Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ01000281
Technology Agency of the Czech Republic
PubMed
36234290
PubMed Central
PMC9571558
DOI
10.3390/ma15196949
PII: ma15196949
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural residues, biochar, calorific potential, fuel properties, stoichiometry, torrefaction,
- Publikační typ
- časopisecké články MeSH
To maximise the use of biomass for energy purposes, there are various options for converting biomass to biofuels through thermochemical conversion processes, one of which is torrefaction. Higher utilisation of waste from the aspiration cleaning of grains, such as wheat or maize, could be one of the means through which the dependence on fossil fuels could be reduced in the spirit of a circular economy. In this study, the effect of torrefaction on fuel properties of agricultural residues was investigated. The tested materials were waste by-products from the aspiration cleaning of maize grains and waste from wheat. The materials were treated by torrefaction under a nitrogen atmosphere (225 °C, 250 °C, and 275 °C), over a residence time of 30 min. During the treatment, weight loss was monitored as a function of time. Proximate and elemental composition, as well as calorific values, were analysed before and after torrefaction. Torrefaction has a positive effect on the properties of the fuels in the samples studied, as shown by the results. The carbon content increased the most between temperatures of 250 °C and 275 °C, i.e., by 11.7% wt. in waste from maize. The oxygen content in the maize waste samples decreased by 38.99% wt. after torrefaction, and in wheat waste, it decreased by 37.20% wt. compared to the original. The net calorific value increased with increasing temperatures of process and reached a value of 23.56 MJ·kg-1 at a peak temperature of 275 °C in by-products from maize. To express the influence of the treatments on combustion behaviour, stoichiometric combustion calculations were performed. Differences of up to 20% in stoichiometric combustion parameters were found between the two types of waste. A similar case was found for fuel consumption, where a difference of 19% was achieved for torrefaction at a temperature of 275 °C, which fundamentally differentiated these fuels.
Zobrazit více v PubMed
Chen W.-H., Lu K.-M., Tsai C.-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy. 2012;100:318–325. doi: 10.1016/j.apenergy.2012.05.056. DOI
Ong H.C., Yu K.L., Chen W.-H., Pillejera M.K., Bi X., Tran K.-Q., Pétrissans A., Pétrissans M. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renew. Sustain. Energy Rev. 2021;152:111698. doi: 10.1016/j.rser.2021.111698. DOI
Sheldon R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014;16:950–963. doi: 10.1039/C3GC41935E. DOI
Kärkäs M.D., Matsuura B.S., Monos T.M., Magallanes G., Stephenson C.R.J. Transition-metal catalyzed valorization of lignin: The key to a sustainable carbon-neutral future. Org. Biomol. Chem. 2016;14:1853–1914. doi: 10.1039/C5OB02212F. PubMed DOI
Bradna J., Malaťák J. Flue gases thermal emission concentration during waste biomass combustion in small combustion device with manual fuel supply. Res. Agric. Eng. 2016;62:1–8. doi: 10.17221/36/2014-RAE. DOI
Aniszewska M., Gendek A., Zychowicz W. Analysis of Selected Physical Properties of Conifer Cones with Relevance to Energy Production Efficiency. Forests. 2018;9:405. doi: 10.3390/f9070405. DOI
Akhtar A., Krepl V., Ivanova T. A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. Energy Fuels. 2018;32:7294–7318. doi: 10.1021/acs.energyfuels.8b01678. DOI
Nurek T., Gendek A., Roman K. Forest residues as a renewable source of energy: Elemental composition and physical properties. BioResources. 2019;14:6–20. doi: 10.15376/biores.14.1.6-20. DOI
Kučerová V., Lagaňa R., Hýrošová T. Changes in chemical and optical properties of silver fir (Abies alba L.) wood due to thermal treatment. J. Wood Sci. 2019;65:21. doi: 10.1186/s10086-019-1800-x. DOI
Kučerová V., Výbohová E., Hönig V., Čabalová I. Chemical changes within solids during liquid hot water pretreatment of wood. BioResources. 2020;15:38–48. doi: 10.15376/biores.15.1.38-48. DOI
Deng J., Wang G., Kuang J., Zhang Y., Luo Y. Pretreatment of agricultural residues for co-gasification via torrefaction. J. Anal. Appl. Pyrolysis. 2009;86:331–337. doi: 10.1016/j.jaap.2009.08.006. DOI
Tuck C.O., Pérez E., Horváth I.T., Sheldon R.A., Poliakoff M. Valorization of Biomass: Deriving More Value from Waste. Science. 2012;337:695–699. doi: 10.1126/science.1218930. PubMed DOI
Ijaz N., Dai F., Meng L., ur Rehman Z., Zhang H. Integrating lignosulphonate and hydrated lime for the amelioration of expansive soil: A sustainable waste solution. J. Clean. Prod. 2020;254:119985. doi: 10.1016/j.jclepro.2020.119985. DOI
Ijaz N., Dai F., ur Rehman Z. Paper and wood industry waste as a sustainable solution for environmental vulnerabilities of expansive soil: A novel approach. J. Environ. Manag. 2020;262:110285. doi: 10.1016/j.jenvman.2020.110285. PubMed DOI
McKendry P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002;83:47–54. doi: 10.1016/S0960-8524(01)00119-5. PubMed DOI
Huang Y.F., Chen W.R., Chiueh P.T., Kuan W.H., Lo S.L. Microwave torrefaction of rice straw and pennisetum. Bioresour. Technol. 2012;123:1–7. doi: 10.1016/j.biortech.2012.08.006. PubMed DOI
Kažimírová V., Kubík Ľ., Mihina Š. Evaluation of Properties of Pellets Made of Swine Manure. Acta Technol. Agric. 2020;23:137–143. doi: 10.2478/ata-2020-0022. DOI
Souček J., Jasinskas A. Assessment of the Use of Potatoes as a Binder in Flax Heating Pellets. Sustainability. 2020;12:10481. doi: 10.3390/su122410481. DOI
Mudryk K., Hutsol T., Wrobel M., Jewiarz M., Dziedzic B. Determination of friction coefficients of fast-growing tree biomass. Eng. Rural. Dev. 2019:1568–1573. doi: 10.22616/ERDev2019.18.N506. DOI
Cahyanti M.N., Doddapaneni T.R.K.C., Kikas T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020;301:122737. doi: 10.1016/j.biortech.2020.122737. PubMed DOI
Ohliger A., Förster M., Kneer R. Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel. 2013;104:607–613. doi: 10.1016/j.fuel.2012.06.112. DOI
Bridgeman T.G., Jones J.M., Shield I., Williams P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87:844–856. doi: 10.1016/j.fuel.2007.05.041. DOI
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC
Simonic M., Goricanec D., Urbancl D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci. Total Environ. 2020;740:140086. doi: 10.1016/j.scitotenv.2020.140086. PubMed DOI
Pulka J., Manczarski P., Koziel J.A., Białowiec A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies. 2019;12:565. doi: 10.3390/en12030565. DOI
Bach Q.V., Tran K.Q. Dry and Wet Torrefaction of Woody Biomass-A Comparative Study on Combustion Kinetics. Energy Procedia. 2015;75:150–155. doi: 10.1016/j.egypro.2015.07.270. DOI
Bach Q.-V., Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew. Sustain. Energy Rev. 2016;54:665–677. doi: 10.1016/j.rser.2015.10.014. DOI
Novák V., Křížová K., Šařec P. Biochar dosage impact on physical soil properties and crop status. Agron. Res. 2020;18:2501–2511. doi: 10.15159/AR.20.192. DOI
Tamelová B., Malaťák J., Velebil J. Energy valorisation of citrus peel waste by torrefaction treatment. Agron. Res. 2018;16:276–285. doi: 10.15159/AR.18.029. DOI
Chen W.-H., Kuo P.-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 2011;36:803–811. doi: 10.1016/j.energy.2010.12.036. DOI
Parmar A., Nema P.K., Agarwal T. Biochar production from agro-food industry residues: A sustainable approach for soil and environmental management. Curr. Sci. 2014;107:1673–1682. ISSN 0011-3891.
Palanivelu K., Ramachandran A., Raghavan V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—A review. Biomass Convers. Biorefinery. 2021;11:2247–2267. doi: 10.1007/s13399-020-00604-5. DOI
Yahya M.A., Al-Qodah Z., Ngah C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015;46:218–235. doi: 10.1016/j.rser.2015.02.051. DOI
Rousset P., Petithuguenin T., Rodrigues T., Azevedo A.-C. The fluidization behaviour of torrefied biomass in a cold model. Fuel. 2012;102:256–263. doi: 10.1016/j.fuel.2012.07.007. DOI
Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and Nox Emissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59. doi: 10.2478/ata-2020-0009. DOI
Tumuluru J.S., Sokhansanj S., Hess J.R., Wright C.T., Boardman R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011;7:384–401. doi: 10.1089/ind.2011.7.384. DOI
Li H., Liu X., Legros R., Bi X.T., Lim C.J., Sokhansanj S. Pelletization of torrefied sawdust and properties of torrefied pellets. Appl. Energy. 2012;93:680–685. doi: 10.1016/j.apenergy.2012.01.002. DOI
Tsalidis G.A., Joshi Y., Korevaar G., de Jong W. Life cycle assessment of direct co-firing of torrefied and/or pelletised woody biomass with coal in The Netherlands. J. Clean. Prod. 2014;81:168–177. doi: 10.1016/j.jclepro.2014.06.049. DOI
Dyjakon A., Sobol Ł., Krotowski M., Mudryk K., Kawa K. The impact of particles comminution on mechanical durability of wheat straw briquettes. Energies. 2020;13:6186. doi: 10.3390/en13236186. DOI
Wrobel M., Mudryk K., Jewiarz M., Knapczyk A. Impact of raw material properties and agglomeration pressure on selected parmeters of granulates obtained from willow and black locust biomass. Eng. Rural Dev. 2018;17:1933–1938. doi: 10.22616/ERDev2018.17.N542. DOI
Bai X., Wang G., Gong C., Yu Y., Liu W., Wang D. Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour. Technol. 2017;233:373–381. doi: 10.1016/j.biortech.2017.02.091. PubMed DOI
Liu Z., Zhang F., Liu H., Ba F., Yan S., Hu J. Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties. Bioresour. Technol. 2018;249:983–991. doi: 10.1016/j.biortech.2017.11.012. PubMed DOI
Stelte W., Nielsen N.P.K., Hansen H.O., Dahl J., Shang L., Sanadi A.R. Reprint of: Pelletizing properties of torrefied wheat straw. Biomass Bioenergy. 2013;53:105–112. doi: 10.1016/j.biombioe.2013.03.012. DOI
Safar M., Lin B.J., Chen W.H., Langauer D., Chang J.S., Raclavska H., Pétrissans A., Rousset P., Pétrissans M. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction. Appl. Energy. 2019;235:346–355. doi: 10.1016/j.apenergy.2018.10.065. DOI
Woolf D., Amonette J.E., Street-Perrott F.A., Lehmann J., Joseph S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010;1:56. doi: 10.1038/ncomms1053. PubMed DOI PMC
Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood: Part 1. Weight loss kinetics. J. Anal. Appl. Pyrolysis. 2006;77:28–34. doi: 10.1016/j.jaap.2006.01.002. DOI
Pelaez-Samaniego M.R., Yadama V., Garcia-Perez M., Lowell E., McDonald A.G. Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J. Anal. Appl. Pyrolysis. 2014;109:222–233. doi: 10.1016/j.jaap.2014.06.008. DOI
Poudel J., Karki S., Oh S.C. Valorization of waste wood as a solid fuel by torrefaction. Energies. 2018;11:1641. doi: 10.3390/en11071641. DOI
Odhady Sklizně—Operativní Zpráva—k 15. 9. 2021|ČSÚ. [(accessed on 30 August 2022)]. Available online: https://www.czso.cz/csu/czso/odhady-sklizne-operativni-zprava-k-15-9-2021.
Unpinit T., Poblarp T., Sailoon N., Wongwicha P., Thabuot M. Fuel Properties of Bio-Pellets Produced from Selected Materials under Various Compacting Pressure. Energy Procedia. 2015;79:657–662. doi: 10.1016/j.egypro.2015.11.551. DOI
Mcfall K.L., Fowler M.E. Wheat Science and Trade. Wiley Online Library; Hoboken, NJ, USA: 2009. Overview of Wheat Classification and Trade; pp. 437–454. DOI
Wang X., Wu J., Chen Y., Pattiya A., Yang H., Chen H. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresour. Technol. 2018;258:88–97. doi: 10.1016/j.biortech.2018.02.114. PubMed DOI
Zheng A., Zhao Z., Chang S., Huang Z., Zhao K., Wei G., He F., Li H. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour. Technol. 2015;176:15–22. doi: 10.1016/j.biortech.2014.10.157. PubMed DOI
Medic D., Darr M., Shah A., Potter B., Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147–154. doi: 10.1016/j.fuel.2011.07.019. DOI
Chen D., Cen K., Cao X., Li Y., Zhang Y., Ma H. Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization. J. Anal. Appl. Pyrolysis. 2018;135:85–93. doi: 10.1016/j.jaap.2018.09.015. DOI
Chaloupková V., Ivanova T., Hutla P., Špunarová M. Ash Melting Behavior of Rice Straw and Calcium Additives. Agriculture. 2021;11:1282. doi: 10.3390/agriculture11121282. DOI
Satpathy S.K., Tabil L.G., Meda V., Naik S.N., Prasad R. Torrefaction of wheat and barley straw after microwave heating. Fuel. 2014;124:269–278. doi: 10.1016/j.fuel.2014.01.102. DOI
Cheng X., Huang Z., Wang Z., Ma C., Chen S. A novel on-site wheat straw pretreatment method: Enclosed torrefaction. Bioresour. Technol. 2019;281:48–55. doi: 10.1016/j.biortech.2019.02.075. PubMed DOI
Jeníček L., Neškudla M., Malaťák J., Velebil J., Passian L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ata-2021-0028. DOI
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
Substituting Solid Fossil Fuels with Torrefied Timber Products