• This record comes from PubMed

Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

. 2016 ; 10 () : 87. [epub] 20160308

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time.

See more in PubMed

Amaral M., Dias A. G., Gomes P. S., Lopes M. A., Silva R. F., Santos J. D., et al. . (2008). Nanocrystalline diamond: in vitro biocompatibility assessment by MG63 and human bone marrow cells cultures. J. Biomed. Mater. Res. A 87, 91–99. 10.1002/jbm.a.31742 PubMed DOI

Ariano P., Lo Giudice A., Marcantoni A., Vittone E., Carbone E., Lovisolo D. (2009). A diamond-based biosensor for the recording of neuronal activity. Biosens. Bioelectron. 24, 2046–2050. 10.1016/j.bios.2008.10.017 PubMed DOI

Boehler C., Stieglitz T., Asplund M. (2015). Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials 67, 346–353. 10.1016/j.biomaterials.2015.07.036 PubMed DOI

Booth L., Catledge S. A., Nolen D., Thompson R. G. (2011). Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials 4, 857–868. 10.3390/ma4050857 PubMed DOI PMC

Catledge S. A., Thomas V., Vohra Y. K. (2013). Nanostructured diamond coatings for orthopaedic applications. Woodhead Publ. Ser. Biomater. 2013, 105–150. 10.1533/9780857093516.2.105 PubMed DOI PMC

Chan H.-Y., Aslam D. M., Wiler J. A., Casey B. (2009). A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J. Microelectromech. Syst. 18, 511–521. 10.1109/JMEMS.2009.2015493 DOI

Cogan S. F. (2008). Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309. 10.1146/annurev.bioeng.10.061807.160518 PubMed DOI

Ferrari A. C., Robertson J. (2001). Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63:121405 10.1103/PhysRevB.63.121405 DOI

Fierro S., Seishima R., Nagano O., Saya H., Einaga Y. (2013). In vivo pH monitoring using boron doped diamond microelectrode and silver needles: application to stomach disorder diagnosis. Sci. Rep. 3:3257. 10.1038/srep03257 PubMed DOI PMC

Fierro S., Yoshikawa M., Nagano O., Yoshimi K., Saya H., Einaga Y. (2012). In vivo assessment of cancerous tumors using boron doped diamond microelectrode. Sci. Rep. 2:901. 10.1038/srep00901 PubMed DOI PMC

Garrett D. J., Saunders A. L., McGowan C., Specks J., Ganesan K., Meffin H., et al. . (2016). In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants. J. Biomed. Mater. Res. B Appl. Biomater. 104, 19–26. 10.1002/jbm.b.33331 PubMed DOI

Grausova L., Kromka A., Burdikova Z., Eckhardt A., Rezek B., Vacik J., et al. . (2011). Enhanced growth and osteogenic differentiation of human osteoblast-like cells on boron-doped nanocrystalline diamond thin films. PLoS ONE 6:e20943. 10.1371/journal.pone.0020943 PubMed DOI PMC

Grill W. M., Mortimer J. T. (1994). Electrical properties of implant encapsulation tissue. Ann. Biomed. Eng. 22, 23–33. 10.1007/BF02368219 PubMed DOI

Halpern J. M., Cullins M. J., Chiel H. J., Martin H. B. (2010). Chronic in vivo nerve electrical recordings of Aplysia californica using a boron-doped polycrystalline diamond electrode. Diam. Relat. Mater. 19, 178–181. 10.1016/j.diamond.2009.08.006 DOI

Halpern J. M., Xie S., Sutton G. P., Higashikubo B. T., Chestek C. A., Lu H., et al. (2006). Diamond electrodes for neurodynamic studies in Aplysia californica. Diam. Relat. Mater. 15, 183–187. 10.1016/j.diamond.2005.06.039 DOI

Hébert C., Mazellier J. P., Scorsone E., Mermoux M., Bergonzo P. (2014). Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71, 27–33. 10.1016/j.carbon.2013.12.083 DOI

He Y., Huang W., Chen R., Zhang W., Lin H. (2015). Improved electrochemical performance of boron-doped diamond electrode depending on the structure of titanium substrate. J. Electroanal. Chem. 758, 170–177. 10.1016/j.jelechem.2015.08.017 DOI

Jensen C., Gurevich L., Patriciu A., Struijk J. J., Zachar V., Pennisi C. P. (2012). Increased connective tissue attachment to silicone implants by a water vapor plasma treatment. J. Biomed. Mater. Res. A 100A, 3400–3407. 10.1002/jbm.a.34284 PubMed DOI

Kim Y. H., Kim G. H., Kim A. Y., Han Y. H., Chung M.-A., Jung S.-D. (2015). In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays. J. Neural Eng. 12:066029. 10.1088/1741-2560/12/6/066029 PubMed DOI

Kloss F. R., Steinmüller Nethl D., Stigler R. G., Ennemoser T., Rasse M., Hächl O. (2011). In vivo investigation on connective tissue healing to polished surfaces with different surface wettability. Clin. Oral Implants Res. 22, 699–705. 10.1111/j.1600-0501.2010.02038.x PubMed DOI

Kopecek M., Bacakova L., Vacik J., Fendrych F., Vorlicek V., Kratochvilova I., et al. (2008). Improved adhesion, growth and maturation of human bone derived cells on nanocrystalline diamond films. Phys. Status Solidi A Appl. Res. 205, 2146–2153. 10.1002/pssa.200879729 DOI

Kromka A., Grausova L., Bacakova L., Vacik J., Rezek B., Vanecek M., et al. (2010). Semiconducting to metallic-like boron doping of nanocrystalline diamond films and its effect on osteoblastic cells. Diamond Relat. Mater. 19, 190–195. 10.1016/j.diamond.2009.10.003 DOI

Liang Q., Stanishevsky A., Vohra Y. K. (2009). Tribological properties of undoped and boron-doped nanocrystalline diamond films. Thin Solid Films 517, 800–804. 10.1016/j.tsf.2008.08.171 PubMed DOI PMC

Luong J. H. T., Male K. B., Glennon J. D. (2009). Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134, 1965–1979. 10.1039/b910206j PubMed DOI

Marin C., Fernández E. (2010). Biocompatibility of intracortical microelectrodes: current status and future prospects. Front. Neuroeng. 3:8. 10.3389/fneng.2010.00008 PubMed DOI PMC

Martens F. M. J., Heesakkers J. P. F. A., Rijkhoff N. J. M. (2010). Minimal invasive electrode implantation for conditional stimulation of the dorsal genital nerve in neurogenic detrusor overactivity. Spinal Cord 49, 566–572. 10.1038/sc.2010.134 PubMed DOI

Meijs S., Fjorback M., Sørensen S., Rechendorff K., Rijkhoff N. M. (2014). Increasing voltage transients using implanted titanium nitride neural stimulation electrodes, in Biosystems & Biorobotics, eds Jensen W., Andersen O. K., Akay M. (Aalborg: Springer International Publishing; ), 543– 551.

Meijs S., McDonald M., Sørensen S., Rechendorff K., Petrak V., Nesladek M., et al. (2015a). Increased charge storage capacity of titanium nitride electrodes by deposition of boron-doped nanocrystalline diamond films, in Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics (Lisbon: SciTePress; ), 106–109. 10.5220/0005606401060109 DOI

Meijs S., Sorensen C., Sorensen S., Rechendorff K., Fjorback M., Rijkhoff N. J. M. (2015b). Comparison of the electrochemical properties of smooth and porous TiN electrode coatings in rats, in Proceedings of the 7th Annual International IEEE EMBS Conference on Neural Engineering (IEEE) (Montpellier: ), 486–489. 10.1109/ner.2015.7146665 DOI

Meijs S., Taylor A., Pennisi C. P., Rijkhoff N. J. M. (2013). Electrochemical characterization of boron-doped nanocrystalline diamond electrodes for neural stimulation, in 6th Annual International IEEE EMBS Conference on Neural Engineering (San Diego, CA: IEEE; ).

Merrill D. R. (2014). Materials considerations of implantable neuroengineering devices for clinical use. Curr. Opin. Solid State Mater. Sci. 18, 329–336. 10.1016/j.cossms.2014.07.002 DOI

Merrill D. R., Bikson M., Jefferys J. G. R. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198. 10.1016/j.jneumeth.2004.10.020 PubMed DOI

Ortiz-Catalan M., Brånemark R., Håkansson B., Delbeke J. (2012). On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed. Eng. Online 11:33. 10.1186/1475-925X-11-33 PubMed DOI PMC

Park J., Show Y., Quaiserova V., Galligan J. J., Fink G. D., Swain G. M. (2005). Diamond microelectrodes for use in biological environments. J. Electroanal. Chem. 583, 56–68. 10.1016/j.jelechem.2005.04.032 DOI

Pennisi C. P., Alcaide M., Papaioannou S., Meijs S., Taylor A., Nesladek M., et al. (2014). Biocompatibility and electrochemical assessment of boron doped nanocrystalline diamond electrodes for neural stimulation, in Front. Neuroeng. Conference Abstract: MERIDIAN 30M Workshop (Brixen: ).

Piret G., Hébert C., Mazellier J. P., Rousseau L., Scorsone E., Cottance M., et al. . (2015). 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173–183. 10.1016/j.biomaterials.2015.02.021 PubMed DOI

Polikov V. S., Tresco P. A., Reichert W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18. 10.1016/j.jneumeth.2005.08.015 PubMed DOI

Prawer S., Nemanich R. J. (2004). Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 362, 2537–2565. 10.1098/rsta.2004.1451 PubMed DOI

Roeser J., Alting N. F. A., Permentier H. P., Bruins A. P., Bischoff R. (2013). Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides. Anal. Chem. 85, 6626–6632. 10.1021/ac303795c PubMed DOI

Satomi K., Akagawa Y., Nikai H., Tsuru H. (1988). Tissue response to implanted ceramic-coated titanium alloys in rats. J. Oral Rehabil. 15, 339–345. 10.1111/j.1365-2842.1988.tb00166.x PubMed DOI

Schaldach M., Hubmann M., Weikl A., Hardt R. (1990). Sputter-deposited TiN electrode coatings for superior sensing and pacing performance. Pacing Clin. Electrophysiol. 13, 1891–1895. 10.1111/j.1540-8159.1990.tb06911.x PubMed DOI

Seymour J. P., Kipke D. R. (2007). Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28, 3594–3607. 10.1016/j.biomaterials.2007.03.024 PubMed DOI

Shin D., Tryk D. A., Fujishima A., Merko I A., Wang J. (2005). Resistance to surfactant and protein fouling effects at conducting diamond electrodes. Electroanalysis 17, 305–311. 10.1002/elan.200403104 DOI

Smisdom N., Smets I., Williams O. A., Daenen M., Wenmackers S., Haenen K., et al. (2009). Chinese hamster ovary cell viability on hydrogen and oxygen terminated nano and microcrystalline diamond surfaces. Phys. Status Solidi A Appl. Res. 206, 2042–2047. 10.1002/pssa.200982206 DOI

Suzuki A., Ivandini T. A., Yoshimi K., Fujishima A., Oyama G., Nakazato T., et al. . (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79, 8608–8615. 10.1021/ac071519h PubMed DOI

Szarowski D. H., Andersen M. D., Retterer S., Spence A. J., Isaacson M., Craighead H. G., et al. . (2003). Brain responses to micro-machined silicon devices. Brain Res. 983, 23–35. 10.1016/S0006-8993(03)03023-3 PubMed DOI

Tang L., Tsai C., Gerberich W. W., Kruckeberg L., Kania D. R. (1995). Biocompatibility of chemical-vapour-deposited diamond. Biomaterials 16, 483–488. PubMed

Taylor A., Ashcheulov P., Èada M., Fekete L. (2015). Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasma−enhanced chemical vapour deposition system. Phys. Status Solidi (a) 212, 2418–2423. 10.1002/pssa.201532183 DOI

Taylor A. C., Vagaska B., Edgington R., Hébert C., Ferretti P., Bergonzo P., et al. . (2015). Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. J. Neural Eng. 12:066016. 10.1016/0142-9612(95)98822-V PubMed DOI

Taylor A., Fekete L., Hubík P., Jäger A., Janíèek P., Mortet V., et al. (2014). Large area deposition of boron doped nano-crystalline diamond films at low temperatures using microwave plasma enhanced chemical vapour deposition with linear antenna delivery. Diamond Relat. Mater. 47, 27–34. 10.1016/j.diamond.2014.05.002 DOI

Vaitkuviene A., McDonald M., Vahidpour F., Noben J.-P., Sanen K., Ameloot M., et al. . (2015). Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells. N. Biotechnol. 32, 7–12. 10.1016/j.nbt.2014.06.008 PubMed DOI

Weiland J. D., Anderson D. J., Humayun M. S. (2002). In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 49, 1574–1579. 10.1109/TBME.2002.805487 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...