Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival

. 2021 Feb 23 ; 12 (1) : 1244. [epub] 20210223

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33623024

Grantová podpora
MR/L00092X/1 Medical Research Council - United Kingdom
MR/P027989/1 Medical Research Council - United Kingdom
200807/Z/16/Z Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
200807 Wellcome Trust - United Kingdom

Odkazy

PubMed 33623024
PubMed Central PMC7902614
DOI 10.1038/s41467-021-21360-8
PII: 10.1038/s41467-021-21360-8
Knihovny.cz E-zdroje

Differentiation between distinct stages is fundamental for the life cycle of intracellular protozoan parasites and for transmission between hosts, requiring stringent spatial and temporal regulation. Here, we apply kinome-wide gene deletion and gene tagging in Leishmania mexicana promastigotes to define protein kinases with life cycle transition roles. Whilst 162 are dispensable, 44 protein kinase genes are refractory to deletion in promastigotes and are likely core genes required for parasite replication. Phenotyping of pooled gene deletion mutants using bar-seq and projection pursuit clustering reveal functional phenotypic groups of protein kinases involved in differentiation from metacyclic promastigote to amastigote, growth and survival in macrophages and mice, colonisation of the sand fly and motility. This unbiased interrogation of protein kinase function in Leishmania allows targeted investigation of organelle-associated signalling pathways required for successful intracellular parasitism.

Komentář v

PubMed

Zobrazit více v PubMed

Matthews KR. Controlling and coordinating development in vector-transmitted parasites. Science. 2011;331:1149–1153. doi: 10.1126/science.1198077. PubMed DOI PMC

Solyakov L, et al. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat. Commun. 2011;2:565. doi: 10.1038/ncomms1558. PubMed DOI

Stanway RR, et al. Genome-scale identification of essential metabolic processes for targeting the Plasmodium liver stage. Cell. 2019;179:1112–1128.e26. doi: 10.1016/j.cell.2019.10.030. PubMed DOI PMC

Mony BM, et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature. 2014;505:681–685. doi: 10.1038/nature12864. PubMed DOI PMC

Cayla M, McDonald L, MacGregor P, Matthews K. An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei. Elife. 2020;9:e51620. doi: 10.7554/eLife.51620. PubMed DOI PMC

Volf P, Hajmova M, Sadlova J, Votypka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int. J. Parasitol. 2004;34:1221–1227. doi: 10.1016/j.ijpara.2004.07.010. PubMed DOI

Walters LL. Leishmania differentiation in natural and unnatural sand fly hosts 1. J. Eukaryot. Microbiol. 1993;40:196–206. doi: 10.1111/j.1550-7408.1993.tb04904.x. PubMed DOI

Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit. Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC

Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, Zilberstein D. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J. Proteome Res. 2013;12:3405–3412. doi: 10.1021/pr4002492. PubMed DOI

Parsons M, Worthey EA, Ward PN, Mottram JC. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics. 2005;6:127. doi: 10.1186/1471-2164-6-127. PubMed DOI PMC

Jones NG, et al. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog. 2014;10:e1003886. doi: 10.1371/journal.ppat.1003886. PubMed DOI PMC

Ward P, Equinet L, Packer J, Doerig C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics. 2004;5:79. doi: 10.1186/1471-2164-5-79. PubMed DOI PMC

Cayla M, et al. Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability. PLoS Pathog. 2014;10:e1004347. doi: 10.1371/journal.ppat.1004347. PubMed DOI PMC

Wiese M, Kuhn D, Grünfelder CG. Protein kinase involved in flagellar-length control. Eukaryot. Cell. 2003;2:769–777. doi: 10.1128/EC.2.4.769-777.2003. PubMed DOI PMC

Erdmann M, Scholz A, Melzer IM, Schmetz C, Wiese M. Interacting protein kinases involved in the regulation of flagellar length. Mol. Biol. Cell. 2006;17:2035–2045. doi: 10.1091/mbc.e05-10-0976. PubMed DOI PMC

Dacher M, et al. Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses. Mol. Microbiol. 2014;93:146–166. doi: 10.1111/mmi.12648. PubMed DOI

Martin JL, et al. Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog. 2014;10:e1003938. doi: 10.1371/journal.ppat.1003938. PubMed DOI PMC

Mandal G, et al. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol. Microbiol. 2012;85:1204–1218. doi: 10.1111/j.1365-2958.2012.08169.x. PubMed DOI PMC

Goldman-Pinkovich A, et al. An arginine deprivation response pathway is induced in Leishmania during macrophage invasion. PLoS Pathog. 2016;12:e1005494. doi: 10.1371/journal.ppat.1005494. PubMed DOI PMC

Kuhn D, Wiese M. LmxPK4, a mitogen-activated protein kinase kinase homologue of Leishmania mexicana with a potential role in parasite differentiation. Mol. Microbiol. 2005;56:1169–1182. doi: 10.1111/j.1365-2958.2005.04614.x. PubMed DOI

Bengs F, Scholz A, Kuhn D, Wiese M. LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol. Microbiol. 2005;55:1606–1615. doi: 10.1111/j.1365-2958.2005.04498.x. PubMed DOI

Madeira da Silva L, Beverley SM. Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity. Proc. Natl Acad. Sci. USA. 2010;107:11965–11970. doi: 10.1073/pnas.1004599107. PubMed DOI PMC

Bhattacharya A, et al. Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat. Commun. 2019;10:5627. doi: 10.1038/s41467-019-13344-6. PubMed DOI PMC

Duncan SM, et al. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol. Microbiol. 2016;100:931–944. doi: 10.1111/mmi.13375. PubMed DOI PMC

Martel D, Beneke T, Gluenz E, Späth GF, Rachidi N. Characterisation of casein kinase 1.1 in Leishmania donovani using the CRISPR Cas9 toolkit. Biomed. Res. Int. 2017;2017:4635605. doi: 10.1155/2017/4635605. PubMed DOI PMC

Rachidi N, et al. Pharmacological assessment defines Leishmania donovani casein kinase 1 as a drug target and reveals important functions in parasite viability and intracellular infection. Antimicrob. Agents Chemother. 2014;58:1501–1515. doi: 10.1128/AAC.02022-13. PubMed DOI PMC

Agron PG, Reed SL, Engel JN. An essential, putative MEK kinase of Leishmania major. Mol. Biochem. Parasitol. 2005;142:121–125. doi: 10.1016/j.molbiopara.2005.03.007. PubMed DOI

Rocha VPC, et al. Leishmania dual-specificity tyrosine-regulated kinase 1 (DYRK1) is required for sustaining Leishmania stationary phase phenotype. Mol. Microbiol. 2020;113:983–1002. doi: 10.1111/mmi.14464. PubMed DOI

Wang Q, Melzer IM, Kruse M, Sander-Juelch C, Wiese M. LmxMPK4, a mitogen-activated protein (MAP) kinase homologue essential for promastigotes and amastigotes of Leishmania mexicana. Kinetoplastid Biol. Dis. 2005;4:6. doi: 10.1186/1475-9292-4-6. PubMed DOI PMC

Mottram JC, McCready BP, Brown KG, Grant KM. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana. Mol. Microbiol. 1996;22:573–583. doi: 10.1046/j.1365-2958.1996.00136.x. PubMed DOI

Beneke T, et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci. 2017;4:170095. doi: 10.1098/rsos.170095. PubMed DOI PMC

Cruz A, Coburn CM, Beverley SM. Double targeted gene replacement for creating null mutants. Proc. Natl Acad. Sci. USA. 1991;88:7170–7174. doi: 10.1073/pnas.88.16.7170. PubMed DOI PMC

Damianou A, et al. Essential roles for deubiquitination in Leishmania life cycle progression. PLoS Pathog. 2020;16:e1008455. doi: 10.1371/journal.ppat.1008455. PubMed DOI PMC

Jones NG, Catta-Preta CMC, Lima APCA, Mottram JC. Genetically validated drug targets in Leishmania: current knowledge and future prospects. ACS Infect. Dis. 2018;4:467–477. doi: 10.1021/acsinfecdis.7b00244. PubMed DOI PMC

Carrera AC, Alexandrov K, Roberts TM. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc. Natl Acad. Sci. USA. 1993;90:442–446. doi: 10.1073/pnas.90.2.442. PubMed DOI PMC

Halliday C, et al. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol. Biochem. Parasitol. 2019;230:24–36. doi: 10.1016/j.molbiopara.2018.12.003. PubMed DOI PMC

Burge RJ, Damianou A, Wilkinson AJ, Rodenko B, Mottram JC. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog. 2020;16:e1008784. doi: 10.1371/journal.ppat.1008784. PubMed DOI PMC

Wiese M. A mitogen‐activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO J. 1998;17:2619–2628. doi: 10.1093/emboj/17.9.2619. PubMed DOI PMC

Bolton RJ, Krzanowski WJ. Projection pursuit clustering for exploratory data analysis. J. Comput. Graph. Stat. 2003;12:121–142. doi: 10.1198/1061860031374. DOI

Fernandez-Cortes F, et al. RNAi screening identifies Trypanosoma brucei stress response protein kinases required for survival in the mouse. Sci. Rep. 2017;7:6156. doi: 10.1038/s41598-017-06501-8. PubMed DOI PMC

Beneke T, et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019;15:e1007828. doi: 10.1371/journal.ppat.1007828. PubMed DOI PMC

Hassan P, Fergusson D, Grant KM, Mottram JC. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol. Biochem. Parasitol. 2001;113:189–198. doi: 10.1016/S0166-6851(01)00220-1. PubMed DOI

Wyllie S, et al. Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature. 2018;560:192–197. doi: 10.1038/s41586-018-0356-z. PubMed DOI PMC

Martínez-Calvillo S, Stuart K, Myler PJ. Ploidy changes associated with disruption of two adjacent genes on Leishmania major chromosome 1. Int. J. Parasitol. 2005;35:419–429. doi: 10.1016/j.ijpara.2004.12.014. PubMed DOI

Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010;11:9–22. doi: 10.1038/nrm2822. PubMed DOI

Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23:345–356. doi: 10.1016/j.tcb.2013.03.002. PubMed DOI

Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. doi: 10.1016/j.cell.2014.01.049. PubMed DOI PMC

Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC. Morphological events during the cell cycle of Leishmania major. Eukaryot. Cell. 2011;10:1429–1438. doi: 10.1128/EC.05118-11. PubMed DOI PMC

Wheeler RJ, Gluenz E, Gull K. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol. Microbiol. 2011;79:647–662. doi: 10.1111/j.1365-2958.2010.07479.x. PubMed DOI PMC

Bushell E, et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell. 2017;170:260–272.e8. doi: 10.1016/j.cell.2017.06.030. PubMed DOI PMC

Wincott, C. J. et al. The host brain is permissive to colonization by Toxoplasma gondii. Preprint at 10.1101/2020.08.06.239822 (2020).

Behan FM, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568:511–516. doi: 10.1038/s41586-019-1103-9. PubMed DOI

Saldivia M, et al. Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors. Nat. Microbiol. 2020;5:1207–1216. doi: 10.1038/s41564-020-0745-6. PubMed DOI PMC

Dan-Goor M, Nasereddin A, Jaber H, Jaffe CL. Identification of a secreted casein kinase 1 in Leishmania donovani: effect of protein over expression on parasite growth and virulence. PLoS ONE. 2013;8:e79287. doi: 10.1371/journal.pone.0079287. PubMed DOI PMC

Sádlová J, Volf P. Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res. 2009;337:313–325. doi: 10.1007/s00441-009-0802-1. PubMed DOI PMC

Zhou Q, Pham KTM, Hu H, Kurasawa Y, Li Z. A kinetochore-based ATM/ATR-independent DNA damage checkpoint maintains genomic integrity in trypanosomes. Nucleic Acids Res. 2019;47:7973–7988. doi: 10.1093/nar/gkz476. PubMed DOI PMC

Varga V, Moreira-Leite F, Portman N, Gull K. Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc. Natl Acad. Sci. USA. 2017;114:E6546–E6555. doi: 10.1073/pnas.1703553114. PubMed DOI PMC

Weischenfeldt J, Porse B. Bone marrow-derived macrophages (BMM): Isolation and applications. CSH Protoc. 2008;3:1–6 db.prot5080. doi: 10.1038/nprot.2007.453. PubMed DOI

Späth GF, Beverley SM. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp. Parasitol. 2001;99:97–103. doi: 10.1006/expr.2001.4656. PubMed DOI

Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl 1):S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI

Pruzinova K, et al. Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PLoS ONE. 2015;10:e0128203. doi: 10.1371/journal.pone.0128203. PubMed DOI PMC

Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis. 2012;3:e385. doi: 10.1038/cddis.2012.113. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

Beneke T, Gluenz E. Bar-seq strategies for the LeishGEdit toolbox. Mol. Biochem. Parasitol. 2020;239:111295. doi: 10.1016/j.molbiopara.2020.111295. PubMed DOI

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34:867–868. doi: 10.1093/bioinformatics/btx699. PubMed DOI PMC

Tetaud E, Lecuix I, Sheldrake T, Baltz T, Fairlamb AH. A new expression vector for Crithidia fasciculata and Leishmania. Mol. Biochem. Parasitol. 2002;120:195–204. doi: 10.1016/S0166-6851(02)00002-6. PubMed DOI

Kühn MJ, et al. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat. Commun. 2018;9:5369. doi: 10.1038/s41467-018-07802-w. PubMed DOI PMC

Martínez de Iturrate P, et al. Towards discovery of new leishmanicidal scaffolds able to inhibit GSK-3. J. Enz. Inhib. Med. Chem. 2020;35:199–210. doi: 10.1080/14756366.2019.1693704. PubMed DOI PMC

Chhajer R, et al. Leishmania donovani Aurora kinase: A promising therapeutic target against visceral leishmaniasis. Biochim. et Biophys. Acta. 2016;1860:1973–1988. doi: 10.1016/j.bbagen.2016.06.005. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum

. 2023 Jun 01 ; 34 (7) : ar66. [epub] 20230329

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...