Multidimensional trophic niche revealed by complementary approaches: Gut content, digestive enzymes, fatty acids and stable isotopes in Collembola
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33914342
PubMed Central
PMC8453724
DOI
10.1111/1365-2656.13511
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, diet tracing, food webs, meta-analysis, method comparison, springtails, trophic interactions,
- MeSH
- členovci * MeSH
- ekosystém * MeSH
- izotopy dusíku analýza MeSH
- mastné kyseliny MeSH
- potravní řetězec MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izotopy dusíku MeSH
- mastné kyseliny MeSH
Trophic niche differentiation may explain coexistence and shape functional roles of species. In complex natural food webs, however, trophic niche parameters depicted by single and isolated methods may simplify the multidimensional nature of consumer trophic niches, which includes feeding processes such as food choice, ingestion, digestion, assimilation and retention. Here we explore the correlation and complementarity of trophic niche parameters tackled by four complementary methodological approaches, that is, visual gut content, digestive enzyme, fatty acid and stable isotope analyses-each assessing one or few feeding processes, and demonstrate the power of method combination. Focusing on soil ecosystems, where many omnivore species with cryptic feeding habits coexist, we chose Collembola as an example. We compiled 15 key trophic niche parameters for 125 species from 40 studies. We assessed correlations among trophic niche parameters and described variation of these parameters in different Collembola species, families and across life-forms, which represent microhabitat specialisation. Correlation between trophic niche parameters was weak in 45 out of 64 pairwise comparisons, pointing at complementarity of the four methods. Jointly, the results indicated that fungal- and plant-feeding Collembola assimilate storage, rather than structural polysaccharides, and suggested bacterial feeding as a potential alternative feeding strategy. Gut content and fatty acid analyses suggested alignment between ingestion and assimilation/retention processes in fungal- and plant-feeding Collembola. From the 15 trophic niche parameters, six were related to Collembola family identity, suggesting that not all trophic niche dimensions are phylogenetically structured. Only three parameters were related to the life-forms, suggesting that species use various feeding strategies when living in the same microenvironments. Consumers can meet their nutritional needs by varying their food choices, ingestion and digestion strategies, with the connection among different feeding processes being dependent on the consumed resource and consumer adaptations. Multiple methods reveal different dimensions, together drawing a comprehensive picture of the trophic niche. Future studies applying the multidimensional trophic niche approach will allow us to trace trophic complexity and reveal niche partitioning of omnivorous species and their functional roles, especially in cryptic environments such as soils, caves, deep ocean or benthic ecosystems.
A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
J F Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
Zobrazit více v PubMed
Anderson, J. M. (1975). The enigma of soil animal species diversity. In Progress in soil zoology (pp. 51–58). 10.1007/978-94-010-1933-0_5 DOI
Anderson, J. M., & Healey, I. N. (1972). Seasonal and inter‐specific variation in major components of the gut contents of some woodland Collembola. Journal of Animal Ecology, 41(2), 359. 10.2307/3473 DOI
Barnes, A. D., Jochum, M., Lefcheck, J. S., Eisenhauer, N., Scherber, C., O'Connor, M. I., de Ruiter, P., & Brose, U. (2018). Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution, 33(3), 186–197. 10.1016/j.tree.2017.12.007 PubMed DOI PMC
Bellwood, D. R., Wainwright, P. C., Fulton, C. J., & Hoey, A. S. (2006). Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society B: Biological Sciences, 273(1582), 101–107. 10.1098/rspb.2005.3276 PubMed DOI PMC
Berg, M. P., Stoffer, M., & van den Heuvel, H. H. (2004). Feeding guilds in Collembola based on digestive enzymes. Pedobiologia, 48(5–6), 589–601. 10.1016/j.pedobi.2004.07.006 DOI
Brose, U., & Scheu, S. (2014). Into darkness: Unravelling the structure of soil food webs. Oikos, 123(10), 1153–1156. 10.1111/oik.01768 DOI
Buse, T., Ruess, L., & Filser, J. (2013). New trophic biomarkers for Collembola reared on algal diets. Pedobiologia, 56(3), 153–159. 10.1016/j.pedobi.2013.03.005 DOI
Chahartaghi, M., Langel, R., Scheu, S., & Ruess, L. (2005). Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry, 37(9), 1718–1725. 10.1016/j.soilbio.2005.02.006 DOI
Chamberlain, P. M., & Black, H. I. J. (2005). Fatty acid compositions of Collembola: Unusually high proportions of C20 polyunsaturated fatty acids in a terrestrial invertebrate. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 140(2), 299–307. 10.1016/j.cbpc.2004.10.016 PubMed DOI
Chamberlain, P. M., Bull, I. D., Black, H. I. J., Ineson, P., & Evershed, R. P. (2005). Fatty acid composition and change in Collembola fed differing diets: Identification of trophic biomarkers. Soil Biology and Biochemistry, 37(9), 1608–1624. 10.1016/j.soilbio.2005.01.022 DOI
Chen, J., Ferris, H., Scow, K., & Graham, K. (2001). Fatty acid composition and dynamics of selected fungal‐feeding nematodes and fungi. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 130(2), 135–144. 10.1016/S1096-4959(01)00414-6 PubMed DOI
Chen, T.‐W., Sandmann, P., Schaefer, I., & Scheu, S. (2017). Neutral lipid fatty acid composition as trait and constraint in Collembola evolution. Ecology and Evolution, 7(22), 9624–9638. 10.1002/ece3.3472 PubMed DOI PMC
Crotty, F. V., Blackshaw, R. P., & Murray, P. J. (2011). Tracking the flow of bacterially derived 13C and 15N through soil faunal feeding channels. Rapid Communications in Mass Spectrometry, 25(11), 1503–1513. PubMed
de Vries, F. T., Thebault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjornlund, L., Bracht Jorgensen, H., Brady, M. V., Christensen, S., de Ruiter, P. C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W. H. G., Hotes, S., Mortimer, S. R., Setala, H., Sgardelis, S. P., … Bardgett, R. D. (2013). Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14296–14301. 10.1073/pnas.1305198110 PubMed DOI PMC
Dembitsky, V. M., Shkrob, I., & Go, J. V. (2001). Dicarboxylic and fatty acid compositions of Cyanobacteria of the genus Aphanizomenon. Biochemistry, 66(1), 5. PubMed
Endlweber, K., Ruess, L., & Scheu, S. (2009). Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biology and Biochemistry, 41(6), 1151–1154. 10.1016/j.soilbio.2009.02.022 DOI
Ferlian, O., Klarner, B., Langeneckert, A., & Scheu, S. (2015). Trophic niche differentiation and utilisation of food resources in collembolans based on complementary analyses of fatty acids and stable isotopes. Soil Biology and Biochemistry, 82, 28–35. 10.1016/j.soilbio.2014.12.012 DOI
Fujii, S., Mori, A. S., Kominami, Y., Tawa, Y., Inagaki, Y., Takanashi, S., & Takeda, H. (2016). Differential utilization of root‐derived carbon among collembolan species. Pedobiologia, 10.1016/j.pedobi.2016.05.001 DOI
Futuyma, D., & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics, 19(1), 207–233. 10.1146/annurev.es.19.110188.001231 DOI
Gisin, H. (1943). Ökologie und Lebensgemeinschaften der Collembolen im schweizerischen Exkursionsgebiet Basels. Revue Suisse de Zoologie, 50, 131–224.
González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q., & Srivastava, D. S. (2017). The multidimensional stoichiometric niche. Frontiers in Ecology and Evolution, 5, 110. 10.3389/fevo.2017.00110 DOI
Gugger, M. (2002). Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 52(3), 1007–1015. 10.1099/00207713-52-3-1007 PubMed DOI
Hagvar, S., & Kjondal, B. R. (1981). Succession, diversity and feeding habits of microarthropods in decomposing birch leaves. Pedobiologia, 22, 385–408.
Hambäck, P. A., Weingartner, E., Dalén, L., Wirta, H., & Roslin, T. (2016). Spatial subsidies in spider diets vary with shoreline structure: Complementary evidence from molecular diet analysis and stable isotopes. Ecology and Evolution, 6(23), 8431–8439. 10.1002/ece3.2536 PubMed DOI PMC
Hao, C., Chen, T.‐W., Wu, Y., Chang, L., & Wu, D. (2020). Snow microhabitats provide food resources for winter‐active Collembola. Soil Biology and Biochemistry, 143, 107731. 10.1016/j.soilbio.2020.107731 DOI
Haubert, D., Birkhofer, K., Fließbach, A., Gehre, M., Scheu, S., & Ruess, L. (2009). Trophic structure and major trophic links in conventional versus organic farming systems as indicated by carbon stable isotope ratios of fatty acids. Oikos, 118, 1579–1589. 10.1111/j.1600-0706.2009.17587.x DOI
Haubert, D., Pollierer, M. M., & Scheu, S. (2011). Fatty acid patterns as biomarker for trophic interactions: Changes after dietary switch and starvation. Soil Biology and Biochemstry, 43, 490–494. 10.1016/j.soilbio.2010.10.008 DOI
Haynert, K., Gluderer, F., Pollierer, M. M., Scheu, S., & Wehrmann, A. (2020). Food spectrum and habitat‐specific diets of benthic Foraminifera from the Wadden Sea – A fatty acid biomarker approach. Frontiers in Marine Science, 7, 510288. 10.3389/fmars.2020.510288 DOI
Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T., & Tebbe, C. C. (2018). Bacterial preferences for specific soil particle size fractions revealed by community analyses. Frontiers in Microbiology, 9, 149. 10.3389/fmicb.2018.00149 PubMed DOI PMC
Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America, 106(Supplement 2), 19659–19665. 10.1073/pnas.0905137106 PubMed DOI PMC
Hopkin, S. P. (1997). Biology of springtails: (Insecta: Collembola). Oxford Science Publications.
Hoskins, J. L., Janion‐Scheepers, C., Chown, S. L., & Duffy, G. A. (2015). Growth and reproduction of laboratory‐reared neanurid Collembola using a novel slime mould diet. Scientific Reports, 5, 11957. 10.1038/srep11957 PubMed DOI PMC
Hunt, H. W., Coleman, D. C., Ingham, E. R., Ingham, R. E., Elliott, E. T., Moore, J. C., Rose, S. L., Reid, C., & Morley, C. R. (1987). The detrital food web in a shortgrass prairie. Biology and Fertility of Soils, 3(1–2), 57–68. 10.1007/BF00260580 DOI
Hutchinson, G. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. 10.1101/SQB.1957.022.01.039 DOI
Hutchinson, G. (1978). An introduction to population biology. Yale University Press.
Jochum, M., Barnes, A. D., Ott, D., Lang, B., Klarner, B., Farajallah, A., Scheu, S., & Brose, U. (2017). Decreasing stoichiometric resource quality drives compensatory feeding across trophic levels in tropical litter invertebrate communities. The American Naturalist, 190(1), 131–143. 10.1086/691790 PubMed DOI
Kühn, J., Schweitzer, K., & Ruess, L. (2019). Diversity and specificity of lipid patterns in basal soil food web resources. PLoS ONE, 14(8), e0221102. 10.1371/journal.pone.0221102 PubMed DOI PMC
Larsen, T., Ventura, M., Maraldo, K., Triadó‐Margarit, X., Casamayor, E. O., Wang, Y. V., Andersen, N., & O'Brien, D. M. (2016). The dominant detritus‐feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts. Journal of Animal Ecology, 85(5), 1275–1285. 10.1111/1365-2656.12563 PubMed DOI
Larsen, T., Ventura, M., O'Brien, D. M., Magid, J., Lomstein, B. A., & Larsen, J. (2011). Contrasting effects of nitrogen limitation and amino acid imbalance on carbon and nitrogen turnover in three species of Collembola. Soil Biology and Biochemistry, 43(4), 749–759. 10.1016/j.soilbio.2010.12.008 DOI
Li, Z., Scheunemann, N., Potapov, A. M., Shi, L., Pausch, J., Scheu, S., & Pollierer, M. M. (2020). Incorporation of root‐derived carbon into soil microarthropods varies between cropping systems. Biology and Fertility of Soils, 56, 839–851. 10.1007/s00374-020-01467-8 DOI
Machovsky‐Capuska, G. E., Senior, A. M., Simpson, S. J., & Raubenheimer, D. (2016). The multidimensional nutritional niche. Trends in Ecology & Evolution, 31(5), 355–365. 10.1016/j.tree.2016.02.009 PubMed DOI
Mascart, T., De Troch, M., Remy, F., Michel, L. N., & Lepoint, G. (2018). Seasonal dependence on seagrass detritus and trophic niche partitioning in four copepod eco‐morphotypes. Food Webs, 16, e00086. 10.1016/j.fooweb.2018.e00086 DOI
Moore, J. C., Berlow, E. L., Coleman, D. C., Ruiter, P. C., Dong, Q., Hastings, A., Johnson, N. C., McCann, K. S., Melville, K., Morin, P. J., Nadelhoffer, K., Rosemond, A. D., Post, D. M., Sabo, J. L., Scow, K. M., Vanni, M. J., & Wall, D. H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7(7), 584–600. 10.1111/j.1461-0248.2004.00606.x DOI
Mummey, D., Holben, W., Six, J., & Stahl, P. (2006). Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microbial Ecology, 51(3), 404–411. 10.1007/s00248-006-9020-5 PubMed DOI
Naisbit, R. E., Kehrli, P., Rohr, R. P., & Bersier, L.‐F. (2011). Phylogenetic signal in predator–prey body‐size relationships. Ecology, 92(12), 2183–2189. 10.1890/10-2234.1 PubMed DOI
Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5(8), 429–436.
Ngosong, C., Gabriel, E., & Ruess, L. (2012). Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. Journal of Lipids, 2012, 1–8. 10.1155/2012/236807 PubMed DOI PMC
Nielsen, C. O. (1962). Carbohydrases in soil and litter invertebrates. Oikos, 200–215.
Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T., & Kratina, P. (2018). Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution, 9(2), 278–291. 10.1111/2041-210X.12869 DOI
Odum, W. E. (1971). Pathways of energy flow in a south Florida estuary. University of Miami Sea Grant Program.
Parimuchová, A., Šustr, V., Devetter, M., Vošta, O., Popa, I., & Kováč, Ľ. (2018). The activity of saccharolytic enzymes in Collembola is associated with species affinity for caves. International Journal of Speleology, 47(2), 10.5038/1827-806X.47.2.2150 DOI
Pollierer, M. M., Scheu, S., & Haubert, D. (2010). Taking it to the next level: Trophic transfer of marker fatty acids from basal resource to predators. Soil Biology and Biochemistry, 42(6), 919–925. 10.1016/j.soilbio.2010.02.008 DOI
Ponge, J.‐F. (2000). Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 32(6), 508–522.
Poole, T. B. (1959). Studies on the food of Collembola in a Douglas fir plantation. Proceedings of the Zoological Society of London, 132(1), 71–82.
Potapov, A. M., Brose, U., Scheu, S., & Tiunov, A. V. (2019). Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. The American Naturalist, 194(6), 823–839. 10.1086/705811 PubMed DOI
Potapov, A. M., Goncharov, A. A., Tsurikov, S. M., Tully, T., & Tiunov, A. V. (2016). Assimilation of plant‐derived freshly fixed carbon by soil collembolans: Not only via roots? Pedobiologia, 59(4), 189–193. 10.1016/j.pedobi.2016.07.002 DOI
Potapov, A. M., Korotkevich, A. Y., & Tiunov, A. V. (2018). Non‐vascular plants as a food source for litter‐dwelling Collembola: Field evidence. Pedobiologia, 66, 11–17. 10.1016/j.pedobi.2017.12.005 DOI
Potapov, A. M., Pollierer, M. M., Salmon, S., Šustr, V., & Chen, T.‐W. (2021). Data from: Multidimensional trophic niche revealed by complementary approaches: Gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. Dryad Digital Repository, 10.5061/dryad.gtht76hm6 PubMed DOI PMC
Potapov, A. M., Scheu, S., & Tiunov, A. V. (2019). Trophic consistency of supraspecific taxa in belowground invertebrate communities: Comparison across lineages and taxonomic ranks. Functional Ecology, 33(6), 1172–1183. 10.1111/1365-2435.13309 DOI
Potapov, A. M., Semenina, E. E., Korotkevich, A. Y., Kuznetsova, N. A., & Tiunov, A. V. (2016). Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology and Biochemistry, 101, 20–31. 10.1016/j.soilbio.2016.07.002 DOI
Potapov, A. M., Tiunov, A. V., & Scheu, S. (2019). Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews, 94(1), 37–59. 10.1111/brv.12434 PubMed DOI
Potapov, A. M., Tiunov, A. V., Scheu, S., Larsen, T., & Pollierer, M. M. (2019). Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: A case study on earthworms. Oecologia, 189(2), 447–460. 10.1007/s00442-018-04335-3 PubMed DOI
Potapov, M. (2001). Synopses on palaearctic Collembola, volume 3: Isotomidae. Staatliches Museum für Naturkunde.
R Core Team . (2019). R: A language and environment for statistical computing. Retrieved from http://www.R‐project.org
Ruess, L., & Chamberlain, P. M. (2010). The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology and Biochemistry, 42(11), 1898–1910. 10.1016/j.soilbio.2010.07.020 DOI
Sawahata, T., Soma, K., & Ohmasa, M. (2001). Number and gut content of Hypogastrura densiana Yosii (Collembola: Hypogastruridae) on wild mushrooms in relation to morfological features of the mushrooms. Nippon Kigakukai Kaiho, 42, 77–85.
Semenyuk, I. I., & Tiunov, A. V. (2019). Foraging behaviour as a mechanism for trophic niche separation in a millipede community of southern Vietnam. European Journal of Soil Biology, 90, 36–43. 10.1016/j.ejsobi.2018.12.001 DOI
Siepel, H., & de Ruiter‐Dijkman, E. M. (1993). Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biology and Biochemistry, 25(11), 1491–1497.
Singh, A., Tyagi, M. B., & Kumar, A. (2017). Cyanobacteria growing on tree barks possess high amount of sunscreen compound mycosporine‐like amino acids (MAAs). Plant Physiology and Biochemistry, 119, 110–120. PubMed
Singh, S. B. (1969). Preliminary observations on the food preference of certain Collembola (Insecta). Revue D'écologie et de Biologie du Sol, 6, 461–467.
Steffan, S. A., Chikaraishi, Y., Dharampal, P. S., Pauli, J. N., Guédot, C., & Ohkouchi, N. (2017). Unpacking brown food‐webs: Animal trophic identity reflects rampant microbivory. Ecology and Evolution, 7(10), 3532–3541. PubMed PMC
Swanson, A. R., Vadell, E. M., & Cavender, J. C. (1999). Global distribution of forest soil dictyostelids. Journal of Biogeography, 26(1), 133–148. 10.1046/j.1365-2699.1999.00250.x DOI
Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. University of California Press.
Tanaka, T., Ikita, K., Ashida, T., Motoyama, Y., Yamaguchi, Y., & Satouchi, K. (1996). Effects of growth temperature on the fatty acid composition of the free‐ living nematode Caenorhabditis elegans . Lipids, 10.1007/BF02524292 PubMed DOI
Tiunov, A. V. (2007). Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin, 34(4), 395–407. 10.1134/S1062359007040127 PubMed DOI
Urbášek, F., & Rusek, J. (1994). Activity of digestive enzymes in seven species of Collembola (Insecta: Entognatha). Pedobiologia (Germany), 38, 400–406.
Wende, B., Gossner, M. M., Grass, I., Arnstadt, T., Hofrichter, M., Floren, A., Linsenmair, K. E., Weisser, W. W., & Steffan‐Dewenter, I. (2017). Trophic level, successional age and trait matching determine specialization of deadwood‐based interaction networks of saproxylic beetles. Proceedings of the Royal Society B: Biological Sciences, 284(1854), 20170198. 10.1098/rspb.2017.0198 PubMed DOI PMC
Zhu, D., Chen, Q.‐L., An, X.‐L., Yang, X.‐R., Christie, P., Ke, X., Wu, L.‐H., & Zhu, Y.‐G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116, 302–310. 10.1016/j.soilbio.2017.10.027 DOI
Dryad
10.5061/dryad.gtht76hm6