Core Mycobiome and Their Ecological Relevance in the Gut of Five Ips Bark Beetles (Coleoptera: Curculionidae: Scolytinae)

. 2020 ; 11 () : 568853. [epub] 20200903

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33013799

Bark beetles are destructive forest pests considering their remarkable contribution to forest depletion. Their association with fungi is useful against the challenges of survival on the noxious and nutritionally limited substrate, i.e., conifer tissues. Fungal symbionts help the beetles in nutrient acquisition and detoxification of toxic tree secondary metabolites. Although gut is the prime location for food digestion and detoxification, limited information is available on gut-mycobiome of bark beetles. The present study screened the gut-mycobiont from six bark beetles (five Ips and one non-Ips) from Scolytinae subfamily using high-throughput sequencing and explored their putative role in symbiosis with the host insect. Results revealed the predominance of four fungal classes- Sordariomycetes, Saccharomycetes, Eurothiomycetes, and Dothidomycetes in all bark beetles. Apart from these, Agaricomycetes, Leothiomycetes, Incertae sedis Basidiomycota, Tremellomycetes, Lecanoromycetes, and Microbotryomycetes were also documented in different beetles. Five Ips bark beetles share a consortium of core fungal communities in their gut tissues consisting of 47 operational taxonomic units (OTUs) belonging to 19 fungal genera. The majority of these core fungal genera belong to the phylum Ascomycota. LEfSe analysis revealed a set of species-specific fungal biomarkers in bark beetles. The present study identified the gut mycobiont assemblage in bark beetles and their putative ecological relevance. An enriched understanding of bark beetle-fungal symbiosis is not only filling the existing knowledge gap in the field but may also unleash an unforeseen potential for future bark beetle management.

Zobrazit více v PubMed

Adams A. S., Six D. L., Adams S. M., Holben W. E. (2008). In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb. Ecol. 56 460–466. 10.1007/s00248-008-9364-0 PubMed DOI

Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26 32–46. 10.1111/j.1442-9993.2001.01070.pp.x DOI

Ayres M. P., Wilkens R. T., Ruel J. J., Lombardero M. J., Vallery E. (2000). Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81 2198–2210. 10.1890/0012-9658(2000)081[2198:nbopfb]2.0.co;2 DOI

Bezos D., Martínez-Álvarez P., Sanz-Ros A. V., Martín-García J., Fernandez M. M., Diez J. J. (2018). Fungal communities associated with bark beetles in Pinus radiata plantations in Northern Spain affected by Pine Pitch Canker, with special focus on Fusarium species. Forests 9:698 10.3390/f9110698 DOI

Biedermann P. H., Vega F. E. (2020). Ecology and evolution of insect–fungus mutualisms. Annu. Rev. Entomol. 65 431–455. 10.1146/annurev-ento-011019-024910 PubMed DOI

Bokulich N. A., Subramanian S., Faith J. J., Gevers D., Gordon J. I., Knight R., et al. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10 57–59. 10.1038/nmeth.2276 PubMed DOI PMC

Briones-Roblero C. I., Rodríguez-Díaz R., Santiago-Cruz J. A., Zúñiga G., Rivera-Orduña F. N. (2017). Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol. 62 1–9. 10.1007/s12223-016-0469-4 PubMed DOI

Cai L. (2006). Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation. Behav. Res. Methods 38 51–59. 10.3758/bf03192749 PubMed DOI

Cale J. A., Collignon R. M., Klutsch J. G., Kanekar S. S., Hussain A., Erbilgin N. (2016). Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS One 11:e0162197. 10.1371/journal.pone.0162197 PubMed DOI PMC

Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC

Chao A., Lee S.-M., Chen T.-C. (1988). A generalized Good’s nonparametric coverage estimator. Chin. J. Math. 16 189–199.

Clarke K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18 117–143. 10.1111/j.1442-9993.1993.tb00438.x DOI

Davis T. S., Hofstetter R. W., Foster J. T., Foote N. E., Keim P. (2011). Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb. Ecol. 61 626–634. 10.1007/s00248-010-9773-8 PubMed DOI

Davis T. S., Horne F. B., Yetter J. C., Stewart J. E. (2018). Engelmann spruce chemotypes in Colorado and their effects on symbiotic fungi associated with the North American spruce beetle. J. Chem. Ecol. 44 601–610. 10.1007/s10886-018-0961-1 PubMed DOI

Davydenko K., Vasaitis R., Menkis A. (2017). Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur. J. Entomol. 114 77–85. 10.14411/eje.2017.011 DOI

De Beer Z. W., Duong T., Barnes I., Wingfield B. D., Wingfield M. J. (2014). Redefining Ceratocystis and allied genera. Stud. Mycol. 79 187–219. 10.1016/j.simyco.2014.10.001 PubMed DOI PMC

DiGuistini S., Wang Y., Liao N. Y., Taylor G., Tanguay P., Feau N., et al. (2011). Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. PNAS 108 2504–2509. 10.1073/pnas.1011289108 PubMed DOI PMC

Douglas A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60 17–34. 10.1146/annurev-ento-010814-020822 PubMed DOI PMC

Dowd P. F., Shen S. K. (1990). The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56 241–248. 10.1111/j.1570-7458.1990.tb01402.x DOI

Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC

Engel P., Moran N. A. (2013). The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37 699–735. 10.1111/1574-6976.12025 PubMed DOI

Filipiak M., Weiner J. (2014). How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLoS One 9:e115104. 10.1371/journal.pone.0115104 PubMed DOI PMC

Filipiak M., Weiner J. (2017). Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiol. Entomol. 42 73–84. 10.1111/phen.12168 DOI

Furniss M. M., Solheim H., Christiansen E. (1990). Transmission of blue-stain fungi by Ips typographus (Coleoptera: Scolytidae) in Norway spruce. Ann. Entomol. Soc. Am. 83 712–716. 10.1093/aesa/83.4.712 DOI

García-Fraile P. (2018). Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann. Appl. Biol. 172 111–125. 10.1111/aab.12406 DOI

Genta F. A., Dillon R. J., Terra W. R., Ferreira C. (2006). Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol. 52 593–601. 10.1016/j.jinsphys.2006.02.007 PubMed DOI

Haas B. J., Gevers D., Earl A. M., Feldgarden M., Ward D. V., Giannoukos G., et al. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21 494–504. 10.1101/gr.112730.110 PubMed DOI PMC

Hammerbacher A., Schmidt A., Wadke N., Wright L. P., Schneider B., Bohlmann J., et al. (2013). A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol. 162 1324–1336. 10.1104/pp.113.218610 PubMed DOI PMC

Harrington T. (1993). “Diseases of conifers caused by species of Ophiostoma and Leptographium,” in Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity eds Wingfield M. J., Seifert K. A., Webber J. F. (St. Paul: American Phytopathological Society Press; ) 161–172

Hartig R. (1878). Die Zersetzungserscheinungen des Holzes der Nadelholzbäume und der Eiche in forstlicher, Botanischer und Chemischer Richtung. Springer: Berlin: 10.5962/bhl.title.25641 DOI

Hsiau P. T., Harrington T. C. (2003). Phylogenetics and adaptations of basidiomycetous fungi fed upon by bark beetles (Coleoptera: Scolytidae). Symb. Rehovot. 34 111–132.

Huang J., Kautz M., Trowbridge A. M., Hammerbacher A., Raffa K. F., Adams H. D., et al. (2020). Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225 26–36. 10.1111/nph.16173 PubMed DOI

Hubbes M. (1999). The American elm and Dutch elm disease. For. Chron. 75 265–273. 10.5558/tfc75265-2 DOI

Hunt D., Borden J. (1990). Conversion of verbenols to verbenone by yeasts isolated fromDendroctonus ponderosae (Coleoptera: Scolytidae). J. Chem. Ecol. 16 1385–1397. 10.1007/bf01021034 PubMed DOI

Itoh H., Tago K., Hayatsu M., Kikuchi Y. (2018). Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35 434–454. 10.1039/c7np00051k PubMed DOI

Juzwik J., Harrington T. C., MacDonald W. L., Appel D. N. (2008). The origin of Ceratocystis fagacearum, the oak wilt fungus. Annu. Rev. Phytopathol. 46 13–26. 10.1146/annurev.phyto.45.062806.094406 PubMed DOI

Kirisits T. (2004). “Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi,” in Bark and Wood Boring Insects in Living Trees in Europe. A Synthesis eds Lieutier F., Day K. R., Battisti A., Gregoire J. C., Evans H. F. (London: Kluwer Academic Publishers; ).

Kirisits T. (2007). “Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi,” in Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis. Eds Lieutier F., Day K.R., Battisti A., Grégoire JC., Evans H.F. (Dordrecht: Springer; ) 181–236. 10.1007/978-1-4020-2241-8_10 DOI

Kirk T. K., Cowling E. B. (1984). “Biological decomposition of solid wood,” in Advances in Chemistry Series 207, ed. Rowell R.M. (Washington, DC: American Chemical Society; ) 455–487. 10.1021/ba-1984-0207.ch012 DOI

Kirkendall L., Biedermann P., Jordal B. (2015). “Evolution and diversity of bark and ambrosia beetles in Bark Beetles: Biology and Ecology of Native and Invasive Species eds Vega F. E., Hofstetter R. W. (San Diego, CA: Academic Press; ).

Klepzig K. D., Six D. (2004). Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37 189–205.

Knight R., Lozupone C., Lladser M., Knights D., Stombaugh J. (2010). UniFrac: an effective distance metric for microbial community comparison. ISME J. 5 169–172. 10.1038/ismej.2010.133 PubMed DOI PMC

Kolk A., Starzyk J., Kinelski S., Dzwonkowski R. (1996). Atlas of Forest Insect Pests. Warsaw: MULTICO Publishing House Ltd.

Krokene P., Solheim H. (1996). Fungal associates of five bark beetle species colonizing Norway spruce. Can. J. For. Res. 26 2115–2122. 10.1139/x26-240 DOI

Lee D.-H., Roux J., Wingfield B. D., Barnes I., Mostert L., Wingfield M. J. (2016). The genetic landscape of Ceratocystis albifundus populations in South Africa reveals a recent fungal introduction event. Fungal Biol. 120 690–700. 10.1016/j.funbio.2016.03.001 PubMed DOI

Lee S., Kim J.-J., Breuil C. (2006). Diversity of fungi associated with mountain pine beetle, Dendroctonus ponderosae, and infested lodgepole pines in British Columbia. Fungal Divers. 22 91–105.

Leufvén A., Bergström G., Falsen E. (1984). Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetleIps typographus. J. Chem. Ecol. 10 1349–1361. 10.1007/bf00988116 PubMed DOI

Leufvén A., Nehls L. (1986). Quantification of different yeasts associated with the bark beetle, Ips typographus, during its attack on a spruce tree. Microb. Ecol. 12 237–243. 10.1007/bf02011208 PubMed DOI

Lieutier F., Day K. R., Battisti A., Grégoire J.-C., Evans H. F. (2004). Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis. Berlin: Springer.

Linnakoski R., De Beer Z. W., Ahtiainen J., Sidorov E., Niemelä P., Pappinen A., et al. (2010). Ophiostoma spp. associated with pine-and spruce-infesting bark beetles in Finland and Russia. Persoonia 25 72–93. 10.3767/003158510x550845 PubMed DOI PMC

Linnakoski R., De Beer Z. W., Niemelä P., Wingfield M. J. (2012). Associations of conifer-infesting bark beetles and fungi in Fennoscandia. Insects 3 200–227. 10.3390/insects3010200 PubMed DOI PMC

Linser P. J., Dinglasan R. R. (2014). “Insect gut structure, function, development and target of biological toxins,” in Advances in Insect Physiology, eds T. S. Dhadialla and S. S. Gill (Academic Press Inc.: Cambridge: ) 1–37. 10.1016/b978-0-12-800197-4.00001-4 DOI

Lozupone C. A., Hamady M., Kelley S. T., Knight R. (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73 1576–1585. 10.1128/aem.01996-06 PubMed DOI PMC

Magoč T., Salzberg S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27 2957–2963. 10.1093/bioinformatics/btr507 PubMed DOI PMC

Magurran A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton university press.

Masuya H., Kaneko S., Yamaura Y., Yamaoka Y. (2009). Ophiostomatoid fungi isolated from Japanese red pine and their relationships with bark beetles. Mycoscience 50 212–223. 10.1007/s10267-008-0474-9 DOI

Morales-Ramos J. A., Rojas M. G., Sittertz-Bhatkar H., Saldaña G. (2000). Symbiotic relationship between Hypothenemus hampei (Coleoptera: Scolytidae) and Fusarium solani (Moniliales: Tuberculariaceae). Ann. Entomol. Soc. Am. 93 541–547. 10.1603/0013-8746(2000)093[0541:srbhhc]2.0.co;2 DOI

Nilsson R. H., Larsson K.-H., Taylor A. F. S., Bengtsson-Palme J., Jeppesen T. S., Schigel D., et al. (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47 D259–D264. PubMed PMC

Nunberg M. (1981). Klucze do rozpoznawania owadów Polski. Czȩść XIX. Chrzz̧szcze–Coleoptera, Korniki–Scolytidae, Wyrynniki–Platypodidae. Zeszyt 99–100.

Ojeda Alayon D. I., Tsui C. K., Feau N., Capron A., Dhillon B., Zhang Y., et al. (2017). Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol. Ecol. 26 2077–2091. 10.1111/mec.14074 PubMed DOI

Oksanen J., Blanchet F. G., Kindt R., Legendre P., O’hara R., Simpson G.L., et al. (2010). Vegan: Community Ecology Package. R Package Version 1.17-4. Available online at: http://CRAN.R-project.org/package=vegan (accessed October 20, 2019).

Oksanen J., Kindt R., Legendre P., O’Hara B., Stevens M. H. H., Oksanen M. J., et al. (2007). The vegan package. Commun. Ecol. Pack. 10:719.

Paine T., Raffa K., Harrington T. (1997). Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42 179–206. 10.1146/annurev.ento.42.1.179 PubMed DOI

Paulson J. N., Pop M., Bravo H. C. (2011). Metastats: an improved statistical method for analysis of metagenomic data. Genome Biol. 12:17.

Persson Y., Vasaitis R., Långström B., Öhrn P., Ihrmark K., Stenlid J. (2009). Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter. Microb. Ecol. 58 651–659. 10.1007/s00248-009-9520-1 PubMed DOI

Pfeffer A. (1955). Kùrovci-Scolytoidea:(Rád: Brouci-Coleoptera). Prague: Československá akademie věd.

Pineau X., Bourguignon M., Jactel H., Lieutier F., Sallé A. (2017). Pyrrhic victory for bark beetles: successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For. Ecol. Manage. 399 188–196. 10.1016/j.foreco.2017.05.044 DOI

Popa V., Déziel E., Lavallée R., Bauce E., Guertin C. (2012). The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry. Pest Manage. Sci. 68 963–975. 10.1002/ps.3307 PubMed DOI

R Core Team (2013). R: A Language and Environment for Statistical Computing (Version 2.15. 3). R Foundation for Statistical Computing; Vienna.

Reay S., Thwaites J., Farrell R. (2005). A survey of Ophiostoma species vectored by Hylastes ater to pine seedlings in New Zealand. For. Pathol. 35 105–113. 10.1111/j.1439-0329.2004.00393.x DOI

Rivera F. N., Gonzalez E., Gomez Z., Lopez N., Hernandez-Rodriguez C., Berkov A., et al. (2009). Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biol. J. Linn. Soc. 98 325–342. 10.1111/j.1095-8312.2009.01289.x DOI

Roux J., Heath R., Labuschagne L., Nkuekam G. K., Wingfield M. (2007). Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. For. Pathol. 37 292–302. 10.1111/j.1439-0329.2007.00507.x DOI

Santini A., Faccoli M. (2015). Dutch elm disease and elm bark beetles: a century of association. Iforest 8:126. 10.3832/ifor1231-008 PubMed DOI

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. PubMed PMC

Six D. L. (2003). A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Can. J. For. Res. 33 1331–1334. 10.1139/x03-047 DOI

Six D. L. (2012). Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3 339–366. 10.3390/insects3010339 PubMed DOI PMC

Six D. L. (2020). A major symbiont shift supports a major niche shift in a clade of tree-killing bark beetles. Ecol. Entomol. 45 190–201. 10.1111/een.12786 DOI

Six D. L., Elser J. J. (2019). Extreme ecological stoichiometry of a bark beetle–fungus mutualism. Ecol. Entomol. 44 543–551. 10.1111/een.12731 DOI

Solheim H. (1988). Pathogenicity of some Ips typographus-associated blue-stain fungi to Norway spruce. Meddelelser fra Norsk Institut Skogforskning 40 1–11.

Stefanini I. (2018). Yeast-insect associations: it takes guts. Yeast 35 315–330. 10.1002/yea.3309 PubMed DOI PMC

Suh S.-O., Blackwell M. (2004). Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res. 5 87–95. 10.1016/j.femsyr.2004.06.001 PubMed DOI

Suh S. O., Marshall C. J., Mchugh J. V., Blackwell M. (2003). Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol. Ecol. 12 3137–3145. 10.1046/j.1365-294x.2003.01973.x PubMed DOI

Sun J., Lu M., Gillette N. E., Wingfield M. J. (2013). Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu. Rev. Entomol. 58 293–311. 10.1146/annurev-ento-120811-153624 PubMed DOI

Teetor-Barsch G. H., Roberts D. W. (1983). Entomogenous Fusarium species. Mycopathologia 84 3–16. 10.1007/bf00436991 PubMed DOI

Tsopelas P., Santini A., Wingfield M. J., Wilhelm de Beer Z. (2017). Canker stain: a lethal disease destroying iconic plane trees. Plant Dis. 101 645–658. 10.1094/pdis-09-16-1235-fe PubMed DOI

Tsui C. K.-M., Farfan L., Roe A. D., Rice A. V., Cooke J. E., El-Kassaby Y. A., et al. (2014). Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships. PLoS One 9:e105455. 10.1371/journal.pone.0105455 PubMed DOI PMC

Viiri H. (1997). Fungal associates of the spruce bark beetle Ips typographus L.(Col. Scolytidae) in relation to different trapping methods. J. Appl. Entomol. 121 529–533. 10.1111/j.1439-0418.1997.tb01444.x DOI

Villari C., Battisti A., Chakraborty S., Michelozzi M., Bonello P., Faccoli M. (2012). Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiol. 32 867–879. 10.1093/treephys/tps056 PubMed DOI

Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B. D., Paetz C., et al. (2016). The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiol. 171 914–931. PubMed PMC

Wang Y., Lim L., DiGuistini S., Robertson G., Bohlmann J., Breuil C. (2013). A specialized ABC efflux transporter G c ABC-G 1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol. 197 886–898. 10.1111/nph.12063 PubMed DOI

Wermelinger B., Rigling A., Schneider Mathis D., Dobbertin M. (2008). Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 33 239–249. 10.1111/j.1365-2311.2007.00960.x DOI

White J. R., Nagarajan N., Pop M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5:e1000352. 10.1371/journal.pcbi.1000352 PubMed DOI PMC

White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications eds Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (San Diego, CA: Academic Press; ). 18 315–322. 10.1016/b978-0-12-372180-8.50042-1 DOI

Whitney H., Bandoni R., Oberwinkler F. (1987). Entomocorticium dendroctoni gen. et sp. nov.(Basidiomycotina), a possible nutritional symbiote of the mountain pine beetle in lodgepole pine in British Columbia. Can. J. Bot. 65 95–102. 10.1139/b87-013 DOI

Wingfield M. J., Garnas J. R., Hajek A., Hurley B. P., de Beer Z. W., Taerum S. J. (2016). Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol. Invas. 18 1045–1056. 10.1007/s10530-016-1084-7 DOI

Wingfield M. J., Seifert K. A., Webber J. F. (1993). Ceratocystis and Ophiostoma: Taxonomy, Ecology, and Pathogenicity. American Phytopathological Society: Saint Paul, MI

Wingfield M. J. (1995). “Do conifer bark beetles require fungi to kill trees?,” in Barkbeetles, Blue-Stain Fungi, and Conifer Defence Systems ed Christiansen E. (Norway: Aktuelt fra Skogforsk; ).

Yamaoka Y., Kuroki D., Matsutani K., Aoyama T., Masuya H., Kajimura H. (2015). Pathogenicity of Fusarium solani associated with a bark beetle, Scolytogenes birosimensis, to Pittosporum tobira. J. For. Res. 20 514–521. 10.1007/s10310-015-0505-2 DOI

Zhao T., Kandasamy D., Krokene P., Chen J., Gershenzon J., Hammerbacher A. (2019). Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 38 71–79. 10.1016/j.funeco.2018.06.003 DOI

Zhou F., Lou Q., Wang B., Xu L., Cheng C., Lu M., et al. (2016). Altered carbohydrates allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis. Sci. Rep. 6:20135. 10.1038/srep20135 PubMed DOI PMC

Zimmermann G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 17 553–596. 10.1080/09583150701309006 DOI

Zipfel R. D., De Beer Z. W., Jacobs K., Wingfield B. D., Wingfield M. J. (2006). Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud. Mycol. 55 75–97. 10.3114/sim.55.1.75 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ambrosia gall midges (Diptera: Cecidomyiidae) and their microbial symbionts as a neglected model of fungus-farming evolution

. 2025 Jan 14 ; 49 () : .

Comparative metagenomic study unveils new insights on bacterial communities in two pine-feeding Ips beetles (Coleoptera: Curculionidae: Scolytinae)

. 2024 ; 15 () : 1400894. [epub] 20241009

Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle

. 2024 Sep 23 ; 25 (18) : . [epub] 20240923

Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis

. 2023 Oct 20 ; 26 (10) : 107793. [epub] 20230830

New insight into the bark beetle ips typographus bacteriome reveals unexplored diversity potentially beneficial to the host

. 2023 Jun 09 ; 18 (1) : 53. [epub] 20230609

Impact of Wood Age on Termite Microbial Assemblages

. 2023 May 31 ; 89 (5) : e0036123. [epub] 20230417

Insight into the genomes of dominant yeast symbionts of European spruce bark beetle, Ips typographus

. 2023 ; 14 () : 1108975. [epub] 20230403

Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests

. 2022 ; 13 () : 1044980. [epub] 20230106

Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism

. 2021 Nov 24 ; 9 (12) : . [epub] 20211124

Reference Gene Selection for Normalizing Gene Expression in Ips Sexdentatus (Coleoptera: Curculionidae: Scolytinae) Under Different Experimental Conditions

. 2021 ; 12 () : 752768. [epub] 20211027

A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest

. 2021 Sep 09 ; 4 (1) : 1059. [epub] 20210909

Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought

. 2021 ; 94 (3) : 591-614. [epub] 20210222

Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance

. 2020 Oct 29 ; 10 (1) : 18572. [epub] 20201029

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...