Diamond/Porous Titanium Nitride Electrodes With Superior Electrochemical Performance for Neural Interfacing

. 2018 ; 6 () : 171. [epub] 20181115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30525031

Robust devices for chronic neural stimulation demand electrode materials which exhibit high charge injection (Q inj) capacity and long-term stability. Boron-doped diamond (BDD) electrodes have shown promise for neural stimulation applications, but their practical applications remain limited due to the poor charge transfer capability of diamond. In this work, we present an attractive approach to produce BDD electrodes with exceptionally high surface area using porous titanium nitride (TiN) as interlayer template. The TiN deposition parameters were systematically varied to fabricate a range of porous electrodes, which were subsequently coated by a BDD thin-film. The electrodes were investigated by surface analysis methods and electrochemical techniques before and after BDD deposition. Cyclic voltammetry (CV) measurements showed a wide potential window in saline solution (between -1.3 and 1.2 V vs. Ag/AgCl). Electrodes with the highest thickness and porosity exhibited the lowest impedance magnitude and a charge storage capacity (CSC) of 253 mC/cm2, which largely exceeds the values previously reported for porous BDD electrodes. Electrodes with relatively thinner and less porous coatings displayed the highest pulsing capacitances (C pulse), which would be more favorable for stimulation applications. Although BDD/TiN electrodes displayed a higher impedance magnitude and a lower C pulse as compared to the bare TiN electrodes, the wider potential window likely allows for higher Q inj without reaching unsafe potentials. The remarkable reduction in the impedance and improvement in the charge transfer capacity, together with the known properties of BDD films, makes this type of coating as an ideal candidate for development of reliable devices for chronic neural interfacing.

Zobrazit více v PubMed

Alcaide M., Papaioannou S., Taylor A., Fekete L., Gurevich L., Zachar V., et al. . (2016a). Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping. J. Mater. Sci. Mater. Med. 27:90. 10.1007/s10856-016-5696-3 PubMed DOI

Alcaide M., Taylor A., Fjorback M., Zachar V., Pennisi C. P. (2016b). Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation. Front. Neurosci. 10:87. 10.3389/fnins.2016.00087 PubMed DOI PMC

Alehashem S., Chambers F., Strojek J. W., Swain G. M., Ramesham R. (1995). Cyclic voltammetric studies of charge transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 67, 2812–2821. 10.1021/ac00113a014 DOI

Ariano P., Baldelli P., Carbone E., Gilardino A., Lo Giudice A., Lovisolo D., et al. (2005). Cellular adhesion and neuronal excitability on functionalised diamond surfaces. Diam. Relat. Mater. 14, 669–674. 10.1016/j.diamond.2004.11.021 DOI

Arshi N., Lu J., Joo Y. K., Lee C. G., Yoon J. H., Ahmed F. (2012). Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow. Mater. Chem. Phys. 134, 839–844. 10.1016/j.matchemphys.2012.03.078 DOI

Ashcheulov P., Taylor A., Mortet V., Poruba A., Le Formal F., Krýsová H., et al. . (2018). Nanocrystalline boron-doped diamond as a corrosion resistant anode for water oxidation via si photoelectrodes. ACS Appl. Mater. Interfaces 10, 29552–29564. 10.1021/acsami.8b08714 PubMed DOI

Berg S., Nyberg T. (2005). Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476, 215–230. 10.1016/j.tsf.2004.10.051 DOI

Bonnauron M., Saada S., Rousseau L., Lissorgues G., Mer C., Bergonzo P. (2008). High aspect ratio diamond microelectrode array for neuronal activity measurements. Diam. Rel. Mat. 17, 1399–1404. 10.1016/j.diamond.2007.12.065 DOI

Cogan S. F. (2008). Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309. 10.1146/annurev.bioeng.10.061807.160518 PubMed DOI

Compton R. G., Foord J. S., Marken F. (2003). Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15, 1349–1363. 10.1002/elan.200302830 DOI

Contreras O., Hirata G. A., Avalos-Borja M. (2000). Interface analysis of CVD diamond on TiN surfaces. Appl. Surf. Sci. 158, 236–245. 10.1016/S0169-4332(00)00014-3 DOI

Cunha L. T., Pedrosa P., Tavares C. J., Alves E., Vaz F., Fonseca C. (2009). The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materials. Electrochim. Acta 55, 59–67. 10.1016/j.electacta.2009.08.004 DOI

Garrett D. J., Ganesan K., Stacey A., Fox K., Meffin H., Prawer S. (2011). Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications. J. Neural Eng. 9:016002. 10.1088/1741-2560/9/1/016002 PubMed DOI

Garrett D. J., Tong W., Simpson D. A., Meffin H. (2016). Diamond for neural interfacing: a review. Carbon 102, 437–454. 10.1016/j.carbon.2016.02.059 DOI

Gotman I., Gutmanas E. Y., Gotman I. (2014). Titanium nitride-based coatings on implantable medical devices. Adv. Biomater. Devices Med. 1, 53–73.

Hébert C., Mazellier J. P., Scorsone E., Mermoux M., Bergonzo P. (2014a). Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71, 27–33. 10.1016/j.carbon.2013.12.083 DOI

Hébert C., Scorsone E., Bendali A., Kiran R., Cottance M., Girard H. A., et al. . (2014b). Boron doped diamond biotechnology: from sensors to neurointerfaces. Faraday Discuss. 172, 47–59. 10.1039/C4FD00040D PubMed DOI

Ho-Yin C., Aslam D. M., Wiler J. A., Casey B. (2009). A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J. Microelectromech. Syst. 18, 511–521. 10.1109/JMEMS.2009.2015493 DOI

Igasaki Y., Mitsuhashi H., Azuma K., Muto T. (1978). Structure and electrical properties of titanium nitride films. Jpn. J. Appl. Phys. 17, 85–96. 10.1143/JJAP.17.85 DOI

Ivandini T. A., Einaga Y. (2017). Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chem. Commun. 53, 1338–1347. 10.1039/C6CC08681K PubMed DOI

Kang J. H., Kim K. J. (1999). Structural, optical, and electronic properties of cubic TiNx compounds. J. Appl. Phys. 86:346 10.1063/1.370736 DOI

Kiran R., Cottance M., Joucla S., Rousseau L., Bongrain A., Yvert B., et al. (2013). Nanograss boron doped diamond microelectrode arrays for recording and stimulating neuronal tissues, in Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Barcelona: IEEE; ), 748–751.

Kraft A. (2007). Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355–385.

Kumar A., You Q., Kapat J., Mangiaracina A., Catletge A., Vohra Y. (1997). Evaluation of buffer layers for hot filament chemical vapor deposition diamond films on silicon substrates. Thin Solid Films 308–309, 209–214. 10.1016/S0040-6090(97)00669-X DOI

Liu Y., Zhao Y., Sun B., Chen C. (2013). Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713. 10.1021/ar300028m PubMed DOI

Martens F. M., Heesakkers J. P., Rijkhoff N. J. (2011). Minimal invasive electrode implantation for conditional stimulation of the dorsal genital nerve in neurogenic detrusor overactivity. Spinal Cord 49, 566–572. 10.1038/sc.2010.134 PubMed DOI

Martinez G., Shutthanandan V., Thevuthasan S., Chessa J. F., Ramana C. V. (2014). Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings. Ceram. Int. 40, 5757–5764. 10.1016/j.ceramint.2013.11.014 DOI

McDonald M., Monaco A., Vahidpour F., Haenen K., Giugliano M., Nesladek M. (2017). Diamond microelectrode arrays for in vitro neuronal recordings. MRS Commun. 7, 683–690. 10.1557/mrc.2017.62 DOI

Meijs S., Alcaide M., Sørensen C., McDonald M., Sørensen S., Rechendorff K., et al. . (2016a). Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. J. Neural Eng. 13:056011. 10.1088/1741-2560/13/5/056011 PubMed DOI

Meijs S., Fjorback M., Jensen C., Sørensen S., Rechendorff K., Rijkhoff N. J. (2015a). Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study. Front. Neurosci. 9:268. 10.3389/fnins.2015.00268 PubMed DOI PMC

Meijs S., Fjorback M., Jensen C., Sørensen S., Rechendorff K., Rijkhoff N. J. M. (2016b). Influence of fibrous encapsulation on electro-chemical properties of TiN electrodes. Med. Eng. Phys. 38, 468–476. 10.1016/j.medengphy.2016.02.010 PubMed DOI

Meijs S., McDonald M., Sørensen S., Rechendorff K., Petrák V., Nesládek M., et al. (2015b). Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films, in NEUROTECHNIX 2015 - Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics (Lisbon: ).

Meijs S., Sørensen C., Sørensen S., Rechendorff K., Fjorback M., Rijkhoff N. J. (2016c). Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes. J. Neural Eng. 13:026011. 10.1088/1741-2560/13/2/026011 PubMed DOI

Meijs S., Taylor A., Pennisi C. P., Rijkhoff N. J. M. (2013). Electrochemical characterization of boron-doped nanocrystalline diamond electrodes for neural stimulation, in 6th Annual International IEEE EMBS Conference on Neural Engineering (San Diego, CA: ).

Musa S., Rand D. R., Cott D. J., Loo J., Bartic C., Eberle W., et al. (2012). Bottom-Up SiO 2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems. ACS Nano 6, 4615–4628. 10.1021/nn201609u PubMed DOI

Norlin A., Pan J., Leygraf C. (2005). Investigation of electrochemical behavior of stimulation sensing materials for pacemaker electrode applications. J. Electrochem. Soc. 152, J85–J92. 10.1149/1.1933372 DOI

Ohring M. (ed.). (2002). Substrate surfaces and thin-film nucleation, in Materials Science of Thin Films (San Diego, CA: Academic Press; ), 357–415. 10.1016/B978-012524975-1/50010-0 DOI

Petrák V., Vlčková Živcová Z., Krýsová H., Frank O., Zukal A., Klimša L., et al. (2017). Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 114, 457–464. 10.1016/j.carbon.2016.12.012 DOI

Piret G., Hébert C., Mazellier J.-P., Rousseau L., Scorsone E., Cottance M., et al. . (2015). 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173–183. 10.1016/j.biomaterials.2015.02.021 PubMed DOI

Polini R., Kumashiro S., Jackson M. J., Amar M., Ahmed W., Sein H. (2006). A study of diamond synthesis by hot filament chemical vapor deposition on Nc coatings. J. Mater. Eng. Perform. 15, 218–222. 10.1361/105994906X95913 DOI

Prawer S., Nemanich R. J. (2004). Raman spectroscopy of diamond and doped diamond. Philos. Trans. A Math. Phys. Eng. Sci. 362, 2537–2565. 10.1098/rsta.2004.1451 PubMed DOI

Qureshi A., Gurbuz Y., Howell M., Kang W. P., Davidson J. L. (2010). Nanocrystalline diamond film for biosensor applications. Diam. Relat. Mater. 19, 457–461. 10.1016/j.diamond.2010.01.012 DOI

Rao T. N., Fujishima A. (2000). Recent advances in electrochemistry of diamond. Diam. Relat. Mater. 9, 384–389. 10.1016/S0925-9635(99)00234-4 DOI

Schwarzová-Pecková K., Vosáhlová J., Barek J., Šloufová I., Pavlova E., Petrák V., et al. (2017). Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim. Acta 243, 170–182. 10.1016/j.electacta.2017.05.006 DOI

Siuzdak K., Bogdanowicz R., Sawczak M., Sobaszek M. (2015). Enhanced capacitance of composite TiO 2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy. Nanoscale 7, 551–558. 10.1039/C4NR04417G PubMed DOI

Smart S. K., Cassady A. I., Lu G. Q., Martin D. J. (2006). The biocompatibility of carbon nanotubes. Carbon 44, 1034–1047. 10.1016/j.carbon.2005.10.011 DOI

Specht H., Krüger F., Wachter H. J., Keitel O., Leitold C., Frericks M. (2006). Electrochemical properties and stability of PVD coatings for the application in cardiac and neurological stimulation, in Medical Device Materials III - Proceedings of the Materials and Processes for Medical Devices Conference 2005 (Boston, MA: ), 169–173.

Subramanian B., Muraleedharan C. V., Ananthakumar R., Jayachandran M. (2011). A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf. Coat. Technol. 205, 5014–5020. 10.1016/j.surfcoat.2011.05.004 DOI

Suzuki A., Ivandini T. A., Yoshimi K., Fujishima A., Oyama G., Nakazato T., et al. . (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79, 8608–8615. 10.1021/ac071519h PubMed DOI

Svítková J., Ignat T., Švorc L., Labuda J., Barek J. (2016). Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 46, 248–256. 10.1080/10408347.2015.1082125 PubMed DOI

Swain G. M. (1994). The Susceptibility to surface corrosion in acidic fluoride media: a comparison of diamond, HOPG, and glassy carbon electrodes. J. Electrochem. Soc. 141, 3382 10.1149/1.2059343 DOI

Taylor A., Ashcheulov P., Hubík P., Klimša L., Kopeček J., Remeš Z., et al. (2018). Precursor gas composition optimisation for large area boron doped nano-crystalline diamond growth by MW-LA-PECVD. Carbon 128, 164–171. 10.1016/j.carbon.2017.11.063 DOI

Taylor A., Fekete L., Hubík P., Jäger A., Janíček P., Mortet V., et al. (2014). Large area deposition of boron doped nano-crystalline diamond films at low temperatures using microwave plasma enhanced chemical vapour deposition with linear antenna delivery. Diam. Relat. Mater. 47, 27–34. 10.1016/j.diamond.2014.05.002 DOI

Trouillon R., O'Hare D. (2010). Comparison of glassy carbon and boron doped diamond electrodes: resistance to biofouling. Electrochim. Acta 55, 6586–6595. 10.1016/j.electacta.2010.06.016 DOI

van Hove R. P., Sierevelt I. N., van Royen B. J., Nolte P. A. (2015). Titanium-nitride coating of orthopaedic implants: a review of the literature. Biomed Res. Int. 2015:485975. 10.1155/2015/485975 PubMed DOI PMC

Vermeeren V., Wenmackers S., Wagner P., Michiels L. (2009). DNA sensors with diamond as a promising alternative transducer material. Sensors 9, 5600–5636. 10.3390/s90705600 PubMed DOI PMC

Vlčková Živcová Z., Mortet V., Taylor A., Zukal A., Frank O., Kavan L. (2018). Electrochemical characterization of porous boron-doped diamond prepared using SiO2 fiber template. Diam. Relat. Mater. 87, 61–69. 10.1016/j.diamond.2018.05.007 DOI

Weiser P. S., Prawer S., Hoffman A., Manory R. R., Paterson P. J. K., Stuart S. (1992). Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond. J. Appl. Phys. 72, 4643–4647. 10.1063/1.352119 DOI

Williams O. A. (2011). Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640. 10.1016/j.diamond.2011.02.015 DOI

Yu Y., Wu L., Zhi J. (2014). Diamond nanowires: fabrication, structure, properties, and applications. Angew. Chem. Int. Ed. Engl. 53, 14326–14351. 10.1002/anie.201310803 PubMed DOI

Zanin H., May P. W., Fermin D. J., Plana D., Vieira S. M., Milne W. I., et al. . (2014). Porous boron-doped diamond/carbon nanotube electrodes. ACS Appl. Mater. Interfaces 6, 990–995. 10.1021/am4044344 PubMed DOI

Zhou Y., Zhi J. (2009). The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79, 1189–1196. 10.1016/j.talanta.2009.05.026 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...