Diamond/Porous Titanium Nitride Electrodes With Superior Electrochemical Performance for Neural Interfacing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30525031
PubMed Central
PMC6262293
DOI
10.3389/fbioe.2018.00171
Knihovny.cz E-zdroje
- Klíčová slova
- boron-doped diamond, electrical stimulation, electrochemistry, implantable electrodes, neural interfaces, neural prosthesis, porous diamond, titanium nitride,
- Publikační typ
- časopisecké články MeSH
Robust devices for chronic neural stimulation demand electrode materials which exhibit high charge injection (Q inj) capacity and long-term stability. Boron-doped diamond (BDD) electrodes have shown promise for neural stimulation applications, but their practical applications remain limited due to the poor charge transfer capability of diamond. In this work, we present an attractive approach to produce BDD electrodes with exceptionally high surface area using porous titanium nitride (TiN) as interlayer template. The TiN deposition parameters were systematically varied to fabricate a range of porous electrodes, which were subsequently coated by a BDD thin-film. The electrodes were investigated by surface analysis methods and electrochemical techniques before and after BDD deposition. Cyclic voltammetry (CV) measurements showed a wide potential window in saline solution (between -1.3 and 1.2 V vs. Ag/AgCl). Electrodes with the highest thickness and porosity exhibited the lowest impedance magnitude and a charge storage capacity (CSC) of 253 mC/cm2, which largely exceeds the values previously reported for porous BDD electrodes. Electrodes with relatively thinner and less porous coatings displayed the highest pulsing capacitances (C pulse), which would be more favorable for stimulation applications. Although BDD/TiN electrodes displayed a higher impedance magnitude and a lower C pulse as compared to the bare TiN electrodes, the wider potential window likely allows for higher Q inj without reaching unsafe potentials. The remarkable reduction in the impedance and improvement in the charge transfer capacity, together with the known properties of BDD films, makes this type of coating as an ideal candidate for development of reliable devices for chronic neural interfacing.
Institute for Materials Research University of Hasselt Diepenbeek Belgium
Materials Division Danish Technological Institute Århus Denmark
SMI Department of Health Science and Technology Aalborg University Aalborg Denmark
Zobrazit více v PubMed
Alcaide M., Papaioannou S., Taylor A., Fekete L., Gurevich L., Zachar V., et al. . (2016a). Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping. J. Mater. Sci. Mater. Med. 27:90. 10.1007/s10856-016-5696-3 PubMed DOI
Alcaide M., Taylor A., Fjorback M., Zachar V., Pennisi C. P. (2016b). Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation. Front. Neurosci. 10:87. 10.3389/fnins.2016.00087 PubMed DOI PMC
Alehashem S., Chambers F., Strojek J. W., Swain G. M., Ramesham R. (1995). Cyclic voltammetric studies of charge transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 67, 2812–2821. 10.1021/ac00113a014 DOI
Ariano P., Baldelli P., Carbone E., Gilardino A., Lo Giudice A., Lovisolo D., et al. (2005). Cellular adhesion and neuronal excitability on functionalised diamond surfaces. Diam. Relat. Mater. 14, 669–674. 10.1016/j.diamond.2004.11.021 DOI
Arshi N., Lu J., Joo Y. K., Lee C. G., Yoon J. H., Ahmed F. (2012). Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow. Mater. Chem. Phys. 134, 839–844. 10.1016/j.matchemphys.2012.03.078 DOI
Ashcheulov P., Taylor A., Mortet V., Poruba A., Le Formal F., Krýsová H., et al. . (2018). Nanocrystalline boron-doped diamond as a corrosion resistant anode for water oxidation via si photoelectrodes. ACS Appl. Mater. Interfaces 10, 29552–29564. 10.1021/acsami.8b08714 PubMed DOI
Berg S., Nyberg T. (2005). Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476, 215–230. 10.1016/j.tsf.2004.10.051 DOI
Bonnauron M., Saada S., Rousseau L., Lissorgues G., Mer C., Bergonzo P. (2008). High aspect ratio diamond microelectrode array for neuronal activity measurements. Diam. Rel. Mat. 17, 1399–1404. 10.1016/j.diamond.2007.12.065 DOI
Cogan S. F. (2008). Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309. 10.1146/annurev.bioeng.10.061807.160518 PubMed DOI
Compton R. G., Foord J. S., Marken F. (2003). Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15, 1349–1363. 10.1002/elan.200302830 DOI
Contreras O., Hirata G. A., Avalos-Borja M. (2000). Interface analysis of CVD diamond on TiN surfaces. Appl. Surf. Sci. 158, 236–245. 10.1016/S0169-4332(00)00014-3 DOI
Cunha L. T., Pedrosa P., Tavares C. J., Alves E., Vaz F., Fonseca C. (2009). The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materials. Electrochim. Acta 55, 59–67. 10.1016/j.electacta.2009.08.004 DOI
Garrett D. J., Ganesan K., Stacey A., Fox K., Meffin H., Prawer S. (2011). Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications. J. Neural Eng. 9:016002. 10.1088/1741-2560/9/1/016002 PubMed DOI
Garrett D. J., Tong W., Simpson D. A., Meffin H. (2016). Diamond for neural interfacing: a review. Carbon 102, 437–454. 10.1016/j.carbon.2016.02.059 DOI
Gotman I., Gutmanas E. Y., Gotman I. (2014). Titanium nitride-based coatings on implantable medical devices. Adv. Biomater. Devices Med. 1, 53–73.
Hébert C., Mazellier J. P., Scorsone E., Mermoux M., Bergonzo P. (2014a). Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71, 27–33. 10.1016/j.carbon.2013.12.083 DOI
Hébert C., Scorsone E., Bendali A., Kiran R., Cottance M., Girard H. A., et al. . (2014b). Boron doped diamond biotechnology: from sensors to neurointerfaces. Faraday Discuss. 172, 47–59. 10.1039/C4FD00040D PubMed DOI
Ho-Yin C., Aslam D. M., Wiler J. A., Casey B. (2009). A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J. Microelectromech. Syst. 18, 511–521. 10.1109/JMEMS.2009.2015493 DOI
Igasaki Y., Mitsuhashi H., Azuma K., Muto T. (1978). Structure and electrical properties of titanium nitride films. Jpn. J. Appl. Phys. 17, 85–96. 10.1143/JJAP.17.85 DOI
Ivandini T. A., Einaga Y. (2017). Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chem. Commun. 53, 1338–1347. 10.1039/C6CC08681K PubMed DOI
Kang J. H., Kim K. J. (1999). Structural, optical, and electronic properties of cubic TiNx compounds. J. Appl. Phys. 86:346 10.1063/1.370736 DOI
Kiran R., Cottance M., Joucla S., Rousseau L., Bongrain A., Yvert B., et al. (2013). Nanograss boron doped diamond microelectrode arrays for recording and stimulating neuronal tissues, in Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Barcelona: IEEE; ), 748–751.
Kraft A. (2007). Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355–385.
Kumar A., You Q., Kapat J., Mangiaracina A., Catletge A., Vohra Y. (1997). Evaluation of buffer layers for hot filament chemical vapor deposition diamond films on silicon substrates. Thin Solid Films 308–309, 209–214. 10.1016/S0040-6090(97)00669-X DOI
Liu Y., Zhao Y., Sun B., Chen C. (2013). Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713. 10.1021/ar300028m PubMed DOI
Martens F. M., Heesakkers J. P., Rijkhoff N. J. (2011). Minimal invasive electrode implantation for conditional stimulation of the dorsal genital nerve in neurogenic detrusor overactivity. Spinal Cord 49, 566–572. 10.1038/sc.2010.134 PubMed DOI
Martinez G., Shutthanandan V., Thevuthasan S., Chessa J. F., Ramana C. V. (2014). Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings. Ceram. Int. 40, 5757–5764. 10.1016/j.ceramint.2013.11.014 DOI
McDonald M., Monaco A., Vahidpour F., Haenen K., Giugliano M., Nesladek M. (2017). Diamond microelectrode arrays for in vitro neuronal recordings. MRS Commun. 7, 683–690. 10.1557/mrc.2017.62 DOI
Meijs S., Alcaide M., Sørensen C., McDonald M., Sørensen S., Rechendorff K., et al. . (2016a). Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. J. Neural Eng. 13:056011. 10.1088/1741-2560/13/5/056011 PubMed DOI
Meijs S., Fjorback M., Jensen C., Sørensen S., Rechendorff K., Rijkhoff N. J. (2015a). Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study. Front. Neurosci. 9:268. 10.3389/fnins.2015.00268 PubMed DOI PMC
Meijs S., Fjorback M., Jensen C., Sørensen S., Rechendorff K., Rijkhoff N. J. M. (2016b). Influence of fibrous encapsulation on electro-chemical properties of TiN electrodes. Med. Eng. Phys. 38, 468–476. 10.1016/j.medengphy.2016.02.010 PubMed DOI
Meijs S., McDonald M., Sørensen S., Rechendorff K., Petrák V., Nesládek M., et al. (2015b). Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films, in NEUROTECHNIX 2015 - Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics (Lisbon: ).
Meijs S., Sørensen C., Sørensen S., Rechendorff K., Fjorback M., Rijkhoff N. J. (2016c). Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes. J. Neural Eng. 13:026011. 10.1088/1741-2560/13/2/026011 PubMed DOI
Meijs S., Taylor A., Pennisi C. P., Rijkhoff N. J. M. (2013). Electrochemical characterization of boron-doped nanocrystalline diamond electrodes for neural stimulation, in 6th Annual International IEEE EMBS Conference on Neural Engineering (San Diego, CA: ).
Musa S., Rand D. R., Cott D. J., Loo J., Bartic C., Eberle W., et al. (2012). Bottom-Up SiO 2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems. ACS Nano 6, 4615–4628. 10.1021/nn201609u PubMed DOI
Norlin A., Pan J., Leygraf C. (2005). Investigation of electrochemical behavior of stimulation sensing materials for pacemaker electrode applications. J. Electrochem. Soc. 152, J85–J92. 10.1149/1.1933372 DOI
Ohring M. (ed.). (2002). Substrate surfaces and thin-film nucleation, in Materials Science of Thin Films (San Diego, CA: Academic Press; ), 357–415. 10.1016/B978-012524975-1/50010-0 DOI
Petrák V., Vlčková Živcová Z., Krýsová H., Frank O., Zukal A., Klimša L., et al. (2017). Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 114, 457–464. 10.1016/j.carbon.2016.12.012 DOI
Piret G., Hébert C., Mazellier J.-P., Rousseau L., Scorsone E., Cottance M., et al. . (2015). 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173–183. 10.1016/j.biomaterials.2015.02.021 PubMed DOI
Polini R., Kumashiro S., Jackson M. J., Amar M., Ahmed W., Sein H. (2006). A study of diamond synthesis by hot filament chemical vapor deposition on Nc coatings. J. Mater. Eng. Perform. 15, 218–222. 10.1361/105994906X95913 DOI
Prawer S., Nemanich R. J. (2004). Raman spectroscopy of diamond and doped diamond. Philos. Trans. A Math. Phys. Eng. Sci. 362, 2537–2565. 10.1098/rsta.2004.1451 PubMed DOI
Qureshi A., Gurbuz Y., Howell M., Kang W. P., Davidson J. L. (2010). Nanocrystalline diamond film for biosensor applications. Diam. Relat. Mater. 19, 457–461. 10.1016/j.diamond.2010.01.012 DOI
Rao T. N., Fujishima A. (2000). Recent advances in electrochemistry of diamond. Diam. Relat. Mater. 9, 384–389. 10.1016/S0925-9635(99)00234-4 DOI
Schwarzová-Pecková K., Vosáhlová J., Barek J., Šloufová I., Pavlova E., Petrák V., et al. (2017). Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta 243, 170–182. 10.1016/j.electacta.2017.05.006 DOI
Siuzdak K., Bogdanowicz R., Sawczak M., Sobaszek M. (2015). Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7, 551–558. 10.1039/C4NR04417G PubMed DOI
Smart S. K., Cassady A. I., Lu G. Q., Martin D. J. (2006). The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047. 10.1016/j.carbon.2005.10.011 DOI
Specht H., Krüger F., Wachter H. J., Keitel O., Leitold C., Frericks M. (2006). Electrochemical properties and stability of PVD coatings for the application in cardiac and neurological stimulation, in Medical Device Materials III - Proceedings of the Materials and Processes for Medical Devices Conference 2005 (Boston, MA: ), 169–173.
Subramanian B., Muraleedharan C. V., Ananthakumar R., Jayachandran M. (2011). A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf. Coat. Technol. 205, 5014–5020. 10.1016/j.surfcoat.2011.05.004 DOI
Suzuki A., Ivandini T. A., Yoshimi K., Fujishima A., Oyama G., Nakazato T., et al. . (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79, 8608–8615. 10.1021/ac071519h PubMed DOI
Svítková J., Ignat T., Švorc L., Labuda J., Barek J. (2016). Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 46, 248–256. 10.1080/10408347.2015.1082125 PubMed DOI
Swain G. M. (1994). The Susceptibility to surface corrosion in acidic fluoride media: a comparison of diamond, HOPG, and glassy carbon electrodes. J. Electrochem. Soc. 141, 3382 10.1149/1.2059343 DOI
Taylor A., Ashcheulov P., Hubík P., Klimša L., Kopeček J., Remeš Z., et al. (2018). Precursor gas composition optimisation for large area boron doped nano-crystalline diamond growth by MW-LA-PECVD. Carbon 128, 164–171. 10.1016/j.carbon.2017.11.063 DOI
Taylor A., Fekete L., Hubík P., Jäger A., Janíček P., Mortet V., et al. (2014). Large area deposition of boron doped nano-crystalline diamond films at low temperatures using microwave plasma enhanced chemical vapour deposition with linear antenna delivery. Diam. Relat. Mater. 47, 27–34. 10.1016/j.diamond.2014.05.002 DOI
Trouillon R., O'Hare D. (2010). Comparison of glassy carbon and boron doped diamond electrodes: resistance to biofouling. Electrochim. Acta 55, 6586–6595. 10.1016/j.electacta.2010.06.016 DOI
van Hove R. P., Sierevelt I. N., van Royen B. J., Nolte P. A. (2015). Titanium-nitride coating of orthopaedic implants: a review of the literature. Biomed Res. Int. 2015:485975. 10.1155/2015/485975 PubMed DOI PMC
Vermeeren V., Wenmackers S., Wagner P., Michiels L. (2009). DNA sensors with diamond as a promising alternative transducer material. Sensors 9, 5600–5636. 10.3390/s90705600 PubMed DOI PMC
Vlčková Živcová Z., Mortet V., Taylor A., Zukal A., Frank O., Kavan L. (2018). Electrochemical characterization of porous boron-doped diamond prepared using SiO2 fiber template. Diam. Relat. Mater. 87, 61–69. 10.1016/j.diamond.2018.05.007 DOI
Weiser P. S., Prawer S., Hoffman A., Manory R. R., Paterson P. J. K., Stuart S. (1992). Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond. J. Appl. Phys. 72, 4643–4647. 10.1063/1.352119 DOI
Williams O. A. (2011). Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640. 10.1016/j.diamond.2011.02.015 DOI
Yu Y., Wu L., Zhi J. (2014). Diamond nanowires: fabrication, structure, properties, and applications. Angew. Chem. Int. Ed. Engl. 53, 14326–14351. 10.1002/anie.201310803 PubMed DOI
Zanin H., May P. W., Fermin D. J., Plana D., Vieira S. M., Milne W. I., et al. . (2014). Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl. Mater. Interfaces 6, 990–995. 10.1021/am4044344 PubMed DOI
Zhou Y., Zhi J. (2009). The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79, 1189–1196. 10.1016/j.talanta.2009.05.026 PubMed DOI