Food origin influences microbiota and stable isotope enrichment profiles of cold-adapted Collembola (Desoria ruseki)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36504791
PubMed Central
PMC9730247
DOI
10.3389/fmicb.2022.1030429
Knihovny.cz E-zdroje
- Klíčová slova
- feeding ecology, host-microbiota interaction, soil arthropods, springtail, stable isotope, winter biodiversity,
- Publikační typ
- časopisecké články MeSH
Collembola are a group of globally distributed microarthropods that can tolerate low temperature and are active in extremely cold environments. While it is well known that animal diets can shape their microbiota, the microbiota of soil animals is not well described, particularly for animals with limited food resources, such as Collembola active in winter at low temperatures. In this study, we explored the effects of three different food sources; corn litter (agriculture grain residuals), Mongolian oak litter (natural plant residuals), and yeast (common food for Collembola culture), on the microbiota of a winter-active Collembola species, Desoria ruseki. We found that microbial diversity and community composition of the Collembola were strongly altered after feeding with different food sources for 30 days. Collembola individuals fed on corn litter harbored the highest bacterial richness and were dominated by a representative of Microbacteriaceae. In contrast, those fed on yeast exhibited the lowest bacterial richness and were primarily colonized by Pseudomonas. The microbial communities associated with the winter-active Collembola differed significantly from those observed in the food. Collembola nutrient turnover also differed when cultured with different food sources, as indicated by the C and N stable isotopic signatures. Our study highlights microbial associations with stable isotopic enrichments of the host. Specifically, the Arthrobacter was positively correlated with δ13C enrichment in the host. Representatives of Microbacteriaceae, Micrococcaceae, TM7a, Devosia, and Rathayibacter were positively correlated with δ15N enrichment of the host. Our study indicates that food sources are major determinants for Collembola microbiota that simultaneously alter consumers' isotopic niches, thereby improving our understanding of the roles played by host-microbiota interactions in sustaining soil biodiversity during the winter.
Department of Chemistry and Bioscience Aalborg University Aalborg Denmark
Zobrazit více v PubMed
Anslan S., Bahram M., Tedersoo L. (2016). Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biol. Biochem. 96, 152–159. doi: 10.1016/j.soilbio.2016.02.006 DOI
Bahrndorff S., de Jonge N., Hansen J. K., Lauritzen J. M. S., Spanggaard L. H., Sørensen M. H., et al. (2018). Diversity and metabolic potential of the microbiota associated with a soil arthropod. Sci. Rep. 8:2491. doi: 10.1038/s41598-018-20967-0, PMID: PubMed DOI PMC
Bashir Z., Kondapalli V. K., Adlakha N., Sharma A., Bhatnagar R. K., Chandel G., et al. (2013). Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts. Sci. Rep. 3:2558. doi: 10.1038/srep02558, PMID: PubMed DOI PMC
Berg M., Stenuit B., Ho J., Wang A., Parke C., Knight M., et al. (2016). Assembly of the PubMed DOI PMC
Bi Q. F., Jin B. J., Zhu D., Jiang Y. G., Zheng B. X., O'Connor P., et al. (2021). How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment? Ecotox. Environ. Saf. 224:112643. doi: 10.1016/j.ecoenv.2021.112643, PMID: PubMed DOI
Bokhorst S., Wardle D. A. (2014). Snow fungi as a food source for micro-arthropods. Eur. J. Soil Biol. 60, 77–80. doi: 10.1016/j.ejsobi.2013.11.006 DOI
Briones-Roblero C. I., Rodríguez-Díaz R., Santiago-Cruz J. A., Zúñiga G., Rivera-Orduña F. N. (2017). Degradation capacities of bacteria and yeasts isolated from the gut of PubMed DOI
Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180. doi: 10.1038/nrmicro3182, PMID: PubMed DOI
Buse T., Ruess L., Filser J. (2013). New trophic biomarkers for Collembola reared on algal diets. Pedobiologia 56, 153–159. doi: 10.1016/j.pedobi.2013.03.005 DOI
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/NMETH.3869, PMID: PubMed DOI PMC
Chae H. M., Cha S., Lee S. H., Choi M. J., Shim J. K. (2016). Age-related decomposition of DOI
Chen X., Cabrera M. L., Zhang L., Shi Y., Shen S. M. (2003). Long-term decomposition of organic materials with different carbon/nitrogen ratios. Commun. Soil Sci. Plant Anal. 34, 41–54. doi: 10.1081/CSS-120017414 DOI
Cheng C., He Q., Zhang J., Chai H. X., Yang Y. J., Pavlostathis S. G., et al. (2022). New insight into ammonium oxidation processes and mechanisms mediated by manganese oxide in constructed wetlands. Water Res. 215:118251. doi: 10.1016/j.watres.2022.118251, PMID: PubMed DOI
Cherel Y., Hobson K. A., Bailleul F., Groscolas R. (2005). Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86, 2881–2888. doi: 10.1890/05-0562 DOI
Chevalier C., Stojanović O., Colin D. J., Suarez-Zamorano N., Tarallo V., Veyrat-Durebex C., et al. (2015). Gut microbiota orchestrates energy homeostasis during cold. Cells 163, 1360–1374. doi: 10.1016/j.cell.2015.11.004, PMID: PubMed DOI
Czarnetzki A. B., Tebbe C. C. (2004). Detection and phylogenetic analysis of PubMed DOI
Ding J., Liu J., Chang X. B., Zhu D., Lassen S. B. (2020). Exposure of CuO nanoparticles and their metal counterpart leads to change in the gut microbiota and resistome of collembolans. Chemosphere 258:127347. doi: 10.1016/j.chemosphere.2020.127347, PMID: PubMed DOI
Ding J., Zhu D., Chen Q. L., Zheng F., Wang H. T., Zhu Y. G. (2019). Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biol. Biochem. 130, 141–149. doi: 10.1016/j.soilbio.2018.12.015 DOI
Dirksen P., Marsh S. A., Braker I., Heitland N., Wagner S., Nakad R., et al. (2016). The native microbiome of the nematode PubMed DOI PMC
Ek C., Yu Z. Y., Garbaras A., Oskarsson H., Wiklund A. K. E., Kumblad L., et al. (2019). Increase in stable isotope ratios driven by metabolic alterations in amphipods exposed to the beta-blocker propranolol. PLoS One 14:e0211304. doi: 10.1371/journal.pone.0211304, PMID: PubMed DOI PMC
Engel P., Moran N. A. (2013). The gut microbiota of insects-diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735. doi: 10.1111/1574-6976.12025 PubMed DOI
Gong X., Chen T.-W., Zhang L. L., Pižl V., Tajovský K., Devetter M. (2022). Gut microbiome reflect adaptation of earthworms to cave and surface environments. Anim.Microbiome 4:47. doi: 10.1186/s42523-022-00200-0, PMID: PubMed DOI PMC
Gong X., Chen T.-W., Zieger S. L., Bluhm C., Heidemann K., Schaefer I., et al. (2018). Phylogenetic and trophic determinants of gut microbiota in soil oribatid mites. Soil Biol. Biochem. 123, 155–164. doi: 10.1016/j.soilbio.2018.05.011 DOI
Hågvar S. (2010). A review of Fennoscandian arthropods living on and in snow. Eur. J. Entomol. 107, 281–298. doi: 10.14411/eje.2010.037 DOI
Hao C., Chen T.-W., Wu Y. G., Chang L., Wu D. H. (2020). Snow microhabitats provide food resources for winter-active Collembola. Soil Biol. Biochem. 143:107731. doi: 10.1016/j.soilbio.2020.107731 DOI
Hu J., Zhao H. T., Wang Y., Yin Z. F., Kang Y. J. (2020). The bacterial community structures in response to the gut passage of earthworm ( PubMed DOI
Huang S. W., Sheng P., Zhang H. Y. (2012). Isolation and identification of cellulolytic bacteria from the gut of PubMed DOI PMC
Huang Z. D., Zhu L., Lv J., Pu Z. X., Zhang L. P., Chen G. Q., et al. (2022). Dietary effects on biological parameters and gut microbiota of PubMed DOI PMC
Hugerth L. W., Andersson A. F. (2017). Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol. 8:1561. doi: 10.3389/fmicb.2017.01561, PMID: PubMed DOI PMC
Ikeda-Ohtsubo W., Brugman S., Warden C. H., Rebel J. M. J., Folkerts G., Pieterse C. M. J. (2018). How can we define “optimal microbiota?”: a comparative review of structure and functions of microbiota of animals, fish, and plants in agriculture. Front. Nutr. 5:90. doi: 10.3389/fnut.2018.00090, PMID: PubMed DOI PMC
Kennedy S. R., Tsau S., Gillespie R., Krehenwinkel H. (2020). Are you what you eat? A highly transient and prey-influenced gut microbiome in the grey house spider PubMed DOI
Knapp B. A., Podmirseg S. M., Seeber J., Meyer E., Insam H. (2009). Diet-related composition of the gut microbiota of DOI
Kudo R., Masuya H., Endoh R., Kikuchi T., Ikeda H. (2019). Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME J. 13, 676–685. doi: 10.1038/s41396-018-0298-3, PMID: PubMed DOI PMC
Larsen J., Johansen A., Larsen S. E., Heckmann L. H., Jakobsen I., Krogh P. H. (2008). Population performance of collembolans feeding on soil fungi from different ecological niches. Soil Biol. Biochem. 40, 360–369. doi: 10.1016/j.soilbio.2007.08.016 DOI
Leo C., Nardi F., Cucini C., Frati F., Convey P., Weedon J. T., et al. (2021). Evidence for strong environmental control on bacterial microbiomes of Antarctic springtails. Sci. Rep. 11:2973. doi: 10.1038/s41598-021-82379-x, PMID: PubMed DOI PMC
Li X. Y., Guo Y. P., Zhao L. H., Fan Y., Ji C., Zhang J. Y., et al. (2018). Protective effects of PubMed DOI
Liu D. F., Lian B., Wu C. H., Guo P. J. (2017). A comparative study of gut microbiota profiles of earthworms fed in three different substrates. Symbiosis 74, 21–29. doi: 10.1007/s13199-017-0491-6 DOI
Liu C. C., Wang C. W., Yao H. Y., Chapman S. J. (2021). Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. Sci. Total Environ. 762:144118. doi: 10.1016/j.scitotenv.2020.144118, PMID: PubMed DOI
Liu Z. J., Yang X. G., Hubbard K. G., Lin X. M. (2012). Maize potential yields and yield gaps in the changing climate of Northeast China. Glob. Change Biol. 18, 3441–3454. doi: 10.1111/j.1365-2486.2012.02774.x DOI
Łukasik P., Newton J. A., Sanders J. G., Hu Y., Moreau C. S., Kronauer D. J. C., et al. (2017). The structured diversity of specialized gut symbionts of the new world army ants. Mol. Ecol. 26, 3808–3825. doi: 10.1111/mec.14140, PMID: PubMed DOI
Mikaelyan A., Dietrich C., Köhler T., Poulsen M., Sillam-Dussès D., Brune A. (2015). Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol. Ecol. 24, 5284–5295. doi: 10.1111/mec.13376, PMID: PubMed DOI
Oliver T. H., Morecroft M. D. (2014). Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. DOI
Parks D. H., Tyson G. W., Hugenholtz P., Beiko R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124. doi: 10.1093/bioinformatics/btu494, PMID: PubMed DOI PMC
Potapov A. M., Pollierer M. M., Salmon S., Šustr V., Chen T.-W. (2021). Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. J. Anim. Ecol. 90, 1919–1933. doi: 10.1111/1365-2656.13511, PMID: PubMed DOI PMC
Potapov A. M., Tiunov A. V., Scheu S. (2019). Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37–59. doi: 10.1111/brv.12434, PMID: PubMed DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219, PMID: PubMed DOI PMC
Rosenau F., Jaeger K. E. (2000). Bacterial lipases from PubMed DOI
Sadaka-Laulan N., Ponge J. F. (2000). Influence of holm oak leaf decomposition stage on the biology of DOI
Scheunemann N., Maraun M., Scheu S., Butenschoen O. (2015). The role of shoot residues vs. crop species for soil arthropod diversity and abundance of arable systems. Soil Biol. Biochem. 81, 81–88. doi: 10.1016/j.soilbio.2014.11.006 DOI
Sepulveda J., Moeller A. H. (2020). The effects of temperature on animal gut microbiomes. Front. Microbiol. 11:384. doi: 10.3389/fmicb.2020.00384, PMID: PubMed DOI PMC
Smrž J., Čatská V. (2010). Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52, 33–40. doi: 10.1007/s13199-010-0099-6 DOI
Susanti W. I., Widyastuti R., Scheu S., Potapov A. (2021). Trophic niche differentiation and utilisation of food resources in Collembola is altered by rainforest conversion to plantation systems. PeerJ 9:e10971. doi: 10.7717/peerj.10971, PMID: PubMed DOI PMC
Valle B., Cucini C., Nardi F., Caccianiga M., Gobbi M., Musciano M. D., et al. (2021). DOI
Werren J. H., Baldo L., Clark M. E. (2008). PubMed DOI
Wüst P. K., Horn M. A., Drake H. L. (2011). Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J. 5, 92–106. doi: 10.1038/ismej.2010.99, PMID: PubMed DOI PMC
Xiang Q., Zhu D., Chen Q. L., Delgado-Baquerizo M., Su J. Q., Qiao M., et al. (2019a). Effects of diet on gut microbiota of soil collembolans. Sci. Total Environ. 676, 197–205. doi: 10.1016/j.scitotenv.2019.04.104, PMID: PubMed DOI
Xiang Q., Zhu D., Chen Q. L., O'Connor P., Yang X. R., Qiao M., et al. (2019b). Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (~2 μm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environ. Sci. Technol. 53, 12823–12834. doi: 10.1021/acs.est.9b04795, PMID: PubMed DOI
Zettel J., Zettel U., Suter C., Streich S., Egger B. (2002). Winter feeding behaviour of DOI
Zhang B., Chang L., Ni Z., Callaham M. A., Jr., Sun X., Wu D. H. (2014). Effects of land use changes on winter-active Collembola in Sanjiang plain of China. Appl. Soil Ecol. 83, 51–58. doi: 10.1016/j.apsoil.2014.03.008 DOI
Zhang B., Chang L., Ni Z., Sun X., Wu D. H. (2017). Directional migration of three DOI
Zhang X. L., Lv P. C., Xu C., Huang X. R., Rademacher T. (2021). Dryness decreases average growth rate and increases drought sensitivity of Mongolia oak trees in North China. Agric. For. Meteorol. 308-309:108611. doi: 10.1016/j.agrformet.2021.108611 DOI
Zhu D., Chen Q. L., An X. L., Yang X. R., Christie P., Ke X., et al. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem. 116, 302–310. doi: 10.1016/j.soilbio.2017.10.027 DOI
Zhu D., Delgado-Baquerizo M., Ding J., Gillings M. R., Zhu Y. G. (2021). Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome 9:189. doi: 10.1186/s40168-021-01144-4, PMID: PubMed DOI PMC