Stem Cells. 2005;7(2):107–118. doi: 10.1089/clo.2005.7.107. PubMed DOI

Lai Liangxue, Prather Randall S. Progress in producing knockout models for xenotransplantation by nuclear transfer. Annals of Medicine. 2002;34(7):501–506. doi: 10.1080/078538902321117706. PubMed DOI

Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278:2130–2133. doi: 10.1126/science.278.5346.2130. PubMed DOI

Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol. 1998;16:642–646. doi: 10.1038/nbt0798-642. PubMed DOI

Tang L, González R, Dobrinski I. Germline modification of domestic animals. Anim Reprod. 2015;12(1):93–104. PubMed PMC

Yen Shuo-Ting, Zhang Min, Deng Jian Min, Usman Shireen J., Smith Chad N., Parker-Thornburg Jan, Swinton Paul G., Martin James F., Behringer Richard R. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Developmental Biology. 2014;393(1):3–9. doi: 10.1016/j.ydbio.2014.06.017. PubMed DOI PMC

Wilkie TM, Braun RE, Ehrman WJ, Palmiter RD, Hammer RE. Germ-line intrachromosomal recombination restores fertility in transgenic MyK-103 male mice. Genes Dev. 1991;5(1):38–48. doi: 10.1101/gad.5.1.38. PubMed DOI

Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, et al. Genetic engineering of livestock. Science. 1989;244(4910):1281–1288. doi: 10.1126/science.2499927. PubMed DOI

Soto Delia A., Ross Pablo J. Pluripotent stem cells and livestock genetic engineering. Transgenic Research. 2016;25(3):289–306. doi: 10.1007/s11248-016-9929-5. PubMed DOI PMC

Bogliotti Yanina Soledad, Wu Jun, Vilarino Marcela, Okamura Daiji, Soto Delia Alba, Zhong Cuiqing, Sakurai Masahiro, Sampaio Rafael Vilar, Suzuki Keiichiro, Izpisua Belmonte Juan Carlos, Ross Pablo Juan. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences. 2018;115(9):2090–2095. doi: 10.1073/pnas.1716161115. PubMed DOI PMC

Chapman Karen M., Medrano Gerardo A., Jaichander Priscilla, Chaudhary Jaideep, Waits Alexandra E., Nobrega Marcelo A., Hotaling James M., Ober Carole, Hamra F. Kent. Targeted Germline Modifications in Rats Using CRISPR/Cas9 and Spermatogonial Stem Cells. Cell Reports. 2015;10(11):1828–1835. doi: 10.1016/j.celrep.2015.02.040. PubMed DOI PMC

Zeng W, Tang L, Bondareva A, Honaramooz A, Tanco V, Dores C, et al. Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs. Biol Reprod. 2013. 10.1095/biolreprod.112.104422. PubMed PMC

Han JY, Park YH. Primordial germ cell-mediated transgenesis and genome editing in birds. J Anim Sci Biotechnol. 2018. 10.1186/s40104-018-0234-4. PubMed PMC

Fanslow Danielle A., Wirt Stacey E., Barker Jenny C., Connelly Jon P., Porteus Matthew H., Dann Christina Tenenhaus. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases. PLoS ONE. 2014;9(11):e112652. doi: 10.1371/journal.pone.0112652. PubMed DOI PMC

Sato Takuya, Sakuma Tetsushi, Yokonishi Tetsuhiro, Katagiri Kumiko, Kamimura Satoshi, Ogonuki Narumi, Ogura Atsuo, Yamamoto Takashi, Ogawa Takehiko. Genome Editing in Mouse Spermatogonial Stem Cell Lines Using TALEN and Double-Nicking CRISPR/Cas9. Stem Cell Reports. 2015;5(1):75–82. doi: 10.1016/j.stemcr.2015.05.011. PubMed DOI PMC

Wu Haibo, Wang Yongsheng, Zhang Yan, Yang Mingqi, Lv Jiaxing, Liu Jun, Zhang Yong. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences. 2015;112(13):E1530–E1539. doi: 10.1073/pnas.1421587112. PubMed DOI PMC

Honaramooz Ali, Megee Susan, Zeng Wenxian, Destrempes Margret M., Overton Susan A., Luo Jinping, Galantino-Homer Hannah, Modelski Mark, Chen Fangping, Blash Stephen, Melican David T., Gavin William G., Ayres Sandra, Yang Fang, Wang P. Jeremy, Echelard Yann, Dobrinski Ina. Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. The FASEB Journal. 2008;22(2):374–382. doi: 10.1096/fj.07-8935com. PubMed DOI

Modric Tomislav, Mergia Ayalew. The Use of Viral Vectors in Introducing Genes into Agricultural Animal Species. Animal Biotechnology. 2009;20(4):216–230. doi: 10.1080/10495390903196380. PubMed DOI

Mingozzi Federico, High Katherine A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nature Reviews Genetics. 2011;12(5):341–355. doi: 10.1038/nrg2988. PubMed DOI

Whitelaw CBA, Lillico SG, King T. Production of Transgenic Farm Animals by Viral Vector-Mediated Gene Transfer. Reproduction in Domestic Animals. 2008;43:355–358. doi: 10.1111/j.1439-0531.2008.01184.x. PubMed DOI

Qin J, Xu H, Zhang P, Zhang C, Zhu Y, Qu R, et al. An efficient strategy for generation of transgenic mice by lentiviral transduction of male germline stem cells in vivo. J Anim Sci Biotechnol. 2015. 10.1186/s40104-015-0058-4. PubMed PMC

Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC

Yu Shengli, Luo Junjie, Song Zhiyuan, Ding Fangrong, Dai Yunping, Li Ning. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research. 2011;21(11):1638–1640. doi: 10.1038/cr.2011.153. PubMed DOI PMC

Ryu J, Prather RS, Lee K. Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol. 2018. 10.1186/s40104-017-0228-7. PubMed PMC

Carroll Dana. Genome Engineering With Zinc-Finger Nucleases. Genetics. 2011;188(4):773–782. doi: 10.1534/genetics.111.131433. PubMed DOI PMC

Miller Jeffrey C, Tan Siyuan, Qiao Guijuan, Barlow Kyle A, Wang Jianbin, Xia Danny F, Meng Xiangdong, Paschon David E, Leung Elo, Hinkley Sarah J, Dulay Gladys P, Hua Kevin L, Ankoudinova Irina, Cost Gregory J, Urnov Fyodor D, Zhang H Steve, Holmes Michael C, Zhang Lei, Gregory Philip D, Rebar Edward J. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology. 2010;29(2):143–148. doi: 10.1038/nbt.1755. PubMed DOI

Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science. 2009;326(5959):1509–1512. doi: 10.1126/science.1178811. PubMed DOI

Joung J. Keith, Sander Jeffry D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology. 2012;14(1):49–55. doi: 10.1038/nrm3486. PubMed DOI PMC

Cooper CA, Doran TJ, Challagulla A, Tizard MLV, Jenkins KA. Innovative approaches to genome editing in avian species. J Anim Sci Biotechnol. 2018. 10.1186/s40104-018-0231-7. PubMed PMC

Park T. S., Lee H. J., Kim K. H., Kim J.-S., Han J. Y. Targeted gene knockout in chickens mediated by TALENs. Proceedings of the National Academy of Sciences. 2014;111(35):12716–12721. doi: 10.1073/pnas.1410555111. PubMed DOI PMC

Taylor Lorna, Carlson Daniel F., Nandi Sunil, Sherman Adrian, Fahrenkrug Scott C., McGrew Michael J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development. 2017;144(5):928–934. doi: 10.1242/dev.145367. PubMed DOI PMC

Kouranova Evguenia, Forbes Kevin, Zhao Guojun, Warren Joe, Bartels Angela, Wu Yumei, Cui Xiaoxia. CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos. Human Gene Therapy. 2016;27(6):464–475. doi: 10.1089/hum.2016.009. PubMed DOI PMC

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science. 2007;315(5819):1709–1712. doi: 10.1126/science.1138140. PubMed DOI

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829. PubMed DOI PMC

Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A., Zhang F. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339(6121):819–823. doi: 10.1126/science.1231143. PubMed DOI PMC

Cho Seung Woo, Kim Sojung, Kim Jong Min, Kim Jin-Soo. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology. 2013;31(3):230–232. doi: 10.1038/nbt.2507. PubMed DOI

Ding Qiurong, Regan Stephanie N., Xia Yulei, Oostrom Leoníe A., Cowan Chad A., Musunuru Kiran. Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12(4):393–394. doi: 10.1016/j.stem.2013.03.006. PubMed DOI PMC

He Zhi-Yao, Men Ke, Qin Zhou, Yang Yang, Xu Ting, Wei Yu-Quan. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Science China Life Sciences. 2017;60(5):458–467. doi: 10.1007/s11427-017-9033-0. PubMed DOI

Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep. 2015. 10.1038/srep14253. PubMed PMC

Sato M, Kagoshima A, Saitoh I, Inada E, Miyoshi K, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S. Generation ofα-1,3-Galactosyltransferase-Deficient Porcine Embryonic Fibroblasts by CRISPR/Cas9-Mediated Knock-in of a Small Mutated Sequence and a Targeted Toxin-Based Selection System. Reproduction in Domestic Animals. 2015;50(5):872–880. doi: 10.1111/rda.12565. PubMed DOI

Yang L., Guell M., Niu D., George H., Lesha E., Grishin D., Aach J., Shrock E., Xu W., Poci J., Cortazio R., Wilkinson R. A., Fishman J. A., Church G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs) Science. 2015;350(6264):1101–1104. doi: 10.1126/science.aad1191. PubMed DOI

Niu Dong, Wei Hong-Jiang, Lin Lin, George Haydy, Wang Tao, Lee I-Hsiu, Zhao Hong-Ye, Wang Yong, Kan Yinan, Shrock Ellen, Lesha Emal, Wang Gang, Luo Yonglun, Qing Yubo, Jiao Deling, Zhao Heng, Zhou Xiaoyang, Wang Shouqi, Wei Hong, Güell Marc, Church George M., Yang Luhan. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357(6357):1303–1307. doi: 10.1126/science.aan4187. PubMed DOI PMC

Dimitrov Lazar, Pedersen Darlene, Ching Kathryn H., Yi Henry, Collarini Ellen J., Izquierdo Shelley, van de Lavoir Marie-Cecile, Leighton Philip A. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells. PLOS ONE. 2016;11(4):e0154303. doi: 10.1371/journal.pone.0154303. PubMed DOI PMC

Oishi I, Yoshii K, Miyahara D, Kagami H, Tagami T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci Rep. 2016. 10.1038/srep23980. PubMed PMC

Fu Yanfang, Foden Jennifer A, Khayter Cyd, Maeder Morgan L, Reyon Deepak, Joung J Keith, Sander Jeffry D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology. 2013;31(9):822–826. doi: 10.1038/nbt.2623. PubMed DOI PMC

Merkle Florian T., Neuhausser Werner M., Santos David, Valen Eivind, Gagnon James A., Maas Kristi, Sandoe Jackson, Schier Alexander F., Eggan Kevin. Efficient CRISPR-Cas9-Mediated Generation of Knockin Human Pluripotent Stem Cells Lacking Undesired Mutations at the Targeted Locus. Cell Reports. 2015;11(6):875–883. doi: 10.1016/j.celrep.2015.04.007. PubMed DOI PMC

Zetsche Bernd, Gootenberg Jonathan S., Abudayyeh Omar O., Slaymaker Ian M., Makarova Kira S., Essletzbichler Patrick, Volz Sara E., Joung Julia, van der Oost John, Regev Aviv, Koonin Eugene V., Zhang Feng. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015;163(3):759–771. doi: 10.1016/j.cell.2015.09.038. PubMed DOI PMC

Kim Daesik, Kim Jungeun, Hur Junho K, Been Kyung Wook, Yoon Sun-heui, Kim Jin-Soo. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology. 2016;34(8):863–868. doi: 10.1038/nbt.3609. PubMed DOI

Kleinstiver Benjamin P, Tsai Shengdar Q, Prew Michelle S, Nguyen Nhu T, Welch Moira M, Lopez Jose M, McCaw Zachary R, Aryee Martin J, Joung J Keith. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology. 2016;34(8):869–874. doi: 10.1038/nbt.3620. PubMed DOI PMC

Shinohara T., Orwig K. E., Avarbock M. R., Brinster R. L. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proceedings of the National Academy of Sciences. 2001;98(11):6186–6191. doi: 10.1073/pnas.111158198. PubMed DOI PMC

Honaramooz Ali, Megee Susan O., Dobrinski Ina. Germ Cell Transplantation in Pigs1. Biology of Reproduction. 2002;66(1):21–28. doi: 10.1095/biolreprod66.1.21. PubMed DOI

Mikkola M, Sironen A, Kopp C, Taponen J, Sukura A, Vilkki J, Katila T, Andersson M. Transplantation of Normal Boar Testicular Cells Resulted in Complete Focal Spermatogenesis in a Boar Affected by the Immotile Short-tail Sperm Defect. Reproduction in Domestic Animals. 2006;41(2):124–128. doi: 10.1111/j.1439-0531.2006.00651.x. PubMed DOI

Honaramooz Ali, Behboodi Esmail, Blash Stephen, Megee Susan O., Dobrinski Ina. Germ cell transplantation in goats. Molecular Reproduction and Development. 2003;64(4):422–428. doi: 10.1002/mrd.10205. PubMed DOI

Honaramooz A. Fertility and Germline Transmission of Donor Haplotype Following Germ Cell Transplantation in Immunocompetent Goats. Biology of Reproduction. 2003;69(4):1260–1264. doi: 10.1095/biolreprod.103.018788. PubMed DOI

Rodriguez-Sosa JR, Silvertown JD, Foster RA, Medin JA, Hahnel A. Transduction and Transplantation of Spermatogonia into the Testis of Ram Lambs through the Extra-testicular Rete. Reproduction in Domestic Animals. 2009;44(4):612–620. doi: 10.1111/j.1439-0531.2007.01030.x. PubMed DOI

Herrid Muren, Olejnik Jeanette, Jackson Michael, Suchowerska Natalka, Stockwell Sally, Davey Rhonda, Hutton Keryn, Hope Shelly, Hill Jonathan R. Irradiation Enhances the Efficiency of Testicular Germ Cell Transplantation in Sheep. Biology of Reproduction. 2009;81(5):898–905. doi: 10.1095/biolreprod.109.078279. PubMed DOI

Herrid Muren, Vignarajan Soma, Davey Rhonda, Dobrinski Ina, Hill Jonathan R. Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction. 2006;132(4):617–624. doi: 10.1530/rep.1.01125. PubMed DOI

Kaur Gurvinder, Long Charles R., Dufour Jannette M. Genetically engineered immune privileged Sertoli cells. Spermatogenesis. 2012;2(1):23–31. doi: 10.4161/spmg.19119. PubMed DOI PMC

Filippini A, Riccioli A, Padula F, Lauretti P, D'Alessio A, De Cesaris P, et al. Control and impairment of immune privilege in the testis and in semen. Hum Reprod Update. 2001;7(5):444–449. doi: 10.1093/humupd/7.5.444. PubMed DOI

Yule TD, Montoya GD, Russell LD, Williams TM, Tung KS. Autoantigenic germ cells exist outside the blood testis barrier. J Immunol. 1988;141(4):1161–1167. PubMed

Emerich Dwaine F., Hemendinger Richelle, Halberstadt Craig R. The Testicular-Derived Sertoli Cell: Cellular Immunoscience to Enable Transplantation. Cell Transplantation. 2003;12(4):335–349. doi: 10.3727/000000003108746894. PubMed DOI

Doyle TJ, Kaur G, Putrevu SM, Dyson EL, Dyson M, McCunniff WT, et al. Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege. Biol Reprod. 2012. 10.1095/biolreprod.110.089425. PubMed PMC

Mital Payal, Kaur Gurvinder, Dufour Jannette M. Immunoprotective Sertoli cells: making allogeneic and xenogeneic transplantation feasible. REPRODUCTION. 2010;139(3):495–504. doi: 10.1530/REP-09-0384. PubMed DOI

Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev. 2006. 10.1071/RD05123. PubMed

Gonzalez R., Dobrinski I. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models. ILAR Journal. 2015;56(1):83–98. doi: 10.1093/ilar/ilv004. PubMed DOI PMC

Oatley Jon M. Recent advances for spermatogonial stem cell transplantation in livestock. Reproduction, Fertility and Development. 2018;30(1):44. doi: 10.1071/RD17418. PubMed DOI

Iwamoto Takuya, Hiraku Yusuke, Oikawa Shinji, Mizutani Hideki, Kojima Michio, Kawanishi Shosuke. DNA intrastrand cross-link at the 5'-GA-3' sequence formed by busulfan and its role in the cytotoxic effect. Cancer Science. 2004;95(5):454–458. doi: 10.1111/j.1349-7006.2004.tb03231.x. PubMed DOI PMC

Honaramooz A. Depletion of Endogenous Germ Cells in Male Pigs and Goats in Preparation for Germ Cell Transplantation. Journal of Andrology. 2005;26(6):698–705. doi: 10.2164/jandrol.05032. PubMed DOI PMC

Olejnik Jeanette, Suchowerska Natalka, Herrid Muren, Jackson Michael, Hinch Geoff, Hill Jonathan. Spermatogonia survival in young ram lambs following irradiation, Busulfan or thermal treatment. Small Ruminant Research. 2018;166:22–27. doi: 10.1016/j.smallrumres.2018.07.017. DOI

Anand Sandhya, Bhartiya Deepa, Sriraman Kalpana, Mallick Alpna. Underlying Mechanisms that Restore Spermatogenesis on Transplanting Healthy Niche Cells in Busulphan Treated Mouse Testis. Stem Cell Reviews and Reports. 2016;12(6):682–697. doi: 10.1007/s12015-016-9685-1. PubMed DOI

Bhartiya Deepa, Anand Sandhya. Effects of oncotherapy on testicular stem cells and niche. MHR: Basic science of reproductive medicine. 2017;23(9):654–655. PubMed

Zhang Zhen, Shao Shan, Meistrich Marvin L. The radiation-induced block in spermatogonial differentiation is due to damage to the somatic environment, not the germ cells. Journal of Cellular Physiology. 2007;211(1):149–158. doi: 10.1002/jcp.20910. PubMed DOI

Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, et al. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update. 2016;22(5):561–573. doi: 10.1093/humupd/dmw017. PubMed DOI PMC

Shinohara Takashi, Orwig Kyle E., Avarbock Mary R., Brinster Ralph L. Restoration of Spermatogenesis in Infertile Mice by Sertoli Cell Transplantation1. Biology of Reproduction. 2003;68(3):1064–1071. doi: 10.1095/biolreprod.102.009977. PubMed DOI

Orth JM. Cell biology of testicular development in the fetus and neonate. In: Desjardins C, Ewing LL, editors. Cell and molecular biology of the testis. New York: Oxford University Press; 1993. pp. 3–42.

Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Mammalian spermatogenesis. In: Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED, editors. Histological and histopathological evaluation of the testis, 1st ed. Clearwater, FL: Cache River press. 1990. pp. 1–40.

Su Huimin, Luo Fenhua, Bao Jiajing, Wu Sachula, Zhang Xueming, Zhang Yan, Duo Shuguang, Wu Yingji. Long-term culture and analysis of cashmere goat Sertoli cells. In Vitro Cellular & Developmental Biology - Animal. 2014;50(10):918–925. doi: 10.1007/s11626-013-9648-7. PubMed DOI

Menegazzo M., Zuccarello D., Luca G., Ferlin A., Calvitti M., Mancuso F., Calafiore R., Foresta C. Improvements in human sperm quality by long-term in vitro co-culture with isolated porcine Sertoli cells. Human Reproduction. 2011;26(10):2598–2605. doi: 10.1093/humrep/der248. PubMed DOI

Ahmed EA, Barten-van Rijbroek AD, Kal HB, Sadri-Ardekani H, Mizrak SC, van Pelt AM, et al. Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells. Biol Reprod 2009; doi: 10.1095/biolreprod.108.071662. PubMed

Chui Kitty, Trivedi Alpa, Cheng C. Yan, Cherbavaz Diana B., Dazin Paul F., Huynh Ai Lam Thu, Mitchell James B., Rabinovich Gabriel A., Noble-Haeusslein Linda J., John Constance M. Characterization and Functionality of Proliferative Human Sertoli Cells. Cell Transplantation. 2011;20(5):619–635. doi: 10.3727/096368910X536563. PubMed DOI PMC

Ogawa Takehiko, Dobrinski Ina, Avarbock Mary R., Brinster Ralph L. Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Medicine. 2000;6(1):29–34. doi: 10.1038/71496. PubMed DOI PMC

Kanatsu-Shinohara M., Miki H., Inoue K., Ogonuki N., Toyokuni S., Ogura A., Shinohara T. Germline niche transplantation restores fertility in infertile mice. Human Reproduction. 2005;20(9):2376–2382. doi: 10.1093/humrep/dei096. PubMed DOI

Kanatsu-Shinohara M, Morimoto H, Shinohara T. Fertility of male germline stem cells following Spermatogonial transplantation in infertile mouse models. Biol Reprod. 2016. 10.1095/biolreprod.115.137869. PubMed

Gong D, Zhang C, Li T, Zhang J, Zhang N, Tao N, et al. Are Sertoli cells a kind of mesenchymal stem cells? Am J Transl Res. 2017;9(3):1067–1074. PubMed PMC

Yazawa Takashi, Mizutani Tetsuya, Yamada Kazuya, Kawata Hiroko, Sekiguchi Toshio, Yoshino Miki, Kajitani Takashi, Shou Zhangfei, Umezawa Akihiro, Miyamoto Kaoru. Differentiation of Adult Stem Cells Derived from Bone Marrow Stroma into Leydig or Adrenocortical Cells. Endocrinology. 2006;147(9):4104–4111. doi: 10.1210/en.2006-0162. PubMed DOI

Gondo Shigeki, Okabe Taijiro, Tanaka Tomoko, Morinaga Hidetaka, Nomura Masatoshi, Takayanagi Ryoichi, Nawata Hajime, Yanase Toshihiko. Adipose Tissue-Derived and Bone Marrow-Derived Mesenchymal Cells Develop into Different Lineage of Steroidogenic Cells by Forced Expression of Steroidogenic Factor 1. Endocrinology. 2008;149(9):4717–4725. doi: 10.1210/en.2007-1808. PubMed DOI

Kadam P, Ntemou E, Baert Y, Van Laere S, Van Saen D, Goossens E. Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice. Stem Cell Res Ther. 2018. 10.1186/s13287-018-1065-0. PubMed PMC

Zang Zhi Jun, Wang Jiancheng, Chen Zhihong, Zhang Yan, Gao Yong, Su Zhijian, Tuo Ying, Liao Yan, Zhang Min, Yuan Qunfang, Deng Chunhua, Jiang Mei Hua, Xiang Andy Peng. Transplantation of CD51+ Stem Leydig Cells: A New Strategy for the Treatment of Testosterone Deficiency. STEM CELLS. 2017;35(5):1222–1232. doi: 10.1002/stem.2569. PubMed DOI

Yang H, Wu Z. Genome editing of pigs for agriculture and biomedicine. Front Genet. 2018. 10.3389/fgene.2018.00360. PubMed PMC

Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SES, Oatley MJ, et al. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep. 2017. 10.1038/srep40176. PubMed PMC

Herrid Muren, Nagy Peter, Juhasz Jutka, Morrell Jane M., Billah M., Khazanehdari Kamal, Skidmore Julian A. Donor sperm production in heterologous recipients by testis germ cell transplantation in the dromedary camel. Reproduction, Fertility and Development. 2019;31(3):538. doi: 10.1071/RD18191. PubMed DOI

Smith L. B., O'Shaughnessy P. J., Rebourcet D. Cell-specific ablation in the testis: what have we learned? Andrology. 2015;3(6):1035–1049. doi: 10.1111/andr.12107. PubMed DOI PMC

Ahtiainen Maarit, Toppari Jorma, Poutanen Matti, Huhtaniemi Ilpo. Indirect Sertoli Cell-Mediated Ablation of Germ Cells in Mice Expressing the Inhibin-α Promoter/Herpes Simplex Virus Thymidine Kinase Transgene1. Biology of Reproduction. 2004;71(5):1545–1550. doi: 10.1095/biolreprod.104.028183. PubMed DOI

Bartell John G., Fantz Douglas A., Davis Tia, Dewey Michael J., Kistler Malathi K., Kistler W. Stephen. Elimination of Male Germ Cells in Transgenic Mice by the Diphtheria Toxin A Chain Gene Directed by the Histone H1t Promoter1. Biology of Reproduction. 2000;63(2):409–416. doi: 10.1095/biolreprod63.2.409. PubMed DOI

Rebourcet D., O'Shaughnessy P. J., Pitetti J.-L., Monteiro A., O'Hara L., Milne L., Tsai Y. T., Cruickshanks L., Riethmacher D., Guillou F., Mitchell R. T., van 't Hof R., Freeman T. C., Nef S., Smith L. B. Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development. 2014;141(10):2139–2149. doi: 10.1242/dev.107029. PubMed DOI PMC

Brinster R. L., Avarbock M. R. Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences. 1994;91(24):11303–11307. doi: 10.1073/pnas.91.24.11303. PubMed DOI PMC

Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–11302. doi: 10.1073/pnas.91.24.11298. PubMed DOI PMC

Kim Byung-Gak, Kim Yong-Hee, Lee Yong-An, Kim Bang-Jin, Kim Ki-Jung, Jung Sang-Eun, Chung Hak-Jae, Hwang Seongsoo, Choi Sun-Ho, Kim Myung Jick, Kim Dong-Hoon, Kim In Cheul, Kim Min Kyu, Kim Nam-Hyung, Kim Chul Geun, Ryu Buom-Yong. Production of transgenic spermatozoa by lentiviral transduction and transplantation of porcine spermatogonial stem cells. Tissue Engineering and Regenerative Medicine. 2014;11(6):458–466. doi: 10.1007/s13770-014-0078-8. DOI

Stockwell S., Hill J.R., Davey R., Herrid M., Lehnert S.A. Transplanted germ cells persist long-term in irradiated ram testes. Animal Reproduction Science. 2013;142(3-4):137–140. doi: 10.1016/j.anireprosci.2013.09.012. PubMed DOI

Trefil Pavel, Bakst Murray R., Yan Haifeng, Hejnar Jiří, Kalina Jiří, Mucksová Jitka. Restoration of spermatogenesis after transplantation of c-Kit positive testicular cells in the fowl. Theriogenology. 2010;74(9):1670–1676. doi: 10.1016/j.theriogenology.2010.07.002. PubMed DOI

Avarbock MR, Brinster CJ, Brinster RL. Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med. 1996;2:693–696. doi: 10.1038/nm0696-693. PubMed DOI PMC

Redden Eliza, Davey Rhonda, Borjigin Uyunbilig, Hutton Keryn, Hinch Geoff, Hope Shelly, Hill Jonathan, Herrid Muren. Large quantity cryopreservation of bovine testicular cells and its effect on enrichment of type A spermatogonia. Cryobiology. 2009;58(2):190–195. doi: 10.1016/j.cryobiol.2008.12.005. PubMed DOI

Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fertil Dev. 1995;7(4):871–891. doi: 10.1071/RD9950871. PubMed DOI

Parkinson T.J., Whitfield C.H. Optimisation of freezing conditions for bovine spermatozoa. Theriogenology. 1987;27(5):781–797. doi: 10.1016/0093-691X(87)90300-1. PubMed DOI

Amann RP, Hammerstedt RH, Veeramachaneni DN. The epididymis and sperm maturation: a perspective. Reprod Fertil Dev. 1993;5(4):361–381. doi: 10.1071/RD9930361. PubMed DOI

Grasa P., Pérez-Pé R., Abecia A., Forcada F., Muiño-Blanco T., Cebrián-Pérez J.A. Sperm survival and heterogeneity are correlated with fertility after intrauterine insemination in superovulated ewes. Theriogenology. 2005;63(3):748–762. doi: 10.1016/j.theriogenology.2004.04.003. PubMed DOI

Pérez-Pé R, Martí JI, Sevilla E, Fernández-Sánchez M, Fantova E, Altarriba J, et al. Prediction of fertility by centrifugal countercurrent distribution (CCCD) analysis: correlation between viability and heterogeneity of ram semen and field fertility. Reproduction. 2002;123(6):869–875. doi: 10.1530/rep.0.1230869. PubMed DOI

Ollero M, Blanco TM, López-Pérez MJ, Cebrian Pérez JA. Surface changes associated with ram sperm cryopreservation revealed by counter-current distribution in an aqueous two-phase system. Effect of different cryoprotectants. J Chromatogr B Biomed Appl. 1996;680(1–2):157–164. doi: 10.1016/0378-4347(95)00461-0. PubMed DOI

Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, Woelders H, de Rooij DG. Development of a cryopreservation protocol for type a spermatogonia. J Androl. 2002. 10.1002/j.1939-4640.2002.tb02276.x. PubMed

Yuan Zhe, Hou Ruoyu, Wu Ji. Generation of mice by transplantation of an adult spermatogonial cell line after cryopreservation. Cell Proliferation. 2009;42(2):123–131. doi: 10.1111/j.1365-2184.2009.00589.x. PubMed DOI PMC

Johnson S. K., Funston R. N., Hall J. B., Kesler D. J., Lamb G. C., Lauderdale J. W., Patterson D. J., Perry G. A., Strohbehn D. R. Multi-state Beef Reproduction Task Force provides science-based recommendations for the application of reproductive technologies. Journal of Animal Science. 2011;89(9):2950–2954. doi: 10.2527/jas.2010-3719. PubMed DOI

Choi WooJae, Kim Eunji, Yum Soo-Young, Lee ChoongIl, Lee JiHyun, Moon JoonHo, Ramachandra Sisitha, Malaweera Buddika Oshadi, Cho JongKi, Kim Jin-Soo, Kim SeokJoong, Jang Goo. EfficientPRNPdeletion in bovine genome using gene-editing technologies in bovine cells. Prion. 2015;9(4):278–291. doi: 10.1080/19336896.2015.1071459. PubMed DOI PMC

Burkard Christine, Lillico Simon G., Reid Elizabeth, Jackson Ben, Mileham Alan J., Ait-Ali Tahar, Whitelaw C. Bruce A., Archibald Alan L. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLOS Pathogens. 2017;13(2):e1006206. doi: 10.1371/journal.ppat.1006206. PubMed DOI PMC

Shetty Gunapala, Meistrich Marvin L. The Missing Niche for Spermatogonial Stem Cells: Do Blood Vessels Point the Way? Cell Stem Cell. 2007;1(4):361–363. doi: 10.1016/j.stem.2007.09.013. PubMed DOI

Sahare Mahesh G., Suyatno, Imai Hiroshi. Recent advances of in vitro culture systems for spermatogonial stem cells in mammals. Reproductive Medicine and Biology. 2018;17(2):134–142. doi: 10.1002/rmb2.12087. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...