Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022:31170/1312/3104
Internal Grant Agency of the Faculty of Engineering, Czech University of Life Science Prague
PubMed
40271723
PubMed Central
PMC11989423
DOI
10.3390/ma18071495
PII: ma18071495
Knihovny.cz E-zdroje
- Klíčová slova
- biochar, biomass, calorific value, energy residual, nut shells, spent coffee ground, spruce wood, tea waste,
- Publikační typ
- časopisecké články MeSH
This study investigates the potential use of biochar derived from residues-such as spruce wood, spent coffee grounds, tea waste, and nutshells-as a sustainable coal substitute-to enhance the decarbonization of European energetic systems and decrease the dependence on fossil fuels. The biomasses were pyrolyzed at 250-550 °C, analyzed for calorific value and composition, and evaluated for energy retention and mass loss. The results show significant energy density improvements, with optimal temperatures varying by material (e.g., spruce wood reached 31.56 MJ·kg-1 at 550 °C, retaining 21.84% of its mass; spent coffee grounds peaked at 31.26 MJ·kg-1 at 350 °C, retaining 37.53%). Economic analysis confirmed pyrolyzed biomass as a cost-effective alternative to coal, especially considering emission allowance costs. Integrating biomass pyrolysis into regional energy systems supports decarbonization, reduces emissions, and advances us towards a circular economy.
Zobrazit více v PubMed
European Environment Agency Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614 Final—European Environment Agency. [(accessed on 28 August 2022)]. Available online: https://www.eea.europa.eu/policy-documents/com-2015-0614-final.
Okedu K., Al Senaidi A.S., Al Hajri I., Al Rashdi I., Salmani W. Al Real Time Dynamic Analysis of Solar PV Integration for Energy Optimization. Int. J. Smart Grid. 2020;4:68–79. doi: 10.20508/IJSMARTGRID.V4I2.100.G91. DOI
Lubwama M., Yiga V.A. Development of Groundnut Shells and Bagasse Briquettes as Sustainable Fuel Sources for Domestic Cooking Applications in Uganda. Renew Energy. 2017;111:532–542. doi: 10.1016/J.RENENE.2017.04.041. DOI
Lubwama M., Yiga V.A. Characteristics of Briquettes Developed from Rice and Coffee Husks for Domestic Cooking Applications in Uganda. Renew Energy. 2018;118:43–55. doi: 10.1016/J.RENENE.2017.11.003. DOI
Ujjinappa S., Sreepathi L.K. Production and Quality Testing of Fuel Briquettes Made from Pongamia and Tamarind Shell. Sadhana—Acad. Proc. Eng. Sci. 2018;43:58. doi: 10.1007/S12046-018-0836-8. DOI
IEA Technology Roadmap—Delivering Sustainable Bioenergy—Analysis—IEA. [(accessed on 1 September 2022)]. Available online: https://www.iea.org/reports/technology-roadmap-delivering-sustainable-bioenergy.
Garrido M.A., Conesa J.A., Garcia M.D. Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes. Energies. 2017;10:850. doi: 10.3390/en10070850. DOI
Variny M., Varga A., Rimár M., Janošovský J., Kizek J., Lukáč L., Jablonský G., Mierka O. Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes. 2021;9:100. doi: 10.3390/pr9010100. DOI
Vasileiadou A. Reduction of CO2 Emissions Through the Co-Combustion of Lignite with Biomass Residues: Renewable and Non-Renewable CO2 per Produced Megajoule and Fuel Characterization. Therm. Sci. Eng. Prog. 2024;50:102566. doi: 10.1016/j.tsep.2024.102566. DOI
Purohit P., Chaturvedi V. Biomass Pellets for Power Generation in India: A Techno-Economic Evaluation. Environ. Sci. Pollut. Res. 2018;25:29614–29632. doi: 10.1007/S11356-018-2960-8. PubMed DOI PMC
Falup O., Mircea I., Ivan R., Ionel I. Novel Approach for the Current State of Greenhouse Gases Emissions. Rom. Case Study. J. Environ. Prot. Ecol. 2014;15:807–818.
Lee M., Zhang N. Technical Efficiency, Shadow Price of Carbon Dioxide Emissions, and Substitutability for Energy in the Chinese Manufacturing Industries. Energy Econ. 2012;34:1492–1497. doi: 10.1016/j.eneco.2012.06.023. DOI
Demirbas A. Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues. Prog Energy Combust. Sci. 2005;31:171–192. doi: 10.1016/j.pecs.2005.02.002. DOI
Goyal H.B., Seal D., Saxena R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008;12:504–517. doi: 10.1016/j.rser.2006.07.014. DOI
Gürdil G.A.K., Selvi K.C., Malaták J., Pinar Y. Biomass Utilization for Thermal Energy. AMA Agric. Mech. Asia Afr. Lat. Am. 2009;20:80–85.
Mohan D., Pittman C.U., Steele P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels. 2006;20:848–889. doi: 10.1021/ef0502397. DOI
Key Advances in Biochar Research from 2024—Biochar Today. [(accessed on 16 January 2025)]. Available online: https://biochartoday.com/2024/12/20/key-advances-in-biochar-research-from-2024/?utm_source=chatgpt.com.
Rajput V., Saini I., Parmar S., Pundir V., Kumar V., Kumar V., Naik B., Rustagi S. Biochar Production Methods and Their Transformative Potential for Environmental Remediation. Discov. Appl. Sci. 2024;6:408. doi: 10.1007/s42452-024-06125-4. DOI
Wu P., Fu Y., Vancov T., Wang H., Wang Y., Chen W. Analyzing the Trends and Hotspots of Biochar’s Applications in Agriculture, Environment, and Energy: A Bibliometrics Study for 2022 and 2023. Biochar. 2024;6:78. doi: 10.1007/s42773-024-00370-x. DOI
Šafařík D., Hlaváčková P., Michal J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies. 2022;15:47. doi: 10.3390/en15010047. DOI
Rečka L., Ščasný M. Brown Coal and Nuclear Energy Deployment: Effects on Fuel-Mix, Carbon Targets, and External Costs in the Czech Republic up to 2050. Fuel. 2018;216:494–502. doi: 10.1016/j.fuel.2017.12.034. DOI
Červenka J., Bače R., Brůna J., Wild J., Svoboda M., Heurich M. Mapping of Mountain Temperate Forest Recovery After Natural Disturbance: A Large Permanent Plot Established on Czech-German Border. Silva Gabreta. 2019;25:492–510.
Purwestri R.C., Hájek M., Hochmalová M., Palátová P., Huertas-Bernal D.C., Garciá-Jácome S.P., Jarský V., Kašpar J., Riedl M., Marušák R. The Role of Bioeconomy in the Czech National Forest Strategy: A Comparison with Sweden. Int. For. Rev. 2022;23:31–41. doi: 10.1505/146554821834777260. DOI
Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications. For. Ecol. Manag. 2021;490:119075. doi: 10.1016/j.foreco.2021.119075. DOI
Cheng T., Veselská T., Křížková B., Švec K., Havlíček V., Stadler M., Kolařík M. Insight into the Genomes of Dominant Yeast Symbionts of European Spruce Bark Beetle, Ips typographus. Front. Microbiol. 2023;14:1108975. doi: 10.3389/fmicb.2023.1108975. PubMed DOI PMC
Blake M., Straw N., Kendall T., Whitham T., Manea I.A., Inward D., Jones B., Hazlitt N., Ockenden A., Deol A., et al. Recent Outbreaks of the Spruce Bark Beetle Ips typographus in the UK: Discovery, Management, and Implications. Trees For. People. 2024;16:100508. doi: 10.1016/j.tfp.2024.100508. DOI
Netherer S., Schebeck M., Morgante G., Rentsch V., Kirisits T. European Spruce Bark Beetle, Ips typographus (L.) Males Are Attracted to Bark Cores of Drought-Stressed Norway Spruce Trees with Impaired Defenses in Petri Dish Choice Experiments. Forests. 2022;13:537. doi: 10.3390/f13040537. DOI
Maitah M., Toth D., Malec K., Appiah-Kubi S.N.K., Maitah K., Pańka D., Prus P., Janků J., Romanowski R. The Impacts of Calamity Logging on the Sustainable Development of Spruce Fuel Biomass Prices and Spruce Pulp Prices in the Czech Republic. Forests. 2022;13:97. doi: 10.3390/f13010097. DOI
Eurostat Forests, Forestry and Logging—Statistics Explained. [(accessed on 30 September 2022)]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging#Forests_in_the_EU.
Nosek R., Tun M.M., Juchelkova D. Energy Utilization of Spent Coffee Grounds in the Form of Pellets. Energies. 2020;13:1235. doi: 10.3390/en13051235. DOI
Chen Y.C., Jhou S.Y. Integrating Spent Coffee Grounds and Silver Skin as Biofuels Using Torrefaction. Renew Energy. 2020;148:275–283. doi: 10.1016/j.renene.2019.12.005. DOI
Cardarelli A., Pinzi S., Barbanera M. Effect of Torrefaction Temperature on Spent Coffee Grounds Thermal Behaviour and Kinetics. Renew Energy. 2022;185:704–716. doi: 10.1016/j.renene.2021.12.116. DOI
Malaťák J., Passian L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011;57:37–50. doi: 10.17221/28/2010-RAE. DOI
Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59. doi: 10.2478/ATA-2020-0009. DOI
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. Materials. 2022;15:6949. doi: 10.3390/ma15196949. PubMed DOI PMC
Oldfield T.L., Sikirica N., Mondini C., López G., Kuikman P.J., Holden N.M. Biochar, Compost and Biochar-Compost Blend as Options to Recover Nutrients and Sequester Carbon. J. Environ. Manag. 2018;218:465–476. doi: 10.1016/j.jenvman.2018.04.061. PubMed DOI
Sang F., Yin Z., Wang W., Almatrafi E., Wang Y., Zhao B., Gong J., Zhou C., Zhang C., Zeng G., et al. Degradation of Ciprofloxacin Using Heterogeneous Fenton Catalysts Derived from Natural Pyrite and Rice Straw Biochar. J. Clean. Prod. 2022;378:134459. doi: 10.1016/j.jclepro.2022.134459. DOI
Onsree T., Tippayawong N., Phithakkitnukoon S., Lauterbach J. Interpretable Machine-Learning Model with a Collaborative Game Approach to Predict Yields and Higher Heating Value of Torrefied Biomass. Energy. 2022;249:123676. doi: 10.1016/j.energy.2022.123676. DOI
Ni Z., Bi H., Jiang C., Wang C., Tian J., Zhou W., Sun H., Lin Q. Investigation of the Co-Pyrolysis of Coal Slime and Coffee Industry Residue Based on Machine Learning Methods and TG-FTIR: Synergistic Effect, Kinetics and Thermodynamic. Fuel. 2021;305:121527. doi: 10.1016/j.fuel.2021.121527. DOI
Wang X., Deng S., Tan H., Adeosun A., Vujanović M., Yang F., Duić N. Synergetic Effect of Sewage Sludge and Biomass Co-Pyrolysis: A Combined Study in Thermogravimetric Analyzer and a Fixed Bed Reactor. Energy Convers Manag. 2016;118:399–405. doi: 10.1016/j.enconman.2016.04.014. DOI
Wang L., Xie L., Ma H., Zhou J. Co-Pyrolysis of Pine Sawdust with Nickel Formate for Understanding Interaction Mechanisms and Enhancing Resistance Toward Biochar Deposition. J. Mater. Res. Technol. 2022;18:3751–3763. doi: 10.1016/j.jmrt.2022.04.032. DOI
Gendek A., Aniszewska M., Owoc D., Tamelová B., Malaťák J., Velebil J., Krilek J. Physico-Mechanical and Energy Properties of Pellets Made from Ground Walnut Shells, Coniferous Tree Cones and Their Mixtures. Renew Energy. 2023;211:248–258. doi: 10.1016/j.renene.2023.04.122. DOI
Singh E., Mishra R., Kumar A., Shukla S.K., Lo S.L., Kumar S. Circular Economy-Based Environmental Management Using Biochar: Driving Towards Sustainability. Process Saf. Environ. Prot. 2022;163:585–600. doi: 10.1016/j.psep.2022.05.056. DOI
Meyer S., Glaser B., Quicker P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011;45:9473–9483. doi: 10.1021/es201792c. PubMed DOI
Vuppaladadiyam A.K., Vuppaladadiyam S.S.V., Sahoo A., Murugavelh S., Anthony E., Bhashkar T., Zheng Y., Zhao M., Duan H., Zhao Y., et al. Bio-Oil and Biochar from the Pyrolytic Conversion of Biomass: A Current and Future Perspective on the Trade-Off Between Economic, Environmental, and Technical Indicators. Sci. Total Environ. 2023;857:159155. doi: 10.1016/J.SCITOTENV.2022.159155. PubMed DOI
Majumder S., Neogi S., Dutta T., Powel M.A., Banik P. The Impact of Biochar on Soil Carbon Sequestration: Meta-Analytical Approach to Evaluating Environmental and Economic Advantages. J. Environ. Manag. 2019;250:109466. doi: 10.1016/j.jenvman.2019.109466. PubMed DOI
Lisowski A., Matkowski P., Dąbrowska M., Piątek M., Świętochowski A., Klonowski J., Mieszkalski L., Reshetiuk V. Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste Biomass Valorization. 2020;11:63–75. doi: 10.1007/s12649-018-0458-8. DOI
Tripathi M., Sahu J.N., Ganesan P. Effect of Process Parameters on Production of Biochar from Biomass Waste Through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016;55:467–481.
Wilk M., Magdziarz A., Kalemba I., Gara P. Carbonisation of Wood Residue into Charcoal During Low Temperature Process. Renew Energy. 2016;85:507–513. doi: 10.1016/J.RENENE.2015.06.072. DOI
Aniszewska M., Gendek A., Hýsek Š., Malat’ák J., Velebil J., Tamelová B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials. 2020;13:5660. doi: 10.3390/ma13245660. PubMed DOI PMC
The European Parliament and the Council of the European Union Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. European Parliament; Bruxelles, Belgium: 2023.
Jeníček L., Tunklová B., Malat’ák J., Neškudla M., Velebil J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials. 2022;15:6722. doi: 10.3390/ma15196722. PubMed DOI PMC
Jenicek L., Neskudla M., Malatak J., Velebil J., Passian L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ATA-2021-0028. DOI
Tunklová B., Jeníček L., Malaťák J., Neškudla M., Velebil J., Hnilička F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials. 2022;15:8709. doi: 10.3390/ma15248709. PubMed DOI PMC
Jeníček L., Tunklová B., Malaťák J., Velebil J., Malaťáková J., Neškudla M., Hnilička F. The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment. Materials. 2023;16:2074. doi: 10.3390/ma16052074. PubMed DOI PMC
Chen W.H., Kuo P.C. Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass. Energy. 2011;36:803–811. doi: 10.1016/j.energy.2010.12.036. DOI
Chen W.H., Lin B.J., Lin Y.Y., Chu Y.S., Ubando A.T., Show P.L., Ong H.C., Chang J.S., Ho S.H., Culaba A.B., et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021;82 doi: 10.1016/j.pecs.2020.100887. DOI
Lesy ČR O Dřevě|Lesy České Republiky, s. p. [(accessed on 30 September 2022)]. Available online: https://lesycr.cz/drevo/
International Coffee Organization—What’s New. [(accessed on 26 August 2022)]. Available online: https://www.ico.org/
Rajesh Banu J., Yukesh Kannah R., Dinesh Kumar M., Preethi, Kavitha S., Gunasekaran M., Zhen G., Awasthi M.K., Kumar G. Spent Coffee Grounds Based Circular Bioeconomy: Technoeconomic and Commercialization Aspects. Renew. Sustain. Energy Rev. 2021;152:111721. doi: 10.1016/j.rser.2021.111721. DOI
ICO International Coffee Organization—Trade Statistics Tables. [(accessed on 26 August 2022)]. Available online: https://www.icocoffee.org/documents/cy2024-25/coffee-development-report-2022-23.pdf.
ČSÚ Spotřeba Potravin—2020|ČSÚ. [(accessed on 1 October 2022)]. Available online: https://www.czso.cz/csu/czso/spotreba-potravin.
Campos-Vega R., Loarca-Piña G., Vergara-Castañeda H.A., Oomah B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015;45:24–36. doi: 10.1016/j.tifs.2015.04.012. DOI
Tokimoto T., Kawasaki N., Nakamura T., Akutagawa J., Tanada S. Removal of Lead Ions in Drinking Water by Coffee Grounds as Vegetable Biomass. J. Colloid. Interface Sci. 2005;281:56–61. doi: 10.1016/j.jcis.2004.08.083. PubMed DOI
Mussatto S.I., Machado E.M.S., Martins S., Teixeira J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011;4:661–672. doi: 10.1007/s11947-011-0565-z. DOI
Vivek V. Global Market Report: Tea|International Institute for Sustainable Development. [(accessed on 1 October 2022)]. Available online: https://www.iisd.org/publications/report/global-market-report-tea.
Doublet G., Jungbluth N. Conventional and Organic Darjeeling Tea. ESU-services Ltd.; Uster, Switzerland: 2010. Life Cycle Assessement of Drinking Darjeeling Tea.
Cabrera C., Artacho R., Giménez R. Beneficial Effects of Green Tea—A Review. J. Am. Coll. Nutr. 2006;25:79–99. doi: 10.1080/07315724.2006.10719518. PubMed DOI
Akbayrak S., Özçifçi Z., Tabak A. Activated Carbon Derived from Tea Waste: A Promising Supporting Material for Metal Nanoparticles Used as Catalysts in Hydrolysis of Ammonia Borane. Biomass Bioenergy. 2020;138:105589. doi: 10.1016/j.biombioe.2020.105589. DOI
Taşar Ş. Thermal Conversion Behavior of Cellulose and Hemicellulose Fractions Isolated from Tea Leaf Brewing Waste: Kinetic and Thermodynamic Evaluation. Biomass Convers Biorefin. 2022;12:2935–2947. doi: 10.1007/s13399-021-01697-2. DOI
Xu J., Wang M., Zhao J., Wang Y.H., Tang Q., Khan I.A. Yellow Tea (Camellia Sinensis L.), a Promising Chinese Tea: Processing, Chemical Constituents and Health Benefits. Food Res. Int. 2018;107:567–577. doi: 10.1016/j.foodres.2018.01.063. PubMed DOI
Mizuno S., Ida T., Fuchihata M., Namba K. Effect of Specimen Size on Ultimate Compressive Strength of Bio-Coke Produced from Green Tea Grounds. Mech. Eng. J. 2016;3:15–00441. doi: 10.1299/mej.15-00441. DOI
Pua F.L., Subari M.S., Ean L.W., Krishnan S.G. Characterization of Biomass Fuel Pellets Made from Malaysia Tea Waste and Oil Palm Empty Fruit Bunch. Mater. Today Proc. 2020;31:187–190. doi: 10.1016/j.matpr.2020.02.218. DOI
Intagun W., Kanoksilapatham W., Maden A., Nobaew B. Effect of Natural Additive on Pellets Physical Properties and Energy Cost; Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019; Toronto, ON, Canada. 2–4 November 2019; pp. 130–134. DOI
Zhang J., Guo Y. Physical Properties of Solid Fuel Briquettes Made from Caragana korshinskii Kom. Powder Technol. 2014;256:293–299. doi: 10.1016/j.powtec.2014.02.025. DOI
Zhang L., Xu C.C., Lei H., Wang H.L., Ning T.T., Hao W., Hu X.D. Effects of Addition of Various Ingredients During Pelletizing on Physical Characteristics of Green Tea Residue Pellets. Appl. Eng. Agric. 2014;30:49–53. doi: 10.13031/AEA.30.10160. DOI
McCaffrey Z., Torres L., Sen Chiou B., Ferreira S.R., Silva L.E., Wood D.F., Orts W.J. Torrefaction of Almond and Walnut Byproducts. Front. Energy Res. 2021;9:91. doi: 10.3389/FENRG.2021.643306. DOI
Almond Board of California Crop Reports|Almond Almanac Report. [(accessed on 1 September 2022)]. Available online: https://www.almonds.com/tools-and-resources/crop-reports/almond-almanac.
2021 California Agricultural Statistics Review. Available Online|California Avocado Commission. [(accessed on 1 September 2022)]. Available online: https://www.californiaavocadogrowers.com/articles/2021-california-agricultural-statistics-review-available-online.
Espina R.U., Barroca R.B., Abundo M.L.S. Proximate Analysis of the Torrefied Coconut Shells. Int. J. Renew. Energy Res. IJRER. 2022;12:489–494. doi: 10.20508/IJRER.V12I1.12902.G8429. DOI
Silva M.P., Nieva Lobos M.L., Piloni R.V., Dusso D., González Quijón M.E., Scopel A.L., Moyano E.L. Pyrolytic Biochars from Sunflower Seed Shells, Peanut Shells and Spirulina Algae: Their Potential as Soil Amendment and Natural Growth Regulators. SN Appl. Sci. 2020;2:1926. doi: 10.1007/S42452-020-03730-X. DOI
Ahmad M., Lee S.S., Dou X., Mohan D., Sung J.K., Yang J.E., Ok Y.S. Effects of Pyrolysis Temperature on Soybean Stover-and Peanut Shell-Derived Biochar Properties and TCE Adsorption in Water. Bioresour. Technol. 2012;118:36–54. doi: 10.1016/j.biortech.2012.05.042. PubMed DOI
Apaydin-Varol E., Pütün E., Pütün A.E. Slow Pyrolysis of Pistachio Shell. Fuel. 2007;86:1892–1899. doi: 10.1016/j.fuel.2006.11.041. DOI
Yuan H.R., Liu R.H. Study on Pyrolysis Kinetics of Walnut Shell. J. Therm. Anal. Calorim. 2007;89:983–986. doi: 10.1007/s10973-006-7688-x. DOI
Açıkalın K. Thermogravimetric Analysis of Walnut Shell as Pyrolysis Feedstock. J. Therm. Anal. Calorim. 2011;105:145–150. doi: 10.1007/s10973-010-1267-x. DOI
Wang Q., Sarkar J. Pyrolysis Behaviors of Waste Coconut Shell and Husk Biomasses. Int. J. Energy Prod. Manag. 2018;3:34–43. doi: 10.2495/EQ-V3-N1-34-43. DOI
Putri R.W., Rahmatullah, Haryati S., Santoso B., Hadi A.A. The Residence Time and Slow Pyrolysis Temperature Effect on Chemical Composition Pyrolysis Gas Product of Durian (Durio zibethinus Murr) Skin. Chem. Eng. Trans. 2022;97:247–252. doi: 10.3303/CET2297042. DOI
Trubetskaya A., Grams J., Leahy J.J., Johnson R., Gallagher P., Monaghan R.F.D., Kwapinska M. The Effect of Particle Size, Temperature and Residence Time on the Yields and Reactivity of Olive Stones from Torrefaction. Renew Energy. 2020;160:998–1011. doi: 10.1016/j.renene.2020.06.136. DOI
Solid Biofuels—Determination of Calorific Value. BSI; London, UK: 2017. [(accessed on 16 January 2025)]. Available online: https://www.iso.org/standard/61517.html.
Solid Biofuels—Determination of Ash Content. ISO; Geneva, Switzerland: 2022. [(accessed on 16 January 2025)]. Available online: https://www.iso.org/standard/83190.html.
Solid Biofuels—Determination of Moisture Content—Part 2: Simplified Method. ISO; Geneva, Switzerland: 2024. [(accessed on 16 January 2025)]. Available online: https://www.iso.org/standard/86024.html.
Recent Developments in Biomass Pelletization—A Review: BioResources. [(accessed on 8 June 2024)]. Available online: https://bioresources.cnr.ncsu.edu/resources/recent-developments-in-biomass-pelletization-a-review/
Malaťák J., Jankovský M., Malaťáková J., Velebil J., Gendek A., Aniszewska M. Substituting Solid Fossil Fuels with Torrefied Timber Products. Materials. 2023;16:7569. doi: 10.3390/ma16247569. PubMed DOI PMC
Arias B., Pevida C., Fermoso J., Plaza M.G., Rubiera F., Pis J.J. Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass. Fuel Process. Technol. 2008;89:169–175. doi: 10.1016/J.FUPROC.2007.09.002. DOI
Fermoso J., Mašek O. Thermochemical Decomposition of Coffee Ground Residues by TG-MS: A Kinetic Study. J. Anal. Appl. Pyrolysis. 2018;130:249–255. doi: 10.1016/j.jaap.2017.12.007. DOI
Mašek O., Brownsort P., Cross A., Sohi S. Influence of Production Conditions on the Yield and Environmental Stability of Biochar. Fuel. 2013;103:151–155. doi: 10.1016/J.FUEL.2011.08.044. DOI
Mayson S., Williams I.D. Applying a Circular Economy Approach to Valorize Spent Coffee Grounds. Resour. Conserv. Recycl. 2021;172:105659. doi: 10.1016/j.resconrec.2021.105659. DOI
Silva M.A., Nebra S.A., Machado Silva M.J., Sanchez C.G. The Use of Biomass Residues in the Brazilian Soluble Coffee Industry. Biomass Bioenergy. 1998;14:457–467. doi: 10.1016/S0961-9534(97)10034-4. DOI
Colantoni A., Paris E., Bianchini L., Ferri S., Marcantonio V., Carnevale M., Palma A., Civitarese V., Gallucci F. Spent Coffee Ground Characterization, Pelletization Test and Emissions Assessment in the Combustion Process. Sci. Rep. 2021;11:5119. doi: 10.1038/s41598-021-84772-y. PubMed DOI PMC
Sermyagina E., Saari J., Kaikko J., Vakkilainen E. Integration of Torrefaction and CHP Plant: Operational and Economic Analysis. Appl. Energy. 2016;183:88–99. doi: 10.1016/j.apenergy.2016.08.151. DOI
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. An Overview of the Chemical Composition of Biomass. Fuel. 2010;89:913–933. doi: 10.1016/J.FUEL.2009.10.022. DOI
Gendek A., Piętka J., Aniszewska M., Malaťák J., Velebil J., Tamelová B., Krilek J., Moskalik T. Energy Value of Silver Fir (Abies alba) and Norway Spruce (Picea abies) Wood Depending on the Degree of Its Decomposition by Selected Fungal Species. Renew Energy. 2023;215:118948. doi: 10.1016/j.renene.2023.118948. DOI
Kovalcik A., Obruca S., Marova I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018;110:104–119.
McNutt J., He Q. (Sophia) Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019;71:78–88.
Nepal R., Kim H.J., Poudel J., Oh S.C. A Study on Torrefaction of Spent Coffee Ground to Improve Its Fuel Properties. Fuel. 2022;318:123643. doi: 10.1016/j.fuel.2022.123643. DOI
Bejenari V., Marcu A., Ipate A.M., Rusu D., Tudorachi N., Anghel I., Şofran I.E., Lisa G. Physicochemical Characterization and Energy Recovery of Spent Coffee Grounds. J. Mater. Res. Technol. 2021;15:4437–4451. doi: 10.1016/j.jmrt.2021.10.064. DOI
Ballesteros L.F., Teixeira J.A., Mussatto S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioproc. Technol. 2014;7:3493–3503. doi: 10.1007/S11947-014-1349-Z. DOI
Sermyagina E., Mendoza Martinez C.L., Nikku M., Vakkilainen E. Spent Coffee Grounds and Tea Leaf Residues: Characterization, Evaluation of Thermal Reactivity and Recovery of High-Value Compounds. Biomass Bioenergy. 2021;150:106141. doi: 10.1016/J.BIOMBIOE.2021.106141. DOI
Liu Z., Jiang Z., Cai Z., Fei B., Yu Y., Liu X. Effects of Carbonization Conditions on Properties of Bamboo Pellets. Renew Energy. 2013;51:1–6. doi: 10.1016/J.RENENE.2012.07.034. DOI
Skanderová K., Malaťák J., Bradna J. Energy Use of Compost Pellets for Small Combustion Plants. Agron. Res. 2015;13:413–419.
Weber K., Quicker P. Properties of Biochar. Fuel. 2018;217:240–261. doi: 10.1016/J.FUEL.2017.12.054. DOI
van Loo S., Koppejan J. The Handbook of Biomass Combustion and Co-Firing. Routledge; London, UK: 2012. The Handbook of Biomass Combustion and Co-Firing; pp. 1–442. DOI
Biomasa pro Výrobu Energie—Jan Malaťák, Petr Vaculík, Brožovaná Vazba, Český Jazyk|Knihy Na Martinus.Cz. [(accessed on 30 September 2022)]. Available online: https://www.martinus.cz/?uItem=73504.
Zhang W., Jiang S., Wang K., Wang L., Xu Y., Wu Z., Shao H., Wang Y., Miao M. Thermogravimetric Dynamics and FTIR Analysis on Oxidation Properties of Low-Rank Coal at Low and Moderate Temperatures. Int. J. Coal Prep. Util. 2015;35:39–50. doi: 10.1080/19392699.2013.873421. DOI
Haykiri-Acma H., Yaman S. Synergy in Devolatilization Characteristics of Lignite and Hazelnut Shell During Co-Pyrolysis. Fuel. 2007;86:373–380. doi: 10.1016/j.fuel.2006.07.005. DOI