food webs Dotaz Zobrazit nápovědu
Studies of food webs suggest that limited nonrandom dispersal can play an important role in structuring food webs. It is not clear, however, whether density-dependent dispersal fits empirical patterns of food webs better than density-independent dispersal. Here, we study a spatially distributed food web, using a series of population-dispersal models that contrast density-independent and density-dependent dispersal in landscapes where sampled sites are either homogeneously or heterogeneously distributed. These models are fitted to empirical data, allowing us to infer mechanisms that are consistent with the data. Our results show that models with density-dependent dispersal fit the α, β, and γ tritrophic richness observed in empirical data best. Our results also show that density-dependent dispersal leads to a critical distance threshold beyond which site similarity (i.e., β tritrophic richness) starts to decrease much faster. Such a threshold can also be detected in the empirical data. In contrast, models with density-independent dispersal do not predict such a threshold. Moreover, preferential dispersal from more centrally located sites to peripheral sites does not provide a better fit to empirical data when compared with symmetric dispersal between sites. Our results suggest that nonrandom dispersal in heterogeneous landscapes is an important driver that shapes local and regional richness (i.e., α and γ tritrophic richness, respectively) as well as the distance-decay relationship (i.e., β tritrophic richness) in food webs.
- MeSH
- biologické modely * MeSH
- býložravci * MeSH
- interakce hostitele a parazita MeSH
- mšice fyziologie MeSH
- potravní řetězec * MeSH
- sršňovití fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Česká republika MeSH
Recent modeling studies exploring the effect of consumers' adaptivity in diet composition on food web complexity invariably suggest that adaptivity in foraging decisions of consumers makes food webs more complex. That is, it allows for survival of a higher number of species when compared with non-adaptive food webs. Population-dynamical models in these studies share two features: parameters are chosen uniformly for all species, i.e. they are species-independent, and adaptive foraging is described by the search image model. In this article, we relax both these assumptions. Specifically, we allow parameters to vary among the species and consider the diet choice model as an alternative model of adaptive foraging. Our analysis leads to three important predictions. First, for species-independent parameter values for which the search image model demonstrates a significant effect of adaptive foraging on food web complexity, the diet choice model produces no such effect. Second, the effect of adaptive foraging through the search image model attenuates when parameter values cease to be species-independent. Finally, for the diet choice model we observe no (significant) effect of adaptive foraging on food web complexity. All these observations suggest that adaptive foraging does not always lead to more complex food webs. As a corollary, future studies of food web dynamics should pay careful attention to the choice of type of adaptive foraging model as well as of parameter values.
- MeSH
- apetenční chování fyziologie MeSH
- biologická adaptace fyziologie MeSH
- biologické modely MeSH
- dieta MeSH
- druhová specificita MeSH
- počítačová simulace MeSH
- populační dynamika MeSH
- potravní řetězec MeSH
- preference v jídle fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.
- MeSH
- časové faktory MeSH
- klimatické změny * MeSH
- potravní řetězec * MeSH
- savci * MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability.
1. The extent to which plant-herbivore feeding interactions are specialized is key to understand the processes maintaining the diversity of both tropical forest plants and their insect herbivores. However, studies documenting the full complexity of tropical plant-herbivore food webs are lacking. 2. We describe a complex, species-rich plant-herbivore food web for lowland rain forest in Papua New Guinea, resolving 6818 feeding links between 224 plant species and 1490 herbivore species drawn from 11 distinct feeding guilds. By standardizing sampling intensity and the phylogenetic diversity of focal plants, we are able to make the first rigorous and unbiased comparisons of specificity patterns across feeding guilds. 3. Specificity was highly variable among guilds, spanning almost the full range of theoretically possible values from extreme trophic generalization to monophagy. 4. We identify guilds of herbivores that are most likely to influence the composition of tropical forest vegetation through density-dependent herbivory or apparent competition. 5. We calculate that 251 herbivore species (48 of them unique) are associated with each rain forest tree species in our study site so that the ∼200 tree species coexisting in the lowland rain forest community are involved in ∼50,000 trophic interactions with ∼9600 herbivore species of insects. This is the first estimate of total herbivore and interaction number in a rain forest plant-herbivore food web. 6. A comprehensive classification of insect herbivores into 24 guilds is proposed, providing a framework for comparative analyses across ecosystems and geographical regions.
- MeSH
- biodiverzita MeSH
- hmyz klasifikace fyziologie MeSH
- potravní řetězec MeSH
- rostliny klasifikace MeSH
- stravovací zvyklosti fyziologie MeSH
- stromy MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Papua Nová Guinea MeSH
Heterotrophic nanoflagellates (HNF) are considered as major planktonic bacterivores, however, larger HNF taxa can also be important predators of eukaryotes. To examine this trophic cascading, natural protistan communities from a freshwater reservoir were released from grazing pressure by zooplankton via filtration through 10- and 5-µm filters, yielding microbial food webs of different complexity. Protistan growth was stimulated by amendments of five Limnohabitans strains, thus yielding five prey-specific treatments distinctly modulating protistan communities in 10- versus 5-µm fractions. HNF dynamics was tracked by applying five eukaryotic fluorescence in situ hybridization probes covering 55-90% of total flagellates. During the first experimental part, mainly small bacterivorous Cryptophyceae prevailed, with significantly higher abundances in 5-µm treatments. Larger predatory flagellates affiliating with Katablepharidacea and one Cercozoan lineage (increasing to up to 28% of total HNF) proliferated towards the experimental endpoint, having obviously small phagocytized HNF in their food vacuoles. These predatory flagellates reached higher abundances in 10-µm treatments, where small ciliate predators and flagellate hunters also (Urotricha spp., Balanion planctonicum) dominated the ciliate assemblage. Overall, our study reports pronounced cascading effects from bacteria to bacterivorous HNF, predatory HNF and ciliates in highly treatment-specific fashions, defined by both prey-food characteristics and feeding modes of predominating protists.
- MeSH
- Cercozoa * MeSH
- Cryptophyta MeSH
- hybridizace in situ fluorescenční MeSH
- potravní řetězec * MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ve sdělení je věnována pozornost problematice, která po výzkumné stránce je ve světě, ale i v ČR z větší části vyřešena, ale v praxi jí u nás stále není věnována téměř žádná pozornost. Přitom nespecifické mikrobiální toxikózy, vyvolané enzymatickou činností různých mikroorganizmů v některých substrátech, konkrétně zejména v potravinách, mohou způsobit méně významné, ale i velmi významné ohrožení lidského zdraví a to jak u jednotlivců, tak u větších skupin obyvatelstva. Jsou tedy významné nejen z hlediska mikrobiologického, ale i epidemiologického. Největší nebezpečí z tohoto hlediska představují mikroby s lipolytickou nebo proteolytickou aktivitou. V tucích (zejména v másle), nebo v potravinách s menším nebo větším podílem tuků mohou vznikat zejména aldehydy, ketony, peroxidy, epoxidy a řada jiných polymerů, v potravinách s obsahem bílkovin zejména různé formy biogenních aminů. Vznikají pak nespecifické mikrobiální toxikózy, kdy při epidemiologickém šetření vše svědčí pro alimentární toxikózu, ale bakteriální toxiny se nepodaří prokázat a možné produkty mikrobiální enzymatické činnosti nejsou brány v úvahu. V těchto případech by tedy bylo vhodné provést v podezřelé potravině, kromě vyšetření na přítomnost patogenních nebo podmíněně patogenních mikrobů a bakteriálních toxinů, kvalitativní a kvantitativní vyšetření na přítomnost lipolytických nebo proteolytických mikroorganizmů (podle složené potraviny) a jejich metabolickou aktivitu.
The paper discusses issues that research, in both the world and the Czech Republic, has for the most part been resolved. Yet in practice very little attention has been paid to them in this country. And yet non-specific microbial toxicoses produced by the enzymatic activity of various microorganisms in certain substrates, more specifically in food, may cause not only fairly insignificant, but also highly significant threats to human health, in both individuals and large groups of the population. They are thus important not only from a microbiological, but also epidemiological point of view. In this respect the greatest danger represent microbes with a lipolytic or proteolytic activity. Aldehydes, ketones, peroxides, epoxides and various other polymeres may be generated in fats, more particularly in butter, and in foodstuffs containing small or large proportion of fats, while various forms of biogenic amines may be found in foodstuffs containing proteins. The result are non-specific toxicoses - epidemiological examinations clearly point to an alimentary toxicosis, yet bacterial toxins cannot be demonstrated and possible products of enzymatic microbial activity are disregarded. In all such instances we should not only explore the suspicious foodstuffs for the presence of pathogenic or conditionally pathogenic microbes and bacterial toxins, but we should also carry out qualitative and quantitative investigations to detect lipolytic or proteolytic microorganisms (depending on the content of the foodstuff) and their metabolic activity.
Parameters characterizing the structure of the decomposer food web, biomass of the soil microflora (bacteria and fungi) and soil micro-, meso- and macrofauna were studied at 14 non-reclaimed 1- 41-year-old post-mining sites near the town of Sokolov (Czech Republic). These observations on the decomposer food webs were compared with knowledge of vegetation and soil microstructure development from previous studies. The amount of carbon entering the food web increased with succession age in a similar way as the total amount of C in food web biomass and the number of functional groups in the food web. Connectance did not show any significant changes with succession age, however. In early stages of the succession, the bacterial channel dominated the food web. Later on, in shrub-dominated stands, the fungal channel took over. Even later, in the forest stage, the bacterial channel prevailed again. The best predictor of fungal bacterial ratio is thickness of fermentation layer. We argue that these changes correspond with changes in topsoil microstructure driven by a combination of plant organic matter input and engineering effects of earthworms. In early stages, soil is alkaline, and a discontinuous litter layer on the soil surface promotes bacterial biomass growth, so the bacterial food web channel can dominate. Litter accumulation on the soil surface supports the development of the fungal channel. In older stages, earthworms arrive, mix litter into the mineral soil and form an organo-mineral topsoil, which is beneficial for bacteria and enhances the bacterial food web channel.
- MeSH
- ekosystém MeSH
- hornictví * MeSH
- potravní řetězec * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Competition in di- and tri-trophic food web modules with many competing species is studied. The food web modules considered are apparent competition between n species sharing a single predator and a diamond-like food web with a single resource, a single top predator and many competing middle species. The predators have either fixed preferences for their prey, or they switch between available prey in a way that maximizes their fitness. Dependence of these food web dynamics on environmental carrying capacity and food web connectance is studied. The results predict that optimal flexible foraging strongly weakens apparent competition and promotes species coexistence. Food web robustness (defined here as the proportion of surviving species) does not decrease with increased connectance in these food-webs. Moreover, it is shown that flexible prey switching leads to the same population equilibria as in corresponding food webs with highly specialized predators. The results show that flexible foraging behavior by predators can have very strong impact on species richness, as well as the response of communities to changes in resource enrichment and food-web connectance when compared to the same food-web topology with inflexible top predators. Several results on global stability using Lyapunov functions are provided.