Insight into the genomes of dominant yeast symbionts of European spruce bark beetle, Ips typographus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37077248
PubMed Central
PMC10106607
DOI
10.3389/fmicb.2023.1108975
Knihovny.cz E-zdroje
- Klíčová slova
- Scolytinae, detoxification, gut microbiome, nutrition, plant cell wall, spruce, symbiosis, yeast,
- Publikační typ
- časopisecké články MeSH
Spruce bark beetle Ips typographus can trigger outbreaks on spruce that results in significant losses in the forest industry. It has been suggested that symbiotic microorganisms inhabiting the gut of bark beetles facilitate the colonization of plant tissues as they play a role in the detoxification of plant secondary metabolites, degrade plant cell wall and ameliorate beetle's nutrition. In this study, we sequenced and functionally annotated the genomes of five yeasts Kuraishia molischiana, Cryptococcus sp., Nakazawaea ambrosiae, Ogataea ramenticola, and Wickerhamomyces bisporus isolated from the gut of Ips typographus. Genome analysis identified 5314, 7050, 5722, 5502, and 5784 protein coding genes from K. molischiana, Cryptococcus sp., N. ambrosiae, O. ramenticola, and W. bisporus, respectively. Protein-coding sequences were classified into biological processes, cellular and molecular function based on gene ontology terms enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation was used to predict gene functions. All analyzed yeast genomes contain full pathways for the synthesis of essential amino acids and vitamin B6, which have nutritional importance to beetle. Furthermore, their genomes contain diverse gene families related to the detoxification processes. The prevalent superfamilies are aldo-keto reductase, ATP-binding cassette and the major facilitator transporters. The phylogenetic relationships of detoxification-related enzymes aldo-keto reductase, and cytochrome P450 monooxygenase, and ATP-binding cassette are presented. Genome annotations also revealed presence of genes active in lignocellulose degradation. In vitro analyses did not confirm enzymatic endolytic degradation of lignocellulose; however, all species can utilize and pectin and produce a large spectrum of exolytic enzymes attacking cellulose, chitin, and lipids.
Zobrazit více v PubMed
Andrews S. (2010). Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data (v. v 0.11.9). Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed March 13, 2020).
Arntzen M., Bengtsson O., Várnai A., Delogu F., Mathiesen G., Eijsink V. G. H. (2020). Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci. Rep. 10 1–17. 10.1038/s41598-020-75217-z PubMed DOI PMC
Ayres M. P., Wilkens R. T., Ruel J. J., Lombardero M. J., Vallery E. (2000). Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81 2198–2210. 10.2307/177108 DOI
Baldrian P. (2009). Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ. 55 370–378. 10.17221/134/2009-PSE DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Barcoto M. O., Carlos-Shanley C., Fan H., Ferro M., Nagamoto N. S., Bacci M., Jr., et al. (2020). Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci. Rep. 10:12384. 10.1038/s41598-020-68448-7 PubMed DOI PMC
Barski O. A., Tipparaju S. M., Bhatnagar A. (2008). The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 40 553–624. 10.1080/03602530802431439 PubMed DOI PMC
Bentz B. J., Six D. L. (2006). Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann. Entomol. Soc. Am. 99 189–194. 10.1603/0013-87462006099[0189:ECOFAW]2.0.CO;2 DOI
Biedermann P. H. W., Müller J., Grégoire J. C., Gruppe A., Hagge J., Hammerbacher A., et al. (2019). Bark beetle population dynamics in the Anthropocene: Challenges and solutions. Trends Ecol. Evol. 34 914–924. 10.1016/j.tree.2019.06.002 PubMed DOI
Biedermann P. H. W., Vega F. E. (2020). Ecology and evolution of insect-fungus mutualisms. Annu. Rev. Entomol. 65 431–455. 10.1146/annurev-ento-011019-024910 PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Cantalapiedra C. P., Hernández-Plaza A., Letunic I., Bork P., Huerta-Cepas J. (2021). eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38 5825–5829. 10.1093/molbev/msab293 PubMed DOI PMC
Carlson M., Falcon S., Pages H., Li N. (2019). GO. db: A set of annotation maps describing the entire Gene Ontology. R Package Version 3:10.18129.
Chen W., Lee M.-K., Jefcoate C., Kim S.-C., Chen F., Yu J.-H. (2014). Fungal cytochrome p450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 6 1620–1634. 10.1093/gbe/evu132 PubMed DOI PMC
Comeau A. M., Dufour J., Bouvet G. F., Jacobi V., Nigg M., Henrissat B., et al. (2015). Functional annotation of the Ophiostoma novo-ulmi genome: Insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Genome Biol. Evol. 7 410–430. 10.1093/gbe/evu281 PubMed DOI PMC
Bourbonnais R., Paice M. G. (1990). Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett. 267 99–102. 10.1016/0014-5793(90)80298-W PubMed DOI
Briza P., Eckerstorfer M., Breitenbach M. (1994). The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble ll-dityrosine-containing precursor of the yeast spore wall. Proc. Natl. Acad. Sci. U.S.A. 91 4524–4528. 10.1073/pnas.91.10.4524 PubMed DOI PMC
Chakraborty A., Modlinger R., Ashraf M. Z., Synek J., Schlyter F., Roy A. (2020). Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11:2134. 10.3389/fmicb.2020.568853 PubMed DOI PMC
Chettri D., Verma A. K., Verma A. K. (2020). Innovations in CAZyme gene diversity and its modification for biorefinery applications. Biotechnol. Rep. 28:e00525. 10.1016/j.btre.2020.e00525 PubMed DOI PMC
Davis T. S. (2015). The ecology of yeasts in the bark beetle holobiont: A century of research revisited. Microb. Ecol. 69 723–732. 10.1007/s00248-014-0479-1 PubMed DOI
Despres J., Forano E., Lepercq P., Comtet-Marre S., Jubelin G., Chambon C., et al. (2016). Xylan degradation by the human gut Bacteroides xylanisolvens XB1AT involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17:326. 10.1186/s12864-016-2680-8 PubMed DOI PMC
DiGuistini S., Wang Y., Liao N. Y., Taylor G., Tanguay P., Feau N., et al. (2011). Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Nat. Acad. Sci. U.S.A. 108 2504–2509. 10.1073/pnas.1011289108 PubMed DOI PMC
Douglas A. E. (2017). The B vitamin nutrition of insects: The contributions of diet, microbiome and horizontally acquired genes. Curr. Opin. Insect Sci. 23 65–69. 10.1016/j.cois.2017.07.012 PubMed DOI
Eisinger M. L., Nie L., Dörrbaum A. R., Langer J. D., Michel H. (2018). The xenobiotic extrusion mechanism of the MATE transporter NorM_PS from Pseudomonas stutzeri. J. Mol. Biol. 430 1311–1323. 10.1016/j.jmb.2018.03.012 PubMed DOI
Engel P., Moran N. A. (2013). The gut microbiota of insects – Diversity in structure and function. FEMS Microbiol. Rev. 37 699–735. 10.1111/1574-6976.12025 PubMed DOI
Gomes I., Gomes J., Steiner W., Esterbauer H. (1992). Production of cellulase and xylanase by a wild strain of Trichoderma viride. Appl. Microbiol. Biotechnol. 36 701–707. 10.1007/BF00183253 DOI
Hofstetter R. W., Dinkins-Bookwalter J., Davis T. S., Klepzig K. S. (2015). “Symbiotic associations of bark beetles,” in Bark beetles: Biology and ecology of native and invasive species, eds Vega F. E., Hofstetter R. W. (London: Academic Press; ), 209–245. 10.1016/B978-0-12-417156-5.00006-X DOI
Glass N. L., Schmoll M., Cate J. H., Coradetti S. (2013). Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67 477–498. 10.1146/annurev-micro-092611-150044 PubMed DOI
Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59 307–321. 10.1093/sysbio/syq010 PubMed DOI
Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29 1072–1075. 10.1093/bioinformatics/btt086 PubMed DOI PMC
Hýsek Š, Löwe R., Turčáni M. (2021). What happens to wood after a tree is attacked by a bark beetle? Forests 12:1163. 10.3390/f12091163 DOI
Ibarra-Juarez L. A., Burton M. A. J., Biedermann P. H. W., Cruz L., Desgarennes D., Ibarra-Laclette E., et al. (2020). Evidence for succession and putative metabolic roles of fungi and bacteria in the farming mutualism of the ambrosia beetle Xyleborus affinis. mSystems 15:e00541–20. 10.1128/mSystems.00541-20Itoh PubMed DOI PMC
Itoh H., Tago K., Hayatsu M., Kikuchi Y. (2018). Detoxifying symbiosis: Microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35 434–454. 10.1039/c7np00051k PubMed DOI
Jankowiak R., Strzałka B., Bilański P., Kacprzyk M., Lukášová K., Linnakoski R., et al. (2017). Diversity of Ophiostomatales species associated with conifer-infesting beetles in the Western Carpathians. Eur. J. For. Res. 136 939–956. 10.1007/S10342-017-1081-0 DOI
Kandasamy D., Gershenzon J., Andersson M. N., Hammerbacher A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 13 1788–1800. 10.1038/s41396-019-0390-3 PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428 726–731. 10.1016/j.jmb.2015.11.006 PubMed DOI
Kanehisa M., Sato Y. (2020). KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 29 28–35. PubMed PMC
Linder T. (2019). Taxonomic distribution of cytochrome P450 monooxygenases (CYPs) among the budding yeasts (sub-phylum Saccharomycotina). Microorganisms 7:247. 10.1002/pro.3711 PubMed DOI PMC
Kelly S. L., Lamb D. C., Corran A. J., Baldwin B. C., Parks L. W., Kelly D. E. (1995). Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta 22-desaturase. FEBS Lett. 377 217–220. 10.1016/0014-5793(95)01342-3 PubMed DOI
Klee E. W., Ellis L. B. M. (2005). Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 6:256. 10.1186/1471-2105-6-256 PubMed DOI PMC
Kozlowski L. P. (2016). IPC – Isoelectric point calculator. Biol. Direct 11 1–16. 10.1186/S13062-016-0159-9/FIGURES/4 PubMed DOI PMC
Kredics L., Antal Z., Szekeres A., Hatvani L., Manczinger L., Vágvölgyi C., et al. (2005). Extracellular proteases of Trichoderma species. Acta Microbiol. Immunol. Hung. 52 169–184. 10.1556/amicr.52.2005.2.3 PubMed DOI
Lah L., Haridas S., Bohlmann J., Breuil C. (2013). The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genet. Biol. 50 72–81. 10.1016/j.fgb.2012.10.002 PubMed DOI
Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49 W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC
Li Y., Bateman C., Skelton J., Wang B., Black A., Huang Y. T., et al. (2022). Preinvasion assessment of exotic bark beetle-vectored fungi to detect tree-killing pathogens. Phytopathology 112 261–270. 10.1094/PHYTO-01-21-0041-R PubMed DOI
Linnakoski R., Jankowiak R., Villari C., Kirisits T., Solheim H., de Beer Z. W., et al. (2016a). The Ophiostoma clavatum species complex: A newly defined group in the Ophiostomatales including three novel taxa. Antonie Van Leeuwenhoek 109 987–1018. 10.1007/S10482-016-0700-Y PubMed DOI
Linnakoski R., Mahilainen S., Harrington A., Vanhanen H., Eriksson M., Mehtatalo L., et al. (2016b). Seasonal succession of fungi associated with Ips typographus beetles and their phoretic mites in an outbreak region of Finland. PLoS One 11:e0155622. 10.1371/JOURNAL.PONE.0155622 PubMed DOI PMC
Linser P. J., Dinglasan R. R. (2014). “Insect gut structure, function, development and target of biological toxins,” in Advances in insect physiology, eds Dhadialla T. S., Gill S. S. (Cambridge, MA: Academic Press; ), 1–37. 10.1016/B978-0-12-800197-4.00001-4 DOI
Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G. A., Sonnhammer E. L., et al. (2021). Pfam: The protein families database in 2021. Nucleic Acid Res. 49 D412–D419. 10.1093/nar/gkaa913 PubMed DOI PMC
Mistry J., Finn R. D., Eddy S. R., Bateman A., Punta M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acid Res. 41:e121. 10.1093/nar/gkt263 PubMed DOI PMC
Naseer A., Mogilicherla K., Sellamuthu G., Roy A. (2023). Age matters: Life-stage, tissue and sex -specific gene expression dynamics in Ips typographus (Coleoptera: Curculionidae: Scolytinae). Front. For. Glob. Change Sec. Pests, Pathog. Invasions 6:35. 10.3389/ffgc.2023.1124754 DOI
Netherer S., Kandasamy D., Jirosová A., Kalinová B., Schebeck M., Schlyter F. (2021). Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94 591–614. 10.1007/s10340-021-01341-y PubMed DOI PMC
Ramya S. L., Venkatesan T., Srinivasa Murthy K. S., Jalali S. K., Verghese A. (2016). Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47 327–336. 10.1016/j.bjm.2016.01.012 PubMed DOI PMC
Rivera F. N., Gonzalez E., Gomez Z., Lopez N., Hernandez-Rodriguez C., Berkov A., et al. (2009). Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biol. J. Linnean Soc. 98 325–342. 10.1111/j.1095-8312.2009.01289.x DOI
Rozewicki J., Li S., Amada K. M., Standley D. M., Katoh K. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acid Res. 47 W5–W10. 10.1093/nar/gkz342 PubMed DOI PMC
Sanglard D., Loper J. C. (1989). Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: Identification of a new P450 gene family. Gene 76 121–136. 10.1016/0378-1119(89)90014-0 PubMed DOI
Sehlmeyer S., Wang L., Langel D., Heckel D. G., Mohagheghi H., Petschenka G., et al. (2010). Flavin-dependent monooxygenases as a detoxification mechanism in insects: New insights from the arctiids (Lepidoptera). PLoS One 5:e10435. 10.1371/journal.pone.0010435 PubMed DOI PMC
Seppey M., Manni M., Zdobnov E. M. (2019). BUSCO: Assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962 227–245. 10.1007/978-1-4939-9173-0_14 PubMed DOI
Six D. L. (2013). The bark beetle holobiont: Why microbes matter. J. Chem. Ecol. 39 989–1002. 10.1007/s10886-013-0318-8 PubMed DOI
Sheehan D., Meade G., Foley V. M., Dowd C. A. (2001). Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360 1–16. 10.1042/bj3600001 PubMed DOI PMC
Schuelke T. A., Wu G. X., Westbrook A., Woeste K., Plachetzki D. C., Broders K., et al. (2017). Comparative genomics of pathogenic and nonpathogenic beetle-vectored fungi in the genus Geosmithia. Genome Biol. Evol. 9 3312–3327. 10.1093/gbe/evx242 PubMed DOI PMC
Stanke M., Keller O., Gunduz I., Hayes A., Waack S., Morgenstern B. (2006). AUGUSTUS: AB initio prediction of alternative transcripts. Nucleic Acid Res. 34 W435–W439. 10.1093/nar/gkl200 PubMed DOI PMC
Stefanini I. (2018). Yeast-insect associations: It takes guts. Yeast 35 315–330. 10.1002/yea.3309 PubMed DOI PMC
Sun Y., Cheng J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83 1–11. 10.1016/S0960-8524(01)00212-7 PubMed DOI
Turi T. G., Kalb V. F., Loper J. C. (1991). Cytochrome P450 lanosterol 14 alpha-demethylase (ERG11) and manganese superoxide dismutase (SOD1) are adjacent genes in Saccharomyces cerevisiae. Yeast 7 627–630. 10.1002/yea.320070611 PubMed DOI
Vepsäläainen M., Kukkonen S., Vestberg M., Sirviö H., Maarit Niemi R. (2001). Application of soil enzyme activity test kit in a field experiment. Soil Biol. Biochem. 33 1665–1672. 10.1016/S0038-0717(01)00087-6 DOI
Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíèková M., et al. (2019). Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecol. 41 165–176. 10.1016/j.dib.2019.104568 PubMed DOI PMC
Veselská T., Švec K., Kostovčík M., Peral-Aranega E., Garcia-Fraile P., et al. (2023). The core microbiome throughout the life cycle and season of bark beetle Ips typographus. FEMS Microbiol. Ecol. (in prep) PubMed
Wickham H. (2006). ggplot: An implementation of the grammar of graphics. R Package Version 0.4.0.
Yang Y., Luo Y. (2011). Carbon: Nitrogen stoichiometry in forest ecosystems during stand development. Global Ecol. Biogeogr. 20 354–361. 10.1111/j.1466-8238.2010.00602.x DOI
Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., et al. (2018). dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acid Res. 46 W95–W101. 10.1093/nar/gky418 PubMed DOI PMC
Zhao Z., Liu H., Wang C., Xu J. R. (2014). Correction to comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 15:274. 10.1186/1471-2164-15-6 PubMed DOI PMC
Zhao T., Kandasamy D., Krokene P., Chen J., Gershenzon J., Hammerbacher A. (2019). Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 38 71–79. 10.1016/j.funeco.2018.06.003 DOI
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal