Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26975747
DOI
10.1007/s10856-016-5696-3
PII: 10.1007/s10856-016-5696-3
Knihovny.cz E-zdroje
- MeSH
- 4-aminopyridin analogy a deriváty metabolismus MeSH
- aktiny fyziologie MeSH
- amifampridin MeSH
- bor chemie MeSH
- buněčná adheze fyziologie MeSH
- diamant chemie MeSH
- fibroblasty fyziologie MeSH
- krevní proteiny chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- membrány umělé MeSH
- nanočástice * MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- testování materiálů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-aminopyridin MeSH
- aktiny MeSH
- amifampridin MeSH
- bor MeSH
- diamant MeSH
- krevní proteiny MeSH
- membrány umělé MeSH
Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.
Department of Physics and Nanotechnology Aalborg University Aalborg ∅ Denmark
Zobrazit více v PubMed
Methods Mol Biol. 2013;1058:77-88 PubMed
Prog Neurobiol. 1998 Aug;55(5):433-61 PubMed
Biomaterials. 2009 Jul;30(20):3458-65 PubMed
Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:25-31 PubMed
J Neurosci Methods. 2005 Feb 15;141(2):171-98 PubMed
Analyst. 2009 Oct;134(10):1965-79 PubMed
Biomaterials. 2008 Aug-Sep;29(24-25):3461-8 PubMed
Acta Biomater. 2009 Oct;5(8):3076-85 PubMed
Biomaterials. 2006 Sep;27(26):4547-56 PubMed
Clin Oral Implants Res. 2011 Jul;22(7):699-705 PubMed
Biomaterials. 2012 Aug;33(24):5812-20 PubMed
Biomaterials. 2005 May;26(15):2423-40 PubMed
N Biotechnol. 2015 Jan 25;32(1):7-12 PubMed
Front Neuroeng. 2014 Jun 11;7:17 PubMed
Biomaterials. 2010 Feb;31(6):1299-306 PubMed
Colloids Surf B Biointerfaces. 2011 Jul 1;85(2):189-97 PubMed
Tissue Eng. 1999 Jun;5(3):223-40 PubMed
Nanomedicine. 2010 Feb;6(1):44-51 PubMed
J Biomed Mater Res A. 2014 Mar;102(3):842-51 PubMed
Anal Chem. 2007 Nov 15;79(22):8608-15 PubMed
Acta Biomater. 2009 Feb;5(2):755-63 PubMed
Philos Trans A Math Phys Eng Sci. 2004 Nov 15;362(1824):2537-65 PubMed
PLoS One. 2011;6(6):e20943 PubMed