Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33122700
PubMed Central
PMC7596566
DOI
10.1038/s41598-020-75203-5
PII: 10.1038/s41598-020-75203-5
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- brouci metabolismus mikrobiologie MeSH
- ekologie MeSH
- fixace dusíku MeSH
- fylogeneze MeSH
- lesy MeSH
- střevní mikroflóra * MeSH
- stromy parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bark beetles often serve as forest damaging agents, causing landscape-level mortality. Understanding the biology and ecology of beetles are important for both, gathering knowledge about important forest insects and forest protection. Knowledge about the bark beetle gut-associated bacteria is one of the crucial yet surprisingly neglected areas of research with European tree-killing bark beetles. Hence, in this study, we survey the gut bacteriome from five Ips and one non-Ips bark beetles from Scolytinae. Results reveal 69 core bacterial genera among five Ips beetles that may perform conserved functions within the bark beetle holobiont. The most abundant bacterial genera from different bark beetle gut include Erwinia, Sodalis, Serratia, Tyzzerella, Raoultella, Rahnella, Wolbachia, Spiroplasma, Vibrio, and Pseudoxanthomonas. Notable differences in gut-associated bacterial community richness and diversity among the beetle species are observed. Furthermore, the impact of sampling location on the overall bark beetle gut bacterial community assemblage is also documented, which warrants further investigations. Nevertheless, our data expanded the current knowledge about core gut bacterial communities in Ips bark beetles and their putative function such as cellulose degradation, nitrogen fixation, detoxification of defensive plant compounds, and inhibition of pathogens, which could serve as a basis for further metatranscriptomics and metaproteomics investigations.
Zobrazit více v PubMed
Anderegg WR, Kane JM, Anderegg LD. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013;3:30–36. doi: 10.1038/nclimate1635. DOI
Huang J, et al. Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 2020;225:26–36. doi: 10.1111/nph.16173. PubMed DOI
Kautz M, Meddens AJ, Hall RJ, Arneth A. Biotic disturbances in Northern Hemisphere forests—A synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 2017;26:533–552. doi: 10.1111/geb.12558. DOI
Netherer S, et al. Do water-limiting conditions predispose N orway spruce to bark beetle attack? New Phytol. 2015;205:1128–1141. doi: 10.1111/nph.13166. PubMed DOI PMC
Seybold SJ, Huber DP, Lee JC, Graves AD, Bohlmann J. Pine monoterpenes and pine bark beetles: A marriage of convenience for defense and chemical communication. Phytochem. Rev. 2006;5:143–178. doi: 10.1007/s11101-006-9002-8. DOI
Raffa KF, Smalley EB. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia. 1995;102:285–295. doi: 10.1007/BF00329795. PubMed DOI
Reid ML, Purcell J. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod-Plant Interact. 2011;5:331–337. doi: 10.1007/s11829-011-9137-4. DOI
Erbilgin N, Krokene P, Christiansen E, Zeneli G, Gershenzon J. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia. 2006;148:426–436. doi: 10.1007/s00442-006-0394-3. PubMed DOI
Hayes JL, Strom BL. 4-Allylanisole as an inhibitor of bark beetle (Coleoptera: Scolytidae) aggregation. J. Econ. Entomol. 1994;87:1586–1594. doi: 10.1093/jee/87.6.1586. DOI
Franceschi VR, Krokene P, Christiansen E, Krekling T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 2005;167:353–376. doi: 10.1111/j.1469-8137.2005.01436.x. PubMed DOI
Zhao T, Borg-Karlson A-K, Erbilgin N, Krokene P. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia. 2011;167:691–699. doi: 10.1007/s00442-011-2017-x. PubMed DOI
12Schmidt, A. et al. In Chemical Ecology and Phytochemistry in Forest Ecosystems (ed Romeo, J. T.) 1–28 (Elsevier, Amsterdam, 2005).
Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006;170:657–675. doi: 10.1111/j.1469-8137.2006.01716.x. PubMed DOI
Despres L, David J-P, Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007;22:298–307. doi: 10.1016/j.tree.2007.02.010. PubMed DOI
Raffa, K., Andersson, M. N. & Schlyter, F. In Advances in Insect Physiology, Vol. 50 (ed Blomquist Claus Tittiger, G.J.) 1–74 (Elsevier, Amsterdam, 2016).
Adams AS, et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 2013;79:3468–3475. doi: 10.1128/AEM.00068-13. PubMed DOI PMC
Six DL. Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects. 2012;3:339–366. doi: 10.3390/insects3010339. PubMed DOI PMC
Raffa KF. Terpenes tell different tales at different scales: Glimpses into the chemical ecology of conifer-bark beetle-microbial interactions. J. Chem. Ecol. 2014;40:1–20. doi: 10.1007/s10886-013-0368-y. PubMed DOI
Douglas AE. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015;60:17–34. doi: 10.1146/annurev-ento-010814-020822. PubMed DOI PMC
Douglas AE. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009;23:38–47. doi: 10.1111/j.1365-2435.2008.01442.x. DOI
Ceja-Navarro JA, et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 2015;6:7618. doi: 10.1038/ncomms8618. PubMed DOI PMC
Welte CU, et al. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 2016;18:1379–1390. doi: 10.1111/1462-2920.12997. PubMed DOI
Hammer TJ, Bowers MD. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia. 2015;179:1–14. doi: 10.1007/s00442-015-3327-1. PubMed DOI
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Mithöfer A, Boland W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012;63:431–450. doi: 10.1146/annurev-arplant-042110-103854. PubMed DOI
Douglas A. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 1998;43:17–37. doi: 10.1146/annurev.ento.43.1.17. PubMed DOI
Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology. 2000;81:2198–2210. doi: 10.1890/0012-9658(2000)081[2198:NBOPFB]2.0.CO;2. DOI
Adams A, Currie C, Cardoza Y, Klepzig K, Raffa K. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 2009;39:1133–1147. doi: 10.1139/X09-034. DOI
Cardoza YJ, Moser JC, Klepzig KD, Raffa KF. Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environ. Entomol. 2008;37:956–963. doi: 10.1093/ee/37.4.956. PubMed DOI
Therrien J, et al. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: Implications for climate-driven host range expansion. Oecologia. 2015;179:467–485. doi: 10.1007/s00442-015-3356-9. PubMed DOI
Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 2012;64:268–278. doi: 10.1007/s00248-011-9999-0. PubMed DOI
Delalibera I, Jr, Handelsman J, Raffa KF. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae) Environ. Entomol. 2005;34:541–547. doi: 10.1603/0046-225X-34.3.541. DOI
Hu X, Yu J, Wang C, Chen H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae) Forests. 2014;5:455–465. doi: 10.3390/f5030455. DOI
Menéndez E, et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int. J. Syst. Evol. Microbiol. 2015;65:2852–2858. doi: 10.1099/ijs.0.000344. PubMed DOI
Boone CK, et al. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 2013;39:1003–1006. doi: 10.1007/s10886-013-0313-0. PubMed DOI
Xu LT, Lu M, Sun JH. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 2016;23:183–190. doi: 10.1111/1744-7917.12255. PubMed DOI
Berasategui A, et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 2017;26:4099–4110. doi: 10.1111/mec.14186. PubMed DOI
Engl T, Kaltenpoth M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 2018;35:386–397. doi: 10.1039/C7NP00068E. PubMed DOI
Howe M, Keefover-Ring K, Raffa KF. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy, specificity, and capability. Environ. Entomol. 2018;47:638–645. doi: 10.1093/ee/nvy032. PubMed DOI
Xu L, Lou Q, Cheng C, Lu M, Sun J. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 2015;70:1012–1023. doi: 10.1007/s00248-015-0625-4. PubMed DOI
Skrodenytė-Arbačiauskienė V, Radžiutė S, Stunžėnas V, Būda V. Erwiniatypographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int. J. Syst. Evol. Microbiol. 2012;62:942–948. doi: 10.1099/ijs.0.030304-0. PubMed DOI
Smith DJ, Park J, Tiedje JM, Mohn WW. A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J. Bacteriol. 2007;189:6195–6204. doi: 10.1128/JB.00179-07. PubMed DOI PMC
Martin VJ, Mohn WW. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J. Bacteriol. 2000;182:3784–3793. doi: 10.1128/JB.182.13.3784-3793.2000. PubMed DOI PMC
Muratoğlu H, Sezen K, Demirbağ Z. Determination and pathogenicity of the bacterial flora associated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae) Turk. J. Biol. 2011;35:9–20.
Skrodenytė-Arbačiauskienė V, Būda V, Radžiutė S, Stunžėnas V. Myrcene-resistant bacteria isolated from the gut of phytophagous insect Ips typographus. Ekologija. 2006;4:1–6.
Sevim A, Gökçe C, Erbaş Z, Özkan F. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. J. Basic Microbiol. 2012;52:695–704. doi: 10.1002/jobm.201100564. PubMed DOI
Vasanthakumar A, et al. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coloptera) colonizing red pine. Symbiosos. 2007;43:97–104.
48Grégoire, J.-C. & Evans, H. In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (eds Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C., Evans, H.F.) 19–37 (Springer, Berlin, 2007).
Kolk, A., Starzyk, J., Kinelski, S. & Dzwonkowski, R. Atlas of Forest Insect Pests. (MULTICO Publishing House Ltd., 1996).
Davydenko K, Vasaitis R, Menkis A. Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur. J. Entomol. 2017;114:77–85. doi: 10.14411/eje.2017.011. DOI
Fettig, C. J. & Hilszczański, J. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F.E, Hofstetter, R.W.) 555–584 (Springer, Berlin, 2015).
Knížek, M., Liška, J. & Modlinger, R. Výskyt lesních škodlivých činitelů v roce 2015 a jejich očekávaný stav v roce 2016. Strnady, VÚLHM, Zpravodaj ochrany lesa (2016).
Villari C, et al. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. Tree Physiol. 2012;32:867–879. doi: 10.1093/treephys/tps056. PubMed DOI
Wermelinger B, Rigling A, Schneider Mathis D, Dobbertin M. Assessing the role of bark-and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 2008;33:239–249. doi: 10.1111/j.1365-2311.2007.00960.x. DOI
Pineau X, Bourguignon M, Jactel H, Lieutier F, Sallé A. Pyrrhic victory for bark beetles: Successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For. Ecol. Manag. 2017;399:188–196. doi: 10.1016/j.foreco.2017.05.044. DOI
Engel P, Moran NA. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 2013;37:699–735. doi: 10.1111/1574-6976.12025. PubMed DOI
Hernández-García JA, Briones-Roblero CI, Rivera-Orduña FN, Zúñiga G. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): Diversity, core members and co-evolutionary patterns. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-14031-6. PubMed DOI PMC
Morrison M, Miron J. Adhesion to cellulose by Ruminococcus albus: A combination of cellulosomes and Pil-proteins? FEMS Microbiol. Lett. 2000;185:109–115. doi: 10.1111/j.1574-6968.2000.tb09047.x. PubMed DOI
Fabryová A, et al. On the bright side of a forest pest-the metabolic potential of bark beetles' bacterial associates. Sci. Total Environ. 2018;619:9–17. doi: 10.1016/j.scitotenv.2017.11.074. PubMed DOI
Briones-Roblero CI, et al. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE. 2017;12:e0175470. doi: 10.1371/journal.pone.0175470. PubMed DOI PMC
Sudachkova N, Milyutina I, Romanova L, Semenova G. The annual dynamics of reserve compounds and hydrolitic enzymes activity in the tissues of Pinus sylvestris L. and Larix sibirica Ledeb.: The metabolism of reserve compounds in the tissues of Siberian conifers. Eurasian J. For. Res. 2004;7:1–10.
Horne I, Haritos VS, Oakeshott JG. Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem. Mol. Biol. 2009;39:547–567. doi: 10.1016/j.ibmb.2009.06.002. PubMed DOI
Arrese EL, Soulages JL. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010;55:207–225. doi: 10.1146/annurev-ento-112408-085356. PubMed DOI PMC
García-Fraile P. Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann. Appl. Biol. 2018;172:111–125. doi: 10.1111/aab.12406. DOI
Morales-Jiménez J, et al. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae) Microb. Ecol. 2013;66:200–210. doi: 10.1007/s00248-013-0206-3. PubMed DOI
Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae) Microb. Ecol. 2009;58:879–891. doi: 10.1007/s00248-009-9548-2. PubMed DOI
Menna PM, Hungria M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: Supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int. J. Syst. Evol. Microbiol. 2011;61:3052–3067. doi: 10.1099/ijs.0.028803-0. PubMed DOI
Chen W-M, et al. Legume symbiotic nitrogen fixation byβ-proteobacteria is widespread in nature. J. Bacteriol. 2003;185:7266–7272. doi: 10.1128/JB.185.24.7266-7272.2003. PubMed DOI PMC
Gurevitch J, Scheiner SM, Fox GA. The Ecology of Plants. Sunderland: Sinauer Associates; 2002.
Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 2010;13:223–234. doi: 10.1111/j.1461-0248.2009.01416.x. PubMed DOI
Six DL, Bentz BJ. Fungi associated with the North American spruce beetle, Dendroctonus rufipennis. Can. J. For. Res. 2003;33:1815–1820. doi: 10.1139/x03-107. DOI
Naik PR, Sakthivel N. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 2006;157:538–546. doi: 10.1016/j.resmic.2005.11.009. PubMed DOI
Park G-K, Lim J-H, Kim S-D, Shim S-H. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. J. Microbiol. Biotechnol. 2012;22:326–330. doi: 10.4014/jmb.1106.06042. PubMed DOI
Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 1976;107:283–288. doi: 10.1007/BF00425340. PubMed DOI
Byers J, Birgersson G. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften. 1990;77:385–387. doi: 10.1007/BF01135739. DOI
Blomquist GJ, et al. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 2010;40:699–712. doi: 10.1016/j.ibmb.2010.07.013. PubMed DOI
Cao Q, et al. Effect of oxygen on verbenone conversion from cis-verbenol by gut facultative anaerobes of Dendroctonus valens. Front. Microbiol. 2018;9:464. doi: 10.3389/fmicb.2018.00464. PubMed DOI PMC
Wang Y, Zhang Y. Investigation of gut-associated bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae using culture-dependent and DGGE methods. Ann. Entomol. Soc. Am. 2015;108:941–949. doi: 10.1093/aesa/sav079. DOI
Durand A-A, et al. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Sci. Rep. 2015;5:17190. doi: 10.1038/srep17190. PubMed DOI PMC
Scott JJ, et al. Bacterial protection of beetle-fungus mutualism. Science. 2008;322:63–63. doi: 10.1126/science.1160423. PubMed DOI PMC
Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int. J. Syst. Evol. Microbiol. 1999;49:267–275. doi: 10.1099/00207713-49-1-267. PubMed DOI
Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The all-rounder Sodalis: A new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 2017;9:2893–2910. doi: 10.1093/gbe/evx202. PubMed DOI PMC
Lawson ET, Mousseau TA, Klaper R, Hunter MD, Werren JH. Rickettsia associated with male-killing in a buprestid beetle. Heredity. 2001;86:497–505. doi: 10.1046/j.1365-2540.2001.00848.x. PubMed DOI
Hurst G, Jiggins FM. Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerg. Infect. Dis. 2000;6:329. doi: 10.3201/eid0604.000402. PubMed DOI PMC
Stackebrandt, E. & Schumann, P. In The Prokaryotes: Actinobacteria (eds Rosenberg, E. et al.) 163–184 (Springer, Berlin, 2014).
Pfeffer, A. Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea. Řád: Brouci-Coleoptera. (Nakladatelství Československé akadmie věd, 1955).
Pfeffer, A. Zentral-und westpaläarktische Borken-und Kernkäfer:(Coloptera: Scolytidae, Platypodidae). (Pro Entomologia, 1995).
Nunberg, M. Klucze do rozpoznawania owadów Polski [Keys for the identification of Polish Insects]. Część XIX. Chrząszcze–Coleoptera, Korniki–Scolytidae, Wyrynniki–Platypodidae, PWN, Warszawa-Wroclaw. Zeszyt, 99–100 (1981).
Chakraborty A, et al. Core mycobiome and their ecological relevance in the gut of five ips bark beetles (Coleoptera: Curculionidae: Scolytinae) Front. Microbiol. 2020;11:2134. PubMed PMC
Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Magoč T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963. doi: 10.1093/bioinformatics/btr507. PubMed DOI PMC
Bokulich NA, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 2013;10:57–59. doi: 10.1038/nmeth.2276. PubMed DOI PMC
Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996. doi: 10.1038/nmeth.2604. PubMed DOI
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC
Quast C, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Chao A, Lee SM, Chen TC. A generalized Good's nonparametric coverage estimator. Chin. J. Math. 1988;16:189–199.
Magurran AE. Ecological Diversity and its Measurement. Princeton: Princeton University Press; 1988.
Team, R. C. R: A Language and Environment for Statistical Computing (Version 2.15. 3) [Computer software] (R Foundation for Statistical Computing, Vienna, 2013).
Oksanen, J. et al. Vegan: community ecology package. R package version 1.17–4. https://CRAN.R-project.org/package=vegan (2010).
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 2007;73:1576–1585. doi: 10.1128/AEM.01996-06. PubMed DOI PMC
Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993;18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x. DOI
Cai L. Multi-response permutation procedure as an alternative to the analysis of variance: An SPSS implementation. Behav. Res. Methods. 2006;38:51–59. doi: 10.3758/BF03192749. PubMed DOI
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001;26:32–46.
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC
D’Argenio V, Casaburi G, Precone V, Salvatore F. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. Biomed. Res. Int. 2014;325340:1–10. doi: 10.1155/2014/325340. PubMed DOI PMC
Paulson JN, Pop M, Bravo HC. Metastats: An improved statistical method for analysis of metagenomic data. Genome Biol. 2011;12:P17. doi: 10.1186/1465-6906-12-S1-P17. PubMed DOI
Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Douglas, G. M., Beiko, R. G. & Langille, M. G. In Microbiome Analysis: Methods and Protocols. (eds Beiko, R. G., Hsiao, W. & Parkinson, J.) 169–177 (Springer, Berlin, 2018).
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–D114. doi: 10.1093/nar/gkr988. PubMed DOI PMC
Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle
The gut microbiome mediates adaptation to scarce food in Coleoptera
Impact of Wood Age on Termite Microbial Assemblages
Molecular Rationale of Insect-Microbes Symbiosis-From Insect Behaviour to Mechanism