A New Perspective of Pseudomonas-Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
19-09072S
Grantová agentura České republiky (GAČR)
CLU-2018-04
Excellence Unit of the Spanish-Portuguese Institute for Agricultural Research (CIALE)
PubMed
33669823
PubMed Central
PMC7922261
DOI
10.3390/biology10020164
PII: biology10020164
Knihovny.cz E-resources
- Keywords
- Dendroctonus, Scolytinae, biocontrol, forest pests, fungal antagonism, host–microbe interaction, insects microbiome, insect–microbe interactions, microbiota, symbionts,
- Publication type
- Journal Article MeSH
- Review MeSH
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe-host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe-host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle's life cycle.
Associated Research Unit of Plant Microorganism Interaction USAL CSIC 37008 Salamanca Spain
Department of Botany Faculty of Science Charles University 128 01 Prague Czech Republic
Microbiology and Genetics Department University of Salamanca 37007 Salamanca Spain
Spanish Portuguese Institute for Agricultural Research Villamayor 37185 Salamanca Spain
See more in PubMed
Weed A.S., Ayres M.P., Hicke J.A. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 2013;83:441–470. doi: 10.1890/13-0160.1. DOI
Biedermann P.H., Müller J., Grégoire J.C., Gruppe A., Hagge J., Hammerbacher A., Hofstetter R.W., Kandasamy D., Kolarik M., Kostovcik M., et al. Bark beetle population dynamics in the Anthropocene: Challenges and solutions. Trends Ecol. Evol. 2019;34:914–924. doi: 10.1016/j.tree.2019.06.002. PubMed DOI
Lindgren B.S., Raffa K.F. Evolution of tree killing in bark beetles (Coleoptera: Curculionidae): Trade-offs between the maddening crowds and a sticky situation. Can. Entomol. 2013;145:471–495. doi: 10.4039/tce.2013.27. DOI
Raffa K.F., Gregoire J.C., Lindgren B.S. Bark Beetles. Academic Press; Cambridge, MA, USA: 2015. Natural history and ecology of bark beetles; pp. 1–40.
Byers J.A. Chemical Ecology of Insects 2. Springer; Boston, MA, USA: 1995. Host-tree chemistry affecting colonization in bark beetles; pp. 154–213.
Schmidt K., Engel P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol. 2021;224:jeb207696. doi: 10.1242/jeb.207696. PubMed DOI
Chakraborty A., Roy A. Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer; Singapore: 2021. Microbial Influence on Plant–Insect Interaction; pp. 337–363.
Weisskopf L., Schulz S., Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 2021:1–14. doi: 10.1038/s41579-020-00508-1. PubMed DOI
García-Fraile P. Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann. Appl. Biol. 2018;172:111–125. doi: 10.1111/aab.12406. DOI
Six D.L. The bark beetle holobiont: Why microbes matter. J. Chem. Ecol. 2013;39:989–1002. doi: 10.1007/s10886-013-0318-8. PubMed DOI
Fabryová A., Kostovčík M., Díez-Méndez A., Jiménez-Gómez A., Celador-Lera L., Saati-Santamaría Z., Sechovcová H., Menéndez E., Kolařik M., García-Fraile P. On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci. Total Environ. 2018;619:9–17. doi: 10.1016/j.scitotenv.2017.11.074. PubMed DOI
Boone C.K., Keefover-Ring K., Mapes A.C., Adams A.S., Bohlmann J., Raffa K.F. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 2013;39:1003–1006. doi: 10.1007/s10886-013-0313-0. PubMed DOI
Scott J.J., Oh D.C., Yuceer M.C., Klepzig K.D., Clardy J., Currie C.R. Bacterial protection of beetle-fungus mutualism. Science. 2008;322:63. doi: 10.1126/science.1160423. PubMed DOI PMC
Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíčková M., Cajthamlad T., Vojtováa T., Garcia-Fraile P., Kolařík M. Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecol. 2019;41:165–176. doi: 10.1016/j.funeco.2019.06.005. DOI
Silby M.W., Winstanley C., Godfrey S.A., Levy S.B., Jackson R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 2011;35:652–680. doi: 10.1111/j.1574-6976.2011.00269.x. PubMed DOI
Loper J.E., Hassan K.A., Mavrodi D.V., Davis E.W. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012;8:e1002784. doi: 10.1371/journal.pgen.1002784. PubMed DOI PMC
Barbier M., Damron F.H., Bielecki P., Suárez-Diez M., Puchałka J., Albertí S., dos Santos V.M., Goldberg J.B. From the environment to the host: Re-wiring of the transcriptome of Pseudomonas aeruginosa from 22 °C to 37 °C. PLoS ONE. 2014;9:e89941. doi: 10.1371/journal.pone.0089941. PubMed DOI PMC
Crone S., Vives-Flórez M., Kvich L., Saunders A.M., Malone M., Nicolaisen M.H., Martínez-García E., Rojas-Acosta C., Catalina Gomez-Puerto M., Calum H., et al. The environmental occurrence of Pseudomonas aeruginosa. Apmis. 2020;128:220–231. doi: 10.1111/apm.13010. PubMed DOI
Mercado-Blanco J., Bakker P.A. Interactions between plants and beneficial Pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek. 2007;92:367–389. doi: 10.1007/s10482-007-9167-1. PubMed DOI
Xin X.F., Kvitko B., He S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018;16:316. doi: 10.1038/nrmicro.2018.17. PubMed DOI PMC
Huszczynski S.M., Lam J.S., Khursigara C.M. The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens. 2020;9:6. doi: 10.3390/pathogens9010006. PubMed DOI PMC
Dieppois G., Opota O., Lalucat J., Lemaitre B. Pseudomonas. Springer; Dordrecht, The Netherlands: 2015. Pseudomonas entomophila: A versatile bacterium with entomopathogenic properties; pp. 25–49.
Kamarajan B.P., Muthusamy A. Survival strategy of Pseudomonas aeruginosa on the nanopillar topography of dragonfly (Pantala flavescens) wing. AMB Express. 2020;10:85. doi: 10.1186/s13568-020-01021-7. PubMed DOI PMC
Kim H.R., Lee H.M., Yu H.C., Jeon E., Lee S., Li J., Kim D.H. Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus) Environ. Sci. Technol. 2020;54:6987–6996. doi: 10.1021/acs.est.0c01495. PubMed DOI
Cardoza Y.J., Klepzig K.D., Raffa K.F. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 2006;31:636–645. doi: 10.1111/j.1365-2311.2006.00829.x. DOI
Morales-Jiménez J., Zúñiga G., Ramírez-Saad H.C., Hernández-Rodríguez C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol. 2012;64:268–278. doi: 10.1007/s00248-011-9999-0. PubMed DOI
Durand A.A., Bergeron A., Constant P., Buffet J.P., Déziel E., Guertin C. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Sci. Rep. 2015;5:17190. doi: 10.1038/srep17190. PubMed DOI PMC
Zhou F., Lou Q., Wang B., Xu L., Cheng C., Lu M., Sun J. Altered carbohydrates allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis. Sci. Rep. 2016;6:20135. PubMed PMC
Saati Santamaría Z., López-Mondéjar R., Jiménez Gómez A., Méndez A.D., Větrovský T., Igual J.M., Velázquez E., Kolarik M., Rivas R., García-Fraile P. Discovery of phloeophagus beetles as a source of Pseudomonas strains that produce potentially new bioactive substances and description of Pseudomonas bohemica sp. nov. Front. Microbiol. 2018;9:913. doi: 10.3389/fmicb.2018.00913. PubMed DOI PMC
Mason C.J., Hanshew A.S., Raffa K.F. Contributions by host trees and insect activity to bacterial communities in Dendroctonus valens (Coleoptera: Curculionidae) galleries, and their high overlap with other microbial assemblages of bark beetles. Environ. Entomol. 2016;45:348–356. doi: 10.1093/ee/nvv184. PubMed DOI
Hulcr J., Rountree N.R., Diamond S.E., Stelinski L.L., Fierer N., Dunn R.R. Mycangia of ambrosia beetles host communities of bacteria. Microb. Ecol. 2012;64:784–793. doi: 10.1007/s00248-012-0055-5. PubMed DOI
Hernández-García J.A., Briones-Roblero C.I., Rivera-Orduña F.N., Zúñiga G. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): Diversity, core members and co-evolutionary patterns. Sci. Rep. 2017;7:13864. doi: 10.1038/s41598-017-14031-6. PubMed DOI PMC
Ibarra-Juarez L.A., Burton M.A.J., Biedermann P.H.W., Cruz L., Desgarennes D., Ibarra-Laclette E., Latorre A., Alonso-Sánchez A., Villafan E., Hanako-Rosas G., et al. Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. mSystems. 2020;5:e00541-20. doi: 10.1128/mSystems.00541-20. PubMed DOI PMC
Briones-Roblero C.I., Hernández-García J.A., Gonzalez-Escobedo R., Soto-Robles L.V., Rivera-Orduña F.N., Zúñiga G. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE. 2017;12:e0175470. doi: 10.1371/journal.pone.0175470. PubMed DOI PMC
Xu L., Sun L., Zhang S., Wang S., Lu M. High-Resolution Profiling of Gut Bacterial Communities in an Invasive Beetle using PacBio SMRT Sequencing System. Insects. 2019;10:248. doi: 10.3390/insects10080248. PubMed DOI PMC
Aylward F.O., Suen G., Biedermann P.H., Adams A.S., Scott J.J., Malfatti S.A., del Rio T.G., Tringe S.G., Poulsen M., Raffa K.F., et al. Convergent bacterial microbiotas in the fungal agricultural systems of insects. mBio. 2014;5:e02077-14. doi: 10.1128/mBio.02077-14. PubMed DOI PMC
Ibarra-Juarez L.A., Desgarennes D., Vázquez-Rosas-Landa M., Villafan E., Alonso-Sánchez A., Ferrera-Rodríguez O., Moya A., Carrillo D., Cruz L., Carrión G., et al. Impact of rearing conditions on the ambrosia beetle’s microbiome. Life. 2018;8:63. doi: 10.3390/life8040063. PubMed DOI PMC
Adams A.S., Aylward F.O., Adams S.M., Erbilgin N., Aukema B.H., Currie C.R., Suen G., Raffa K.F. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 2013;79:3468–3475. doi: 10.1128/AEM.00068-13. PubMed DOI PMC
Briones-Roblero C.I., Rodríguez-Díaz R., Santiago-Cruz J.A., Zúñiga G., Rivera-Orduña F.N. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae) Folia Microbiol. 2017;62:1–9. doi: 10.1007/s12223-016-0469-4. PubMed DOI
Morales-Jiménez J., de León A.V.P., García-Domínguez A., Martínez-Romero E., Zúñiga G., Hernández-Rodríguez C. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae) Microb. Ecol. 2013;66:200–210. doi: 10.1007/s00248-013-0206-3. PubMed DOI
Winder R.S., Macey D.E., Cortese J. Dominant bacteria associated with broods of mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) J. Entomol. Soc. Br. Columbia. 2010;107:43–56.
Hu X., Yu J., Wang C., Chen H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae) Forests. 2014;5:455–465. doi: 10.3390/f5030455. DOI
Xu L., Lou Q., Cheng C., Lu M., Sun J. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 2015;70:1012–1023. doi: 10.1007/s00248-015-0625-4. PubMed DOI
Harrington T.C. Insect-Fungal Associations. Ecology and Evolution. Oxford University Press; New York, NY, USA: 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners; pp. 257–291.
Yilmax H., Sezen K., Kati H., Demirbağ Z. The first study on the bacterial flora of the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae) Biologia. 2006;61:679–686. doi: 10.2478/s11756-006-0140-7. DOI
Cardoza Y.J., Vasanthakumar A., Suazo A., Raffa K.F. Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol. Exp. Appl. 2009;131:138–147. doi: 10.1111/j.1570-7458.2009.00844.x. DOI
Kati A., Kati H. Isolation and identification of bacteria from Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae) Afr. J. Microbiol. Res. 2013;7:5288–5289.
Adams A.S., Boone C.K., Bohlmann J., Raffa K.F. Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J. Chem. Ecol. 2011;37:808–817. doi: 10.1007/s10886-011-9992-6. PubMed DOI
Menéndez E., Ramírez-Bahena M.H., Fabryová A., Igual J.M., Benada O., Mateos P.F., Peix A., Kolarik M., García-Fraile P. Pseudomonas coleopterorum sp. nov.; a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int. J. Syst. Evol. Microbiol. 2015;65:2852–2858. doi: 10.1099/ijs.0.000344. PubMed DOI
Adams A.S., Currie C.R., Cardoza Y., Klepzig K.D., Raffa K.F. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. For. Res. 2009;39:1133–1147. doi: 10.1139/X09-034. DOI
Canganella F., Paparatti B., Natali V. Microbial species isolated from the bark beetle Anisandrus dispar F. Microbiol. Res. 1994;149:123–128. doi: 10.1016/S0944-5013(11)80106-0. DOI
Wang S., Zhou F., Wang B., Xu D., Cao Q., Lu M., Sun J. Volatiles produced by bacteria alleviate antagonistic effects of one associated fungus on Dendroctonus valens larvae. Sci. China Life Sci. 2017;60:924–926. doi: 10.1007/s11427-017-9073-9. PubMed DOI
Zhou F., Xu L., Wang S., Wang B., Lou Q., Lu M., Sun J. Bacterial volatile ammonia regulates the consumption sequence of D-pinitol and D-glucose in a fungus associated with an invasive bark beetle. ISME J. 2017;11:2809–2820. doi: 10.1038/ismej.2017.131. PubMed DOI PMC
Therrien J., Mason C.J., Cale J.A., Adams A., Aukema B.H., Currie C.R., Raffa K.F., Erbilgin N. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: Implications for climate-driven host range expansion. Oecologia. 2015;179:467–485. doi: 10.1007/s00442-015-3356-9. PubMed DOI
Delalibera I., Vasanthakumar A., Klepzig K.D., Raffa K.F. Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say)(Coleoptera) colonizing red pine. Symbiosis. 2007;43:97–104.
Ceja-Navarro J.A., Vega F.E., Karaoz U., Hao Z., Jenkins S., Lim H.C., Kosina P., Infante F., Northen T.R., Brodie E.L. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 2015;6:7618. doi: 10.1038/ncomms8618. PubMed DOI PMC
Chakraborty A., Ashraf M.Z., Modlinger R., Synek J., Schlyter F., Roy A. Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): Identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 2020;10:18572. doi: 10.1038/s41598-020-75203-5. PubMed DOI PMC
Vasanthakumar A., Delalibera I., Jr., Handelsman J., Klepzig K.D., Schloss P.D., Raffa K.F. Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environ. Entomol. 2006;35:1710–1717. doi: 10.1093/ee/35.6.1710. DOI
Dohet L., Grégoire J.C., Berasategui A., Kaltenpoth M., Biedermann P.H. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles. FEMS Microbiol. Ecol. 2016;92:fiw129. doi: 10.1093/femsec/fiw129. PubMed DOI
Sevim A., Gökçe C., Erbaş Z., Özkan F. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. J. Basic Microbiol. 2012;52:695–704. doi: 10.1002/jobm.201100564. PubMed DOI
Sezen K., Kati H., Nalcacioĝlu R., Muratoĝlu H., Demirbaĝ Z. Identification and pathogenicity of bacteria from European shot-hole borer, Xyleborus dispar Fabricius (Coleoptera: Scolytidae) Ann. Microbiol. 2008;58:173–179. doi: 10.1007/BF03175313. DOI
Peral-Aranega E., Saati-Santamaría Z., Kolařik M., Rivas R., García-Fraile P. Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology. Insects. 2020;11:593. doi: 10.3390/insects11090593. PubMed DOI PMC
Quince C., Walker A.W., Simpson J.T., Loman N.J., Segata N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017;35:833–844. doi: 10.1038/nbt.3935. PubMed DOI
López-Mondéjar R., Kostovčík M., Lladó S., Carro L., García-Fraile P. Probiotics in Agroecosystem. Springer; Singapore: 2017. Exploring the plant microbiome through multi-omics approaches; pp. 233–268.
Poveda J., Jiménez-Gómez A., Saati-Santamaría Z., Usategui-Martín R., Rivas R., García-Fraile P. Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Appl. Soil Ecol. 2019;142:110–122. doi: 10.1016/j.apsoil.2019.04.016. DOI
Douglas G.M., Beiko R.G., Langille M.G. Microbiome Analysis. Humana Press; New York, NY, USA: 2018. Predicting the functional potential of the microbiome from marker genes using PICRUSt; pp. 169–177. PubMed
Winand R., Bogaerts B., Hoffman S., Lefevre L., Delvoye M., Van Braekel J., Fu Q., Roosens N.H., De Keersmaecker S.C., Vanneste K. Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (illumina) and third (oxford nanopore technologies) generation sequencing technologies. Int. J. Mol. Sci. 2020;21:298. doi: 10.3390/ijms21010298. PubMed DOI PMC
Jiménez-Gómez A., Saati-Santamaría Z., Kostovcik M., Rivas R., Velázquez E., Mateos P.F., Menéndez E., García-Fraile P. Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. Crops. Agronomy. 2020;10:1788. doi: 10.3390/agronomy10111788. DOI
Sauvard D. Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Springer; Dordrecht, The Netherlands: 2007. General biology of bark beetles; pp. 63–88.
Vega F.E., Hofstetter R.W., editors. Bark Beetles: Biology and Ecology of Native and Invasive Species. Academic Press; Cambridge, MA, USA: 2014.
Hofstetter R.W., Dinkins-Bookwalter J., Davis T.S., Klepzig K.D. Bark Beetles. Academic Press; Cambridge, MA, USA: 2015. Symbiotic associations of bark beetles; pp. 209–245.
Saha B.C. Hemicellulose bioconversion. J. Ind. Microbiol. 2003;30:279–291. doi: 10.1007/s10295-003-0049-x. PubMed DOI
Zeeman S.C., Kossmann J., Smith A.M. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 2010;61:209–234. doi: 10.1146/annurev-arplant-042809-112301. PubMed DOI
Carro L., Menéndez E. Molecular Aspects of Plant Beneficial Microbes in Agriculture. Academic Press; Cambridge, MA, USA: 2020. Knock, knock-let the bacteria; pp. 169–178.
Deryło M., Skorupska A. Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil. 1993;154:211–217. doi: 10.1007/BF00012526. DOI
Marek-Kozaczuk M., Skorupska A. Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol. Fertil. Soils. 2001;33:146–151. doi: 10.1007/s003740000304. DOI
Martens J.H., Barg H., Warren M.A., Jahn D. Microbial production of vitamin B 12. Appl. Microbiol. Biotechnol. 2002;58:275–285. doi: 10.1007/s00253-001-0902-7. PubMed DOI
Riaz M., Ansari Z.A., Iqbal F., Akram M. Microbial production of vitamin B12 by methanol utilizing strain of Pseudomonas specie. Pak. Biochem. Mol. Biol. 2007;40:5–10.
Xia W., Chen W., Peng W.F., Li K.T. Industrial vitamin B 12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess Biosyst. Eng. 2015;38:1065–1073. doi: 10.1007/s00449-014-1348-5. PubMed DOI
Franceschi V.R., Krokene P., Christiansen E., Krekling T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 2005;167:353–376. doi: 10.1111/j.1469-8137.2005.01436.x. PubMed DOI
Blomquist G.J., Figueroa-Teran R., Aw M., Song M., Gorzalski A., Abbott N.L., Chang E., Tittiger C. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 2010;40:699–712. doi: 10.1016/j.ibmb.2010.07.013. PubMed DOI
Xu L.T., Lu M., Sun J.H. Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 2016;23:183–190. doi: 10.1111/1744-7917.12255. PubMed DOI
Martin V.J., Yu Z., Mohn W.W. Recent advances in understanding resin acid biodegradation: Microbial diversity and metabolism. Arch. Microbiol. 1999;172:131–138. doi: 10.1007/s002030050752. PubMed DOI
Kolařík M., Kostovčík M., Pažoutová S. Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol. Res. 2007;111:1298–1310. doi: 10.1016/j.mycres.2007.06.010. PubMed DOI
Kolařík M., Kubátová A., Hulcr J., Pažoutová S. Geosmithia fungi are highly diverse and consistent bark beetle associates: Evidence from their community structure in temperate Europe. Microb. Ecol. 2008;55:65–80. doi: 10.1007/s00248-007-9251-0. PubMed DOI
González-Dominici L.I., Saati-Santamaría Z., García-Fraile P. Genome Analysis and Genomic Comparison of the Novel Species Arthrobacter ipsi Reveal Its Potential Protective Role in Its Bark Beetle Host. Microb. Ecol. 2020:1–12. doi: 10.1007/s00248-020-01593-8. PubMed DOI
Lee J.H., Ma K.C., Ko S.J., Kang B.R., Kim I.S., Kim Y.C. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 2011;62:746–751. doi: 10.1007/s00284-010-9779-y. PubMed DOI
Popa V., Déziel E., Lavallée R., Bauce E., Guertin C. The complex symbiotic relationships of bark beetles with microorganisms: A potential practical approach for biological control in forestry. Pest Manag. Sci. 2012;68:963–975. doi: 10.1002/ps.3307. PubMed DOI
Vodovar N., Vinals M., Liehl P., Basset A., Degrouard J., Spellman P., Boccard F., Lemaitre B. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl. Acad. Sci. USA. 2005;102:11414–11419. doi: 10.1073/pnas.0502240102. PubMed DOI PMC
Otsu Y., Matsuda Y., Mori H., Ueki H., Nakajima T., Fujiwara K., Matsumoto M., Azuma N., Kakutani K., Nonomura T., et al. Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae) Biocontrol Sci. Technol. 2004;14:427–439. doi: 10.1080/09583150410001683538. DOI
Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution