Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

. 2016 May ; 27 (5) : 90. [epub] 20160314

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26975747
Odkazy

PubMed 26975747
DOI 10.1007/s10856-016-5696-3
PII: 10.1007/s10856-016-5696-3
Knihovny.cz E-zdroje

Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.

Zobrazit více v PubMed

Methods Mol Biol. 2013;1058:77-88 PubMed

Prog Neurobiol. 1998 Aug;55(5):433-61 PubMed

Biomaterials. 2009 Jul;30(20):3458-65 PubMed

Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:25-31 PubMed

J Neurosci Methods. 2005 Feb 15;141(2):171-98 PubMed

Analyst. 2009 Oct;134(10):1965-79 PubMed

Biomaterials. 2008 Aug-Sep;29(24-25):3461-8 PubMed

Acta Biomater. 2009 Oct;5(8):3076-85 PubMed

Biomaterials. 2006 Sep;27(26):4547-56 PubMed

Clin Oral Implants Res. 2011 Jul;22(7):699-705 PubMed

Biomaterials. 2012 Aug;33(24):5812-20 PubMed

Biomaterials. 2005 May;26(15):2423-40 PubMed

N Biotechnol. 2015 Jan 25;32(1):7-12 PubMed

Front Neuroeng. 2014 Jun 11;7:17 PubMed

Biomaterials. 2010 Feb;31(6):1299-306 PubMed

Colloids Surf B Biointerfaces. 2011 Jul 1;85(2):189-97 PubMed

Tissue Eng. 1999 Jun;5(3):223-40 PubMed

Nanomedicine. 2010 Feb;6(1):44-51 PubMed

J Biomed Mater Res A. 2014 Mar;102(3):842-51 PubMed

Anal Chem. 2007 Nov 15;79(22):8608-15 PubMed

Acta Biomater. 2009 Feb;5(2):755-63 PubMed

Philos Trans A Math Phys Eng Sci. 2004 Nov 15;362(1824):2537-65 PubMed

PLoS One. 2011;6(6):e20943 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...