Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues

. 2022 Oct 07 ; 15 (19) : . [epub] 20221007

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36234290

Grantová podpora
TJ01000281 Technology Agency of the Czech Republic

To maximise the use of biomass for energy purposes, there are various options for converting biomass to biofuels through thermochemical conversion processes, one of which is torrefaction. Higher utilisation of waste from the aspiration cleaning of grains, such as wheat or maize, could be one of the means through which the dependence on fossil fuels could be reduced in the spirit of a circular economy. In this study, the effect of torrefaction on fuel properties of agricultural residues was investigated. The tested materials were waste by-products from the aspiration cleaning of maize grains and waste from wheat. The materials were treated by torrefaction under a nitrogen atmosphere (225 °C, 250 °C, and 275 °C), over a residence time of 30 min. During the treatment, weight loss was monitored as a function of time. Proximate and elemental composition, as well as calorific values, were analysed before and after torrefaction. Torrefaction has a positive effect on the properties of the fuels in the samples studied, as shown by the results. The carbon content increased the most between temperatures of 250 °C and 275 °C, i.e., by 11.7% wt. in waste from maize. The oxygen content in the maize waste samples decreased by 38.99% wt. after torrefaction, and in wheat waste, it decreased by 37.20% wt. compared to the original. The net calorific value increased with increasing temperatures of process and reached a value of 23.56 MJ·kg-1 at a peak temperature of 275 °C in by-products from maize. To express the influence of the treatments on combustion behaviour, stoichiometric combustion calculations were performed. Differences of up to 20% in stoichiometric combustion parameters were found between the two types of waste. A similar case was found for fuel consumption, where a difference of 19% was achieved for torrefaction at a temperature of 275 °C, which fundamentally differentiated these fuels.

Zobrazit více v PubMed

Chen W.-H., Lu K.-M., Tsai C.-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy. 2012;100:318–325. doi: 10.1016/j.apenergy.2012.05.056. DOI

Ong H.C., Yu K.L., Chen W.-H., Pillejera M.K., Bi X., Tran K.-Q., Pétrissans A., Pétrissans M. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sustain. Energy Rev. 2021;152:111698. doi: 10.1016/j.rser.2021.111698. DOI

Sheldon R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014;16:950–963. doi: 10.1039/C3GC41935E. DOI

Kärkäs M.D., Matsuura B.S., Monos T.M., Magallanes G., Stephenson C.R.J. Transition-metal catalyzed valorization of lignin: The key to a sustainable carbon-neutral future. Org. Biomol. Chem. 2016;14:1853–1914. doi: 10.1039/C5OB02212F. PubMed DOI

Bradna J., Malaťák J. Flue gases thermal emission concentration during waste biomass combustion in small combustion device with manual fuel supply. Res. Agric. Eng. 2016;62:1–8. doi: 10.17221/36/2014-RAE. DOI

Aniszewska M., Gendek A., Zychowicz W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests. 2018;9:405. doi: 10.3390/f9070405. DOI

Akhtar A., Krepl V., Ivanova T. A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. Energy Fuels. 2018;32:7294–7318. doi: 10.1021/acs.energyfuels.8b01678. DOI

Nurek T., Gendek A., Roman K. Forest residues as a renewable source of energy: Elemental composition and physical properties. BioResources. 2019;14:6–20. doi: 10.15376/biores.14.1.6-20. DOI

Kučerová V., Lagaňa R., Hýrošová T. Changes in chemical and optical properties of silver fir (Abies alba L.) wood due to thermal treatment. J. Wood Sci. 2019;65:21. doi: 10.1186/s10086-019-1800-x. DOI

Kučerová V., Výbohová E., Hönig V., Čabalová I. Chemical changes within solids during liquid hot water pretreatment of wood. BioResources. 2020;15:38–48. doi: 10.15376/biores.15.1.38-48. DOI

Deng J., Wang G., Kuang J., Zhang Y., Luo Y. Pretreatment of agricultural residues for co-gasification via torrefaction. J. Anal. Appl. Pyrolysis. 2009;86:331–337. doi: 10.1016/j.jaap.2009.08.006. DOI

Tuck C.O., Pérez E., Horváth I.T., Sheldon R.A., Poliakoff M. Valorization of Biomass: Deriving More Value from Waste. Science. 2012;337:695–699. doi: 10.1126/science.1218930. PubMed DOI

Ijaz N., Dai F., Meng L., ur Rehman Z., Zhang H. Integrating lignosulphonate and hydrated lime for the amelioration of expansive soil: A sustainable waste solution. J. Clean. Prod. 2020;254:119985. doi: 10.1016/j.jclepro.2020.119985. DOI

Ijaz N., Dai F., ur Rehman Z. Paper and wood industry waste as a sustainable solution for environmental vulnerabilities of expansive soil: A novel approach. J. Environ. Manag. 2020;262:110285. doi: 10.1016/j.jenvman.2020.110285. PubMed DOI

McKendry P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002;83:47–54. doi: 10.1016/S0960-8524(01)00119-5. PubMed DOI

Huang Y.F., Chen W.R., Chiueh P.T., Kuan W.H., Lo S.L. Microwave torrefaction of rice straw and pennisetum. Bioresour. Technol. 2012;123:1–7. doi: 10.1016/j.biortech.2012.08.006. PubMed DOI

Kažimírová V., Kubík Ľ., Mihina Š. Evaluation of Properties of Pellets Made of Swine Manure. Acta Technol. Agric. 2020;23:137–143. doi: 10.2478/ata-2020-0022. DOI

Souček J., Jasinskas A. Assessment of the Use of Potatoes as a Binder in Flax Heating Pellets. Sustainability. 2020;12:10481. doi: 10.3390/su122410481. DOI

Mudryk K., Hutsol T., Wrobel M., Jewiarz M., Dziedzic B. Determination of friction coefficients of fast-growing tree biomass. Eng. Rural. Dev. 2019:1568–1573. doi: 10.22616/ERDev2019.18.N506. DOI

Cahyanti M.N., Doddapaneni T.R.K.C., Kikas T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020;301:122737. doi: 10.1016/j.biortech.2020.122737. PubMed DOI

Ohliger A., Förster M., Kneer R. Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel. 2013;104:607–613. doi: 10.1016/j.fuel.2012.06.112. DOI

Bridgeman T.G., Jones J.M., Shield I., Williams P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87:844–856. doi: 10.1016/j.fuel.2007.05.041. DOI

Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC

Simonic M., Goricanec D., Urbancl D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci. Total Environ. 2020;740:140086. doi: 10.1016/j.scitotenv.2020.140086. PubMed DOI

Pulka J., Manczarski P., Koziel J.A., Białowiec A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies. 2019;12:565. doi: 10.3390/en12030565. DOI

Bach Q.V., Tran K.Q. Dry and Wet Torrefaction of Woody Biomass-A Comparative Study on Combustion Kinetics. Energy Procedia. 2015;75:150–155. doi: 10.1016/j.egypro.2015.07.270. DOI

Bach Q.-V., Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016;54:665–677. doi: 10.1016/j.rser.2015.10.014. DOI

Novák V., Křížová K., Šařec P. Biochar dosage impact on physical soil properties and crop status. Agron. Res. 2020;18:2501–2511. doi: 10.15159/AR.20.192. DOI

Tamelová B., Malaťák J., Velebil J. Energy valorisation of citrus peel waste by torrefaction treatment. Agron. Res. 2018;16:276–285. doi: 10.15159/AR.18.029. DOI

Chen W.-H., Kuo P.-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 2011;36:803–811. doi: 10.1016/j.energy.2010.12.036. DOI

Parmar A., Nema P.K., Agarwal T. Biochar production from agro-food industry residues: A sustainable approach for soil and environmental management. Curr. Sci. 2014;107:1673–1682. ISSN 0011-3891.

Palanivelu K., Ramachandran A., Raghavan V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Convers. Biorefinery. 2021;11:2247–2267. doi: 10.1007/s13399-020-00604-5. DOI

Yahya M.A., Al-Qodah Z., Ngah C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015;46:218–235. doi: 10.1016/j.rser.2015.02.051. DOI

Rousset P., Petithuguenin T., Rodrigues T., Azevedo A.-C. The fluidization behaviour of torrefied biomass in a cold model. Fuel. 2012;102:256–263. doi: 10.1016/j.fuel.2012.07.007. DOI

Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and Nox Emissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59. doi: 10.2478/ata-2020-0009. DOI

Tumuluru J.S., Sokhansanj S., Hess J.R., Wright C.T., Boardman R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011;7:384–401. doi: 10.1089/ind.2011.7.384. DOI

Li H., Liu X., Legros R., Bi X.T., Lim C.J., Sokhansanj S. Pelletization of torrefied sawdust and properties of torrefied pellets. Appl. Energy. 2012;93:680–685. doi: 10.1016/j.apenergy.2012.01.002. DOI

Tsalidis G.A., Joshi Y., Korevaar G., de Jong W. Life cycle assessment of direct co-firing of torrefied and/or pelletised woody biomass with coal in The Netherlands. J. Clean. Prod. 2014;81:168–177. doi: 10.1016/j.jclepro.2014.06.049. DOI

Dyjakon A., Sobol Ł., Krotowski M., Mudryk K., Kawa K. The impact of particles comminution on mechanical durability of wheat straw briquettes. Energies. 2020;13:6186. doi: 10.3390/en13236186. DOI

Wrobel M., Mudryk K., Jewiarz M., Knapczyk A. Impact of raw material properties and agglomeration pressure on selected parmeters of granulates obtained from willow and black locust biomass. Eng. Rural Dev. 2018;17:1933–1938. doi: 10.22616/ERDev2018.17.N542. DOI

Bai X., Wang G., Gong C., Yu Y., Liu W., Wang D. Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour. Technol. 2017;233:373–381. doi: 10.1016/j.biortech.2017.02.091. PubMed DOI

Liu Z., Zhang F., Liu H., Ba F., Yan S., Hu J. Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties. Bioresour. Technol. 2018;249:983–991. doi: 10.1016/j.biortech.2017.11.012. PubMed DOI

Stelte W., Nielsen N.P.K., Hansen H.O., Dahl J., Shang L., Sanadi A.R. Reprint of: Pelletizing properties of torrefied wheat straw. Biomass Bioenergy. 2013;53:105–112. doi: 10.1016/j.biombioe.2013.03.012. DOI

Safar M., Lin B.J., Chen W.H., Langauer D., Chang J.S., Raclavska H., Pétrissans A., Rousset P., Pétrissans M. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl. Energy. 2019;235:346–355. doi: 10.1016/j.apenergy.2018.10.065. DOI

Woolf D., Amonette J.E., Street-Perrott F.A., Lehmann J., Joseph S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010;1:56. doi: 10.1038/ncomms1053. PubMed DOI PMC

Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis. 2006;77:28–34. doi: 10.1016/j.jaap.2006.01.002. DOI

Pelaez-Samaniego M.R., Yadama V., Garcia-Perez M., Lowell E., McDonald A.G. Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J. Anal. Appl. Pyrolysis. 2014;109:222–233. doi: 10.1016/j.jaap.2014.06.008. DOI

Poudel J., Karki S., Oh S.C. Valorization of waste wood as a solid fuel by torrefaction. Energies. 2018;11:1641. doi: 10.3390/en11071641. DOI

Odhady Sklizně—Operativní Zpráva—k 15. 9. 2021|ČSÚ. [(accessed on 30 August 2022)]. Available online: https://www.czso.cz/csu/czso/odhady-sklizne-operativni-zprava-k-15-9-2021.

Unpinit T., Poblarp T., Sailoon N., Wongwicha P., Thabuot M. Fuel Properties of Bio-Pellets Produced from Selected Materials under Various Compacting Pressure. Energy Procedia. 2015;79:657–662. doi: 10.1016/j.egypro.2015.11.551. DOI

Mcfall K.L., Fowler M.E. Wheat Science and Trade. Wiley Online Library; Hoboken, NJ, USA: 2009. Overview of Wheat Classification and Trade; pp. 437–454. DOI

Wang X., Wu J., Chen Y., Pattiya A., Yang H., Chen H. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresour. Technol. 2018;258:88–97. doi: 10.1016/j.biortech.2018.02.114. PubMed DOI

Zheng A., Zhao Z., Chang S., Huang Z., Zhao K., Wei G., He F., Li H. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour. Technol. 2015;176:15–22. doi: 10.1016/j.biortech.2014.10.157. PubMed DOI

Medic D., Darr M., Shah A., Potter B., Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147–154. doi: 10.1016/j.fuel.2011.07.019. DOI

Chen D., Cen K., Cao X., Li Y., Zhang Y., Ma H. Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization. J. Anal. Appl. Pyrolysis. 2018;135:85–93. doi: 10.1016/j.jaap.2018.09.015. DOI

Chaloupková V., Ivanova T., Hutla P., Špunarová M. Ash Melting Behavior of Rice Straw and Calcium Additives. Agriculture. 2021;11:1282. doi: 10.3390/agriculture11121282. DOI

Satpathy S.K., Tabil L.G., Meda V., Naik S.N., Prasad R. Torrefaction of wheat and barley straw after microwave heating. Fuel. 2014;124:269–278. doi: 10.1016/j.fuel.2014.01.102. DOI

Cheng X., Huang Z., Wang Z., Ma C., Chen S. A novel on-site wheat straw pretreatment method: Enclosed torrefaction. Bioresour. Technol. 2019;281:48–55. doi: 10.1016/j.biortech.2019.02.075. PubMed DOI

Jeníček L., Neškudla M., Malaťák J., Velebil J., Passian L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ata-2021-0028. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...