Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27544667
DOI
10.1007/s12223-016-0469-4
PII: 10.1007/s12223-016-0469-4
Knihovny.cz E-zdroje
- MeSH
- Bacteria izolace a purifikace metabolismus MeSH
- biotransformace MeSH
- gastrointestinální trakt mikrobiologie MeSH
- kvasinky izolace a purifikace metabolismus MeSH
- nosatcovití mikrobiologie MeSH
- organické látky metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- organické látky MeSH
Bark beetles (Curculionidae: Scolytinae) feed on the xylem and phloem of their host, which are composed of structural carbohydrates and organic compounds that are not easily degraded by the insects. Some of these compounds might be hydrolyzed by digestive enzymes produced by microbes present in the gut of these insects. In this study, we evaluated the enzymatic capacity of bacteria (Acinetobacter lwoffii, Arthrobacter sp., Pseudomonas putida, Pseudomonas azotoformans, and Rahnella sp.) and yeasts (Candida piceae, Candida oregonensis, Cyberlindnera americana, Zygoascus sp., and Rhodotorula mucilaginosa) isolated from the Dendroctonus rhizophagus gut to hydrolyze cellulose, xylan, pectin, starch, lipids, and esters. All isolates, with the exception of C. piceae, showed lipolytic activity. Furthermore, P. putida, P. azotoformans, C. americana, C. piceae, and R. mucilaginosa presented amylolytic activity. Esterase activity was shown by A. lwoffii, P. azotoformans, and Rahnella sp. Cellulolytic and xylanolytic activities were present only in Arthrobacter sp. and P. azotoformans. The pectinolytic activity was not recorded in any isolate. This is the first study to provide evidence on the capacity of microbes associated with the D. rhizophagus gut to hydrolyze specific substrates, which might cover part of the nutritional requirements for the development, fitness, and survival of these insects.
Zobrazit více v PubMed
J Insect Sci. 2011;11:135 PubMed
Int J Mol Sci. 2013 Oct 18;14(10):21006-20 PubMed
Nucleic Acids Res. 1992 May 11;20(9):2380 PubMed
Biochem J. 1962 Feb;82:340-6 PubMed
Gene. 1987;57(2-3):267-72 PubMed
Folia Microbiol (Praha). 2010 Jan;55(1):35-8 PubMed
Carbohydr Res. 2004 Feb 25;339(3):715-7 PubMed
Evolution. 2001 Oct;55(10):2011-27 PubMed
Microb Ecol. 2009 Nov;58(4):879-91 PubMed
J Microbiol. 2007 Oct;45(5):394-401 PubMed
Appl Environ Microbiol. 1994 May;60(5):1401-13 PubMed
Insect Biochem Mol Biol. 2009 Aug;39(8):547-67 PubMed
Microb Ecol. 2012 Jul;64(1):268-78 PubMed
J Insect Sci. 2010;10 :107 PubMed
J Gen Physiol. 1956 Jan 20;39(3):369-75 PubMed
Environ Entomol. 2010 Apr;39(2):406-14 PubMed
Microb Ecol. 2013 Jul;66(1):200-10 PubMed
J Chem Ecol. 2013 Jul;39(7):989-1002 PubMed
Pestic Biochem Physiol. 2014 Nov;116:83-93 PubMed
FEMS Microbiol Rev. 2001 Jan;25(1):39-67 PubMed
Appl Microbiol. 1971 Aug;22(2):205-9 PubMed
Arch Insect Biochem Physiol. 2011 Aug;77(4):179-98 PubMed
FEMS Microbiol Rev. 2002 Mar;26(1):73-81 PubMed
Annu Rev Entomol. 2010;55:207-25 PubMed
FEMS Microbiol Rev. 2013 Sep;37(5):699-735 PubMed
Microb Ecol. 2014 Aug;68(2):397-415 PubMed
Mem Inst Oswaldo Cruz. 2012 Jun;107(4):437-49 PubMed