Comparative metagenomic study unveils new insights on bacterial communities in two pine-feeding Ips beetles (Coleoptera: Curculionidae: Scolytinae)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39444680
PubMed Central
PMC11496174
DOI
10.3389/fmicb.2024.1400894
Knihovny.cz E-resources
- Keywords
- Ips acuminatus, Ips sexdentatus, amplicon sequence variances (ASVs), core bacteriome, holobiont, microhabitat,
- Publication type
- Journal Article MeSH
BACKGROUND: Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles. There is inadequate knowledge on novel bacterial introduction to pine trees after the beetle infestation. Hence, we conducted the first comparative bacterial metabarcoding study revealing the bacterial communities in the pine trees before and after beetle feeding and in different life stages of two dominant pine-feeding bark beetles, namely Ips sexdentatus and Ips acuminatus. We also evaluated the bacterial association between wild and lab-bred beetles to measure the deviation due to inhabiting a controlled environment. RESULTS: Significant differences in bacterial amplicon sequence variance (ASVs) abundance existed among different life stages within and between the pine beetles. However, Pseudomonas, Serratia, Pseudoxanthomonas, Taibaiella, and Acinetobacter served as core bacteria. Interestingly, I. sexdentatus larvae correspond to significantly higher bacterial diversity and community richness and evenness compared to other developmental stages, while I. acuminatus adults displayed higher bacterial richness with no significant variation in the diversity and evenness between the life stages. Both wild and lab-bred I. sexdentatus beetles showed a prevalence of the bacterial family Pseudomonadaceae. In addition, wild I. sexdentatus showed dominance of Yersiniaceae, whereas Erwiniaceae was abundant in lab-bred beetles. Alternatively, Acidobacteriaceae, Corynebacteriaceae, and Microbacteriaceae were highly abundant bacterial families in lab-bred, whereas Chitinophagaceae and Microbacteriaceae were highly abundant in wild I. accuminatus. We validated the relative abundances of selected bacterial taxa estimated by metagenomic sequencing with quantitative PCR. CONCLUSION: Our study sheds new insights into bacterial associations in pine beetles under the influence of various drivers such as environment, host, and life stages. We documented that lab-breeding considerably influences beetle bacterial community assembly. Furthermore, beetle feeding alters bacteriome at the microhabitat level. Nevertheless, our study revisited pine-feeding bark beetle symbiosis under the influence of different drivers and revealed intriguing insight into bacterial community assembly, facilitating future functional studies.
See more in PubMed
Abdullah H., Darvishzadeh R., Skidmore A. K., Groen T. A., Heurich M. (2018). European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. Geoinf. 64, 199–209. doi: 10.1016/j.jag.2017.09.009 DOI
Adams A. S., Aylward F. O., Adams S. M., Erbilgin N., Aukema B. H., Currie C. R., et al. . (2013). Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl. Environ. Microbiol. 79, 3468–3475. doi: 10.1128/AEM.00068-13, PMID: PubMed DOI PMC
Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x DOI
Ashraf M. Z., Mogilicherla K., Sellamuthu G., Siino V., Levander F., Roy A. (2023). Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). Front. Plant Sci. 14:1157455. doi: 10.3389/fpls.2023.1157455, PMID: PubMed DOI PMC
Augustinos A. A., Tsiamis G., Cáceres C., Abd-Alla A. M., Bourtzis K. (2019). Taxonomy, diet, and developmental stage contribute to the structuring of gut-associated bacterial communities in tephritid pest species. Front. Microbiol. 10:2004. doi: 10.3389/fmicb.2019.02004, PMID: PubMed DOI PMC
Bai Z., Fang J., Yu C., Zhang S., Liu F., Han F., et al. . (2024). Divergent response of two bark beetle–fungal symbiotic systems to host monoterpenes reflects niche partitioning strategies. J. Chem. Ecol. 12, 1–12. doi: 10.1007/s10886-024-01535-5 PubMed DOI
Baños-Quintana A. P., Gershenzon J., Kaltenpoth M. (2024). The Eurasian spruce bark beetle Ips typographus shapes the microbial communities of its offspring and the gallery environment. Front. Microbiol. 15:1367127. doi: 10.3389/fmicb.2024.1367127, PMID: PubMed DOI PMC
Biedermann P. H., Müller J., Grégoire J.-C., Gruppe A., Hagge J., Hammerbacher A., et al. . (2019). Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol. Evol. 34, 914–924. doi: 10.1016/j.tree.2019.06.002, PMID: PubMed DOI
Bokulich N. A., Kaehler B. D., Rideout J. R., Dillon M., Bolyen E., Knight R., et al. . (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17. doi: 10.1186/s40168-018-0470-z PubMed DOI PMC
Bolyen E., Rideout J. R., Dillon M. R., Bokulich N. A., Abnet C. C., Al-Ghalith G. A., et al. . (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9, PMID: PubMed DOI PMC
Boone C. K., Keefover-Ring K., Mapes A. C., Adams A. S., Bohlmann J., Raffa K. F. (2013). Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J. Chem. Ecol. 39, 1003–1006. doi: 10.1007/s10886-013-0313-0, PMID: PubMed DOI
Briones-Roblero C. I., Hernández-García J. A., Gonzalez-Escobedo R., Soto-Robles L. V., Rivera-Orduña F. N., Zúñiga G. (2017). Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PloS one 12:e0175470. doi: 10.1371/journal.pone.0175470, PMID: PubMed DOI PMC
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC
Callegari M., Crotti E., Fusi M., Marasco R., Gonella E., De Noni I., et al. . (2021). Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 7:42. doi: 10.1038/s41522-021-00212-9, PMID: PubMed DOI PMC
Cambronero-Heinrichs J. C., Battisti A., Biedermann P. H., Cavaletto G., Castro-Gutierrez V., Favaro L., et al. . (2023). Erwiniaceae bacteria play defensive and nutritional roles in two widespread ambrosia beetles. FEMS Microbiol. Ecol. 99:fiad144. doi: 10.1093/femsec/fiad144, PMID: PubMed DOI PMC
Cardoza Y. J., Vasanthakumar A., Suazo A., Raffa K. F. (2009). Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol. Exp. Appl. 131, 138–147. doi: 10.1111/j.1570-7458.2009.00844.x DOI
Chakraborty A., Ashraf M. Z., Modlinger R., Synek J., Schlyter F., Roy A. (2020a). Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 10:18572. doi: 10.1038/s41598-020-75203-5, PMID: PubMed DOI PMC
Chakraborty A., Modlinger R., Ashraf M. Z., Synek J., Schlyter F., Roy A. (2020b). Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11:568853. doi: 10.3389/fmicb.2020.568853, PMID: PubMed DOI PMC
Chakraborty A., Purohit A., Khara A., Modlinger R., Roy A. (2023). Life-stage and geographic location determine the microbial assemblage in Eurasian spruce bark beetle, Ips typographus L. (Coleoptera: Curculionidae). Front. Forests Global Change 6:1176160. doi: 10.3389/ffgc.2023.1176160 DOI
Chao A., Lee S.-M., Chen T.-C. (1988). A generalized Good's nonparametric coverage estimator. Chin. J. Mathematic. 1, 189–199.
Chapman M., Underwood A. (1999). Ecological patterns in multivariate assemblages: information and interpretation of negative values in ANOSIM tests. Mar. Ecol. Prog. Ser. 180, 257–265. doi: 10.3354/meps180257 DOI
Chen B., Du K., Sun C., Vimalanathan A., Liang X., Li Y., et al. . (2018). Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262. doi: 10.1038/s41396-018-0174-1, PMID: PubMed DOI PMC
Cheng C., Wickham J. D., Chen L., Xu D., Lu M., Sun J. (2018). Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Microbiome 6, 1–16. doi: 10.1186/s40168-018-0518-0 PubMed DOI PMC
Chinellato F., Battisti A., Finozzi V., Faccoli M. (2014). Better today but worse tomorrow: how warm summers affect breeding performance of a scots pine pest. Agrochimica Int. J. Plant Chem. Soil Sci. Plant Nutr. 58, 133–145.
Clarke K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x DOI
Colombari F., Schroeder M. L., Battisti A., Faccoli M. (2013). Spatio-temporal dynamics of an Ips acuminatus outbreak and implications for management. Agric. For. Entomol. 15, 34–42. doi: 10.1111/j.1461-9563.2012.00589.x DOI
Crawley M. J. (2012). The R book. New York, NY: John Wiley & Sons.
D’Argenio V., Casaburi G., Precone V., Salvatore F. (2014). Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. BioMed Res. Int. 2014:325340. doi: 10.1155/2014/325340 PubMed DOI PMC
Davydenko K., Vasaitis R., Menkis A. (2017). Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. Eur. J. Entomol. 114, 77–85. doi: 10.14411/eje.2017.011 DOI
Dobor L., Hlásny T., Rammer W., Barka I., Trombik J., Pavlenda P., et al. . (2018). Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agric. For. Meteorol. 263, 308–322. doi: 10.1016/j.agrformet.2018.08.028, PMID: PubMed DOI PMC
Faccoli M., Finozzi V., Colombari F. (2012). Effectiveness of different trapping protocols for outbreak management of the engraver pine beetle Ips acuminatus (Curculionidae, Scolytinae). Int. J. Pest Manag. 58, 267–273. doi: 10.1080/09670874.2011.642824 DOI
Fang J.-X., Zhang S.-F., Liu F., Zhang X., Zhang F.-B., Guo X.-B., et al. . (2020). Differences in gut bacterial communities of Ips typographus (Coleoptera: curculionidae) induced by enantiomer-specific α-pinene. Environ. Entomol. 49, 1198–1205. doi: 10.1093/ee/nvaa098 PubMed DOI
García-Fraile P. (2018). Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann. Appl. Biol. 172, 111–125. doi: 10.1111/aab.12406 DOI
Ge S.-X., Shi F.-M., Pei J.-H., Hou Z.-H., Zong S.-X., Ren L.-L. (2021). Gut bacteria associated with Monochamus saltuarius (Coleoptera: Cerambycidae) and their possible roles in host plant adaptations. Front. Microbiol. 12:687211. doi: 10.3389/fmicb.2021.687211, PMID: PubMed DOI PMC
González-Dominici L. I., Saati-Santamaría Z., García-Fraile P. (2021). Genome analysis and genomic comparison of the novel species Arthrobacter ipsi reveal its potential protective role in its bark beetle host. Microb. Ecol. 81, 471–482. doi: 10.1007/s00248-020-01593-8, PMID: PubMed DOI
González-Serrano F., Pérez-Cobas A. E., Rosas T., Baixeras J., Latorre A., Moya A. (2020). The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970. doi: 10.1007/s00248-019-01460-1, PMID: PubMed DOI
Gupta S., Chakraborty A., Roy A. (2023). Prospects for deploying microbes against tree-killing beetles (Coleoptera) in Anthropocene. Front. Forests Global Change 6:1182834. doi: 10.3389/ffgc.2023.1182834 DOI
Hu X., Yu J., Wang C., Chen H. (2014). Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5, 455–465. doi: 10.3390/f5030455 DOI
Humphrey P. T., Whiteman N. K. (2020). Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229. doi: 10.1038/s41559-019-1085-x, PMID: PubMed DOI PMC
Ibarra-Juarez L. A., Burton M., Biedermann P., Cruz L., Desgarennes D., Ibarra-Laclette E., et al. . (2020). Evidence for succession and putative metabolic roles of fungi and bacteria in the farming mutualism of the ambrosia beetle Xyleborus affinis. Msystems 5, e00541–e00520. doi: 10.1128/mSystems.00541-20 PubMed DOI PMC
Joga M. R., Mogilicherla K., Smagghe G., Roy A. (2021). RNA interference-based forest protection products (FPPs) against wood-boring coleopterans: Hope or hype? Front. Plant Sci. 12:733608. doi: 10.3389/fpls.2021.733608, PMID: PubMed DOI PMC
Klepzig K. D., Smalley E. B., Raffa K. F. (1996). Combined chemical defenses against an insect-fungal complex. J. Chem. Ecol. 22, 1367–1388. doi: 10.1007/BF02027719 PubMed DOI
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. . (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:808. doi: 10.1093/nar/gks808, PMID: PubMed DOI PMC
Kolasa M., Ścibior R., Mazur M. A., Kubisz D., Dudek K., Kajtoch Ł. (2019). How hosts taxonomy, trophy, and endosymbionts shape microbiome diversity in beetles. Microb. Ecol. 78, 995–1013. doi: 10.1007/s00248-019-01358-y, PMID: PubMed DOI PMC
Krokene P. (2015). “Conifer defense and resistance to bark beetles” in Bark beetles. eds. Raffa K. F., Gregoire J. C. (Amsterdam: Elsevier; ), 177–207.
Kumar M., Revathi K., Khanna S. (2015). Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydr. Polym. 134, 761–766. doi: 10.1016/j.carbpol.2015.08.072, PMID: PubMed DOI
Lange C., Boyer S., Bezemer T. M., Lefort M.-C., Dhami M. K., Biggs E., et al. . (2023). Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. ISME J. 17, 1798–1807. doi: 10.1038/s41396-023-01500-2, PMID: PubMed DOI PMC
Lemoine M. M., Engl T., Kaltenpoth M. (2020). Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20. doi: 10.1016/j.cois.2020.01.003 PubMed DOI
Li M., Shao D., Zhou J., Gu J., Qin J., Chen W., et al. . (2020). Signatures within esophageal microbiota with progression of esophageal squamous cell carcinoma. Chin. J. Cancer Res. 32, 755–767. doi: 10.21147/j.issn.1000-9604.2020.06.09, PMID: PubMed DOI PMC
Liška J., Knížek M., Véle A. (2021). Evaluation of insect pest occurrence in areas of calamitous mortality of scots pine. Lesnicky Casopis 67, 85–90. doi: 10.2478/forj-2021-0006 DOI
Liu F., Ye F., Cheng C., Kang Z., Kou H., Sun J. (2022). Symbiotic microbes aid host adaptation by metabolizing a deterrent host pine carbohydrate d-pinitol in a beetle-fungus invasive complex. Sci. Adv. 8:eadd5051. doi: 10.1126/sciadv.add5051 PubMed DOI PMC
Lozupone C., Lladser M. E., Knights D., Stombaugh J., Knight R. (2011). UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172. doi: 10.1038/ismej.2010.133, PMID: PubMed DOI PMC
Magoč T., Salzberg S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. doi: 10.1093/bioinformatics/btr507, PMID: PubMed DOI PMC
Magurran A. E. (1988). Ecological diversity and its measurement. Princeton, NJ: Princeton University Press.
Marini L., Økland B., Jönsson A. M., Bentz B., Carroll A., Forster B., et al. . (2017). Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435. doi: 10.1111/ecog.02769 DOI
McNichol B. H., Clarke S. R., Faccoli M., Montes C. R., Nowak J. T., Reeve J. D., et al. . (2022). “Relationships between drought, coniferous tree physiology, and Ips bark beetles under climatic changes” in Bark beetle management, ecology, and climate change. eds. Hofstetter R. W., Gandhi K. (Amsterdam: Elsevier; ), 153–194.
Montagné-Huck C., Brunette M. (2018). Economic analysis of natural forest disturbances: a century of research. J. For. Econ. 32, 42–71. doi: 10.1016/j.jfe.2018.03.002 PubMed DOI PMC
Morales-Jiménez J., Vera-Ponce de León A., García-Domínguez A., Martínez-Romero E., Zúñiga G., Hernández-Rodríguez C. (2013). Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb. Ecol. 66, 200–210. doi: 10.1007/s00248-013-0206-3, PMID: PubMed DOI
Morales-Jiménez J., Zúñiga G., Villa-Tanaca L., Hernández-Rodríguez C. (2009). Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58, 879–891. doi: 10.1007/s00248-009-9548-2, PMID: PubMed DOI
Moussa A., Nones S., Vannucchi P. E., Shahzad G.-I.-R., Dittmer J., Corretto E., et al. . (2024). The bacterial community of the European spruce bark beetle in space and time. Entomol. General. 44, 211–222. doi: 10.1127/entomologia/2023/2114 DOI
Mumm R., Hilker M. (2006). Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci. 11, 351–358. doi: 10.1016/j.tplants.2006.05.007, PMID: PubMed DOI
Navidshad B., Liang J. B., Jahromi M. F. (2012). Correlation coefficients between different methods of expressing bacterial quantification using real time PCR. Int. J. Mol. Sci. 13, 2119–2132. doi: 10.3390/ijms13022119, PMID: PubMed DOI PMC
Nunberg M. (1981). Klucze do rozpoznawania owadów Polski [Keys for the identification of Polish Insects]. Czȩść XIX. Chrzzşzcze–Coleoptera, Korniki–Scolytidae, Wyrynniki–Platypodidae. PWN, Warszawa-Wroclaw. Zeszyt, 99–100.
Oksanen J. (2007). Vegan: Community ecology package. R package version 1.8–5. Available at: http://www.cran.r-project.org (Accessed June 14, 2024).
Papek E., Ritzer E., Biedermann P. H., Cognato A. I., Baier P., Hoch G., et al. . (2024). The pine bark beetle Ips acuminatus: an ecological perspective on life-history traits promoting outbreaks. J. Pest. Sci. 97, 1093–1122. doi: 10.1007/s10340-024-01765-2 DOI
Paulson J. N., Pop M., Bravo H. C. (2011). Metastats: an improved statistical method for analysis of metagenomic data. Genome Biol. 12 (Suppl 1), 17. doi: 10.1186/gb-2011-12-s1-p17 DOI
Pekár S., Brabec M. (2016). Modern analysis of biological data: Generalized linear models in R. Brno: Masarykova Univerzita.
Peral-Aranega E., Saati-Santamaría Z., Ayuso-Calles M., Kostovčík M., Veselská T., Švec K., et al. . (2023). New insight into the bark beetle ips typographus bacteriome reveals unexplored diversity potentially beneficial to the host. Environ. Microb. 18:53. doi: 10.1186/s40793-023-00510-z, PMID: PubMed DOI PMC
Peral-Aranega E., Saati-Santamaría Z., Kolařik M., Rivas R., García-Fraile P. (2020). Bacteria belonging to Pseudomonas typographi sp. nov. from the bark beetle Ips typographus have genomic potential to aid in the host ecology. Insects 11:593. doi: 10.3390/insects11090593, PMID: PubMed DOI PMC
Pfeffer A. (1955). Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea. Praha: Brouci-Coleoptera Nakladatelství Československé akadmie věd.
Pfeffer A. (1995). Zentral-und westpaläarktische Borken-und Kernkäfer:Coloptera: Scolytidae, Platypodidae. Basel: Pro Entomologia.
Pineau X., Bourguignon M., Jactel H., Lieutier F., Sallé A. (2017a). Pyrrhic victory for bark beetles: successful standing tree colonization triggers strong intraspecific competition for offspring of Ips sexdentatus. For. Ecol. Manag. 399, 188–196. doi: 10.1016/j.foreco.2017.05.044 DOI
Pineau X., David G., Peter Z., Sallé A., Baude M., Lieutier F., et al. . (2017b). Effect of temperature on the reproductive success, developmental rate and brood characteristics of I ps sexdentatus (B oern.). Agric. For. Entomol. 19, 23–33. doi: 10.1111/afe.12177 DOI
Pirttilä A., Brusila V., Koskimäki J., Wäli P., Ruotsalainen A., Mutanen M., et al. . (2023). Exchange of microbiomes in plant-insect herbivore interactions. MBio 14, e03210–e03222. doi: 10.1128/mbio.03210-22 PubMed DOI PMC
Plewa R., Mokrzycki T. (2017). Occurrence, biology, and economic importance of the sharp-dentated bark beetle Ips acuminatus (Gyllenhal, 1827) (Coleoptera, Curculionidae, Scolytinae) in Poland. Sylwan 161, 619–629. doi: 10.26202/sylwan.2017077 DOI
Qadri M., Short S., Gast K., Hernandez J., Wong A. C.-N. (2020). Microbiome innovation in agriculture: development of microbial based tools for insect pest management. Front. Sust. Food Syst. 4:547751. doi: 10.3389/fsufs.2020.547751 DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219, PMID: PubMed DOI PMC
R Core Team (2013). R: A language and environment for statistical computing (version 2.15. 3) [computer software] R foundation for statistical computing. Vienna: R Core Team.
Raffa K. F., Aukema B. H., Bentz B. J., Carroll A. L., Hicke J. A., Turner M. G., et al. . (2008). Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517. doi: 10.1641/B580607 DOI
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584, PMID: PubMed DOI PMC
Saati-Santamaría Z., Rivas R., Kolařik M., García-Fraile P. (2021). A new perspective of Pseudomonas—host interactions: distribution and potential ecological functions of the genus Pseudomonas within the bark beetle Holobiont. Biology 10:164. doi: 10.3390/biology10020164, PMID: PubMed DOI PMC
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. . (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60–R18. doi: 10.1186/gb-2011-12-6-r60 PubMed DOI PMC
Sela R., Laviad-Shitrit S., Halpern M. (2020). Changes in microbiota composition along the metamorphosis developmental stages of Chironomus transvaalensis. Front. Microbiol. 11:586678. doi: 10.3389/fmicb.2020.586678, PMID: PubMed DOI PMC
Sellamuthu G., Amin S., Bílý J., Synek J., Modlinger R., Sen M. K., et al. . (2021). Reference gene selection for normalizing gene expression in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae) under different experimental conditions. Front. Physiol. 12:752768. doi: 10.3389/fphys.2021.752768, PMID: PubMed DOI PMC
Silver A., Perez S., Gee M., Xu B., Garg S., Will K., et al. . (2021). Persistence of the ground beetle (Coleoptera: Carabidae) microbiome to diet manipulation. PLoS One 16:e0241529. doi: 10.1371/journal.pone.0241529, PMID: PubMed DOI PMC
Singh V. V., Naseer A., Mogilicherla K., Trubin A., Zabihi K., Roy A., et al. . (2024). Understanding bark beetle outbreaks: exploring the impact of changing temperature regimes, droughts, forest structure, and prospects for future forest pest management. Rev. Environ. Sci. Biotechnol. 23, 257–290. doi: 10.1007/s11157-024-09692-5 DOI
Skrodenytė-Arbačiauskienė V., Radžiutė S., Stunžėnas V., Būda V. (2012). Erwiniatypographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int. J. Syst. Evol. Microbiol. 62, 942–948. doi: 10.1099/ijs.0.030304-0, PMID: PubMed DOI
Stat M., Pochon X., Franklin E. C., Bruno J. F., Casey K. S., Selig E. R., et al. . (2013). The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecol. Evol. 3, 1317–1329. doi: 10.1002/ece3.556, PMID: PubMed DOI PMC
Tian H., Zhao L., Koski T.-M., Sun J. (2022). Microhabitat governs the microbiota of the pinewood nematode and its vector beetle: implication for the prevalence of pine wilt disease. Microbiol. Spectr. 10, e00783–e00722. doi: 10.1128/spectrum.00783-22 PubMed DOI PMC
Veselská T., Švec K., Kostovčík M., Peral-Aranega E., Garcia-Fraile P., Křížková B., et al. . (2023). Proportions of taxa belonging to the gut core microbiome change throughout the life cycle and season of the bark beetle Ips typographus. FEMS Microbiol. Ecol. 99:fiad072. doi: 10.1093/femsec/fiad072 PubMed DOI
Villari C., Battisti A., Chakraborty S., Michelozzi M., Bonello P., Faccoli M. (2012). Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in scots pine. Tree Physiol. 32, 867–879. doi: 10.1093/treephys/tps056, PMID: PubMed DOI
Wermelinger B., Rigling A., Schneider Mathis D., Dobbertin M. (2008). Assessing the role of bark-and wood-boring insects in the decline of scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol. Entomol. 33, 239–249. doi: 10.1111/j.1365-2311.2007.00960.x DOI
Whitten M. M., Facey P. D., Del Sol R., Fernández-Martínez L. T., Evans M. C., Mitchell J. J., et al. . (2016). Symbiont-mediated RNA interference in insects. Proc. R. Soc. B Biol. Sci. 283:20160042. doi: 10.1098/rspb.2016.0042, PMID: PubMed DOI PMC
Xu L., Lou Q., Cheng C., Lu M., Sun J. (2015). Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol. 70, 1012–1023. doi: 10.1007/s00248-015-0625-4, PMID: PubMed DOI
Xu L. T., Lu M., Sun J. H. (2016). Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci. 23, 183–190. doi: 10.1111/1744-7917.12255, PMID: PubMed DOI
Yun J.-H., Roh S. W., Whon T. W., Jung M.-J., Kim M.-S., Park D.-S., et al. . (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264. doi: 10.1128/AEM.01226-14 PubMed DOI PMC
Zhang Z., Jiao S., Li X., Li M. (2018). Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8:15634. doi: 10.1038/s41598-018-34127-x, PMID: PubMed DOI PMC