RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34567044
PubMed Central
PMC8461336
DOI
10.3389/fpls.2021.733608
Knihovny.cz E-zdroje
- Klíčová slova
- RNA interference, double-stranded RNA delivery methods, enhancing RNAi efficiency, forest pests, forest protection products (FPPs), symbiont mediated RNAi (SMR), wood-boring coleopterans,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Zobrazit více v PubMed
Agrawal N., Dasaradhi P., Mohmmed A., Malhotra P., Bhatnagar R. K., Mukherjee S. K. (2003). RNA interference: biology, mechanism, and applications. Microbiol. Mole. Biol. Rev. 67 657–685. PubMed PMC
Andersson M. N., Grosse-Wilde E., Keeling C. I., Bengtsson J. M., Yuen M. M., Li M., et al. (2013). Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genom. 14 1–16. PubMed PMC
Andrade E. D., Hunter W. B. (2016). “RNA interference–natural gene-based technology for highly specific pest control (HiSPeC),” in RNA Interference, ed. Abdurakhmonov I. Y. (Croatia: InTech; ), 391–409.
Arnberger A., Ebenberger M., Schneider I. E., Cottrell S., Schlueter A. C., von Ruschkowski E., et al. (2018). Visitor preferences for visual changes in bark beetle-impacted forest recreation settings in the United States and Germany. Env. Manag. 61 209–223. 10.1007/s00267-017-0975-4 PubMed DOI PMC
Arora A. K., Chung S. H., Douglas A. E. (2021). Non-Target Effects of dsRNA Molecules in Hemipteran Insects. Genes 12:407. 10.3390/genes12030407 PubMed DOI PMC
Arpaia S., Smagghe G., Sweet J. B. (2021). Biosafety of bee pollinators in genetically modified agro-ecosystems: Current approach and further development in the EU. Pest Manag. Sci. 77 2659–2666. 10.1002/ps.6287 PubMed DOI PMC
Asharaja A., Sahayaraj K. (2013). Screening of insecticidal activity of brown macroalgal extracts against Dysdercus cingulatus (Fab.)(Hemiptera: Pyrrhocoridae). J. Biopest. 6 193–203.
Aukema J. E., Leung B., Kovacs K., Chivers C., Britton K. O., Englin J., et al. (2011). Economic impacts of non-native forest insects in the continental United States. PLoS One 6:e24587. 10.1371/journal.pone.0024587 PubMed DOI PMC
Avila L., Chandrasekar R., Wilkinson K., Balthazor J., Heerman M., Bechard J., et al. (2018). Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J. Contr Release 273 139–146. 10.1016/j.jconrel.2018.01.010 PubMed DOI PMC
Aw T., Schlauch K., Keeling C. I., Young S., Bearfield J. C., Blomquist G. J., et al. (2010). Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies. BMC Genom. 11 1–12. PubMed PMC
Baigude H., Rana T. M. (2009). Delivery of therapeutic RNAi by nanovehicles. ChemBioChem 10 2449–2454. 10.1002/cbic.200900252 PubMed DOI PMC
Bao W., Cao B., Zhang Y., Wuriyanghan H. (2016). Silencing of Mythimna separata chitinase genes via oral delivery of in planta-expressed RNAi effectors from a recombinant plant virus. Biotechnol. Lett. 38 1961–1966. 10.1007/s10529-016-2186-0 PubMed DOI
Barik S. (2006). RNAi in moderation. Nat. Biotechnol. 24 796–797. 10.1038/nbt0706-796 PubMed DOI
Baum J. A., Bogaert T., Clinton W., Heck G. R., Feldmann P., Ilagan O., et al. (2007). Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25 1322–1326. 10.1038/nbt1359 PubMed DOI
Bento F. M., Marques R. N., Campana F. B., Demétrio C. G., Leandro R. A., Parra J. R. P., et al. (2020). Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm. Tuta absoluta. Pest Manag. Sci. 76 287–295. 10.1002/ps.5513 PubMed DOI
Bentz B. J., Jönsson A. M. (2015). “Modeling bark beetle responses to climate change,” in Bark Beetles Biology and Ecology of Native and Invasive Species, eds Vega F. E., Hofstetter R. W. (London: Elsevier; ), 533–553. 10.1016/b978-0-12-417156-5.00013-7 DOI
Bentz B. J., Jönsson A. M., Schroeder M., Weed A., Wilcke R. A. I., Larsson K. (2019). Ips typographus and Dendroctonus ponderosae models project thermal suitability for intra-and inter-continental establishment in a changing climate. Front. Forests Glob. Change 2:1. 10.3389/ffgc.2019.00001 DOI
Bentz B. J., Régnière J., Fettig C. J., Hansen E. M., Hayes J. L., Hicke J. A., et al. (2010). Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience 60 602–613. 10.1525/bio.2010.60.8.6 DOI
Bentz B. J., Six D. L. (2006). Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann. Entomolog. Soc. Am. 99 189–194. 10.1603/0013-8746(2006)099[0189:ecofaw]2.0.co;2 DOI
Berger C., Laurent F. (2019). Trunk injection of plant protection products to protect trees from pests and diseases. Crop Protect. 124:104831. 10.1016/j.cropro.2019.05.025 DOI
Biedermann P. H., Müller J., Grégoire J.-C., Gruppe A., Hagge J., Hammerbacher A., et al. (2019). Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol. Evol. 34 914–924. 10.1016/j.tree.2019.06.002 PubMed DOI
Billings R. F. (2011). Use of chemicals for prevention and control of southern pine beetle infestations. In: Coulson, RN; Klepzig, KD 2011. Southern Pine Beetle II. Gen. Tech. Rep. SRS-140, Vol. 140. Asheville, NC: US Department of Agriculture Forest Service, Southern Research Station, 367–379.
Bolognesi R., Ramaseshadri P., Anderson J., Bachman P., Clinton W., Flannagan R., et al. (2012). Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7:e47534. 10.1371/journal.pone.0047534 PubMed DOI PMC
Boone C. K., Aukema B. H., Bohlmann J., Carroll A. L., Raffa K. F. (2011). Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can. J. Forest Res. 41 1174–1188. 10.1139/x11-041 PubMed DOI
Bramlett M., Plaetinck G., Maienfisch P. (2020). RNA-based biocontrols—a new paradigm in crop protection. Engineering 6 522–527. 10.1016/j.eng.2019.09.008 DOI
Buhtz A., Springer F., Chappell L., Baulcombe D. C., Kehr J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53 739–749. 10.1111/j.1365-313x.2007.03368.x PubMed DOI
Cagliari D., Dias N. P., Galdeano D. M., Dos Santos E. Á, Smagghe G., Zotti M. J. (2019). Management of pest insects and plant diseases by non-transformative RNAi. Front. Plant Sci. 2019:10. PubMed PMC
Cahyanto I. P., Pennington-Gray L., Wehrung J. (2018). The Mountain Pine Beetle: A Study of Tourism Businesses’ Perceptions of the Risk of Ecological Disturbances. J. Park Recreat. Administr. 36:4.
Camargo R. D. A., Herai R. H., Santos L. N., Bento F. M., Lima J. E., Marques-Souza H., et al. (2015). De novo transcriptome assembly and analysis to identify potential gene targets for RNAi-mediated control of the tomato leafminer (Tuta absoluta). BMC Genom. 16 1–17. PubMed PMC
Cappelle K., de Oliveira C. F. R., Van Eynde B., Christiaens O., Smagghe G. (2016). The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mole. Biol. 25 315–323. 10.1111/imb.12222 PubMed DOI
Chang F.-P., Kuang L.-Y., Huang C.-A., Jane W.-N., Hung Y., Yue-ie C. H., et al. (2013). A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J. Mater. Chem. B 1 5279–5287. 10.1039/c3tb20529k PubMed DOI
Chen J., Peng Y., Zhang H., Wang K., Zhao C., Zhu G., et al. (2021). Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biol. 2021 1–13. 10.1080/15476286.2020.1868680 PubMed DOI PMC
Chen X., Goodwin B. K. (2011). “Spatio-Temporal Modeling of Southern Pine Beetle Outbreaks with a Block Bootstrapping Approach,” in In 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania (No. 103668), (Pennsylvania: Agricultural and Applied Economics Association; ).
Chen X., Li L., Hu Q., Zhang B., Wu W., Jin F., et al. (2015). Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol. 15 1–8. PubMed PMC
Chen Y.-J., Liu B. R., Dai Y.-H., Lee C.-Y., Chan M.-H., Chen H.-H., et al. (2012). A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides. Gene 493 201–210. 10.1016/j.gene.2011.11.060 PubMed DOI
Christensen J., Litherland K., Faller T., Van de Kerkhof E., Natt F., Hunziker J., et al. (2013). Metabolism studies of unformulated internally [3H]-labeled short interfering RNAs in mice. Drug Metab. Disposit. 41 1211–1219. 10.1124/dmd.112.050666 PubMed DOI
Christiaens O., Petek M., Smagghe G., Taning C. N. T. (2020a). “The use of nanocarriers to improve the efficiency of RNAi-based pesticides in agriculture,” in Nanopesticides - (From research and development to mechanisms of action and sustainable use in agriculture, eds Fraceto L. F., de Castro V. L. S. S., Grillo R., Ávila D., Oliveira H. C., Lima R. (Switzerland: Springer Nature; ), 49–68. 10.1007/978-3-030-44873-8_3 DOI
Christiaens O., Swevers L., Smagghe G. (2014). DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53 307–314. 10.1016/j.peptides.2013.12.014 PubMed DOI
Christiaens O., Tardajos M. G., Martinez Reyna Z. L., Dash M., Dubruel P., Smagghe G. (2018). Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front. Physiol. 9:316. PubMed PMC
Christiaens O., Whyard S., Vélez A. M., Smagghe G. (2020b). Double-stranded RNA technology to control insect pests: current status and challenges. Front. Plant Sci. 11:451. PubMed PMC
Cipollini D., Rigsby C. M. (2015). Incidence of infestation and larval success of emerald ash borer (Agrilus planipennis) on white fringetree (Chionanthus virginicus), Chinese fringetree (Chionanthus retusus), and devilwood (Osmanthus americanus). Env. Entomol. 44 1375–1383. 10.1093/ee/nvv112 PubMed DOI
Cogoni C., Macino G. (1999). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399 166–169. 10.1038/20215 PubMed DOI
Cooper A. M., Silver K., Zhang J., Park Y., Zhu K. Y. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag Sci. 75 18–28. 10.1002/ps.5126 PubMed DOI
Cooper A. M., Yu Z., Biondi M., Song H., Silver K., Zhang J., et al. (2020). Stability of double-stranded RNA in gut contents and hemolymph of Ostrinia nubilalis larvae. Pesticide Biochem. Physiol. 169:104672. 10.1016/j.pestbp.2020.104672 PubMed DOI
Cudmore T. J., Björklund N., Carroll A. L., Staffan Lindgren B. (2010). Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J. Appl. Ecol. 47 1036–1043. 10.1111/j.1365-2664.2010.01848.x DOI
Dalakouras A., Jarausch W., Buchholz G., Bassler A., Braun M., Manthey T., et al. (2018). Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption. Front. Plant Sci. 9:1253. PubMed PMC
Dass C. R., Choong P. F. (2008). Chitosan-mediated orally delivered nucleic acids: a gutful of gene therapy. J. Drug Target. 16 257–261. 10.1080/10611860801900801 PubMed DOI
Davis T. S., Stewart J. E., Mann A., Bradley C., Hofstetter R. W. (2019). Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. Fungal Ecol. 38 62–70. 10.1016/j.funeco.2018.04.008 DOI
de la Giroday H. M. C., Carroll A. L., Aukema B. H. (2012). Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. J. Biogeogr. 39 1112–1123. 10.1111/j.1365-2699.2011.02673.x DOI
De Schutter K., Christiaens O., Taning C. N. T., Smagghe G. (2021). Boosting dsRNA Delivery in Plant and Insect Cells with Peptide-and Polymer-based Carriers: Case-based Current Status and Future Perspectives. RNAi Plant Imp. Protect. 2021:11. 10.1079/9781789248890.0011 DOI
Demirer G. S., Landry M. P. (2017). Delivering genes to plants. Chem. Eng. Prog. 113 40–45.
Demirer G. S., Zhang H., Goh N. S., Pinals R. L., Chang R., Landry M. P. (2019). Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6:seaaz0495. 10.1126/sciadv.aaz0495 PubMed DOI PMC
Dhandapani R. K., Duan J. J., Palli S. R. (2020a). Orally delivered dsRNA induces knockdown of target genes and mortality in the Asian long-horned beetle, Anoplophora glabripennis. Archiv. Insect Biochem. Physiol. 104: e21679. PubMed
Dhandapani R. K., Gurusamy D., Duan J. J., Palli S. R. (2020b). RNAi for management of Asian long-horned beetle, Anoplophora glabripennis: identification of target genes. J. Pest Sci. 93 823–832. 10.1007/s10340-020-01197-8 DOI
Dhar A., Parrott L., Hawkins C. D. (2016). Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7:171. 10.3390/f7080171 DOI
Doering-Saad C., Newbury H. J., Bale J. S., Pritchard J. (2002). Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J. Exp. Bot. 53 631–637. 10.1093/jexbot/53.369.631 PubMed DOI
Dong K., Sun L., Liu J.-T., Gu S.-H., Zhou J.-J., Yang R.-N., et al. (2017). RNAi-induced electrophysiological and behavioral changes reveal two pheromone binding proteins of Helicoverpa armigera involved in the perception of the main sex pheromone component Z11–16: Ald. J. Chem. Ecol. 43 207–214. 10.1007/s10886-016-0816-6 PubMed DOI
Dow J. (1992). pH gradients in lepidopteran midgut. J. Exp. Biol. 172 355–375. 10.1242/jeb.172.1.355 PubMed DOI
Edgerly J. S., Rooks E. C. (2004). Lichens, sun, and fire: a search for an embiid-environment connection in Australia (Order Embiidina: Australembiidae and Notoligotomidae). Env. Entomol. 33 907–920. 10.1603/0046-225x-33.4.907 PubMed DOI
Eigenheer A. L., Keeling C. I., Young S., Tittiger C. (2003). Comparison of gene representation in midguts from two phytophagous insects, Bombyx mori and Ips pini, using expressed sequence tags. Gene 316 127–136. 10.1016/s0378-1119(03)00749-2 PubMed DOI
Fairweather M. L. (2006). Field guide to insects and diseases of Arizona and New Mexico forests. Southwestern Region: USDA Forest Service, 271.
Farazi T. A., Juranek S. A., Tuschl T. (2008). The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135 1201–1214. 10.1242/dev.005629 PubMed DOI
Feder G. (1979). Pesticides, information, and pest management under uncertainty. Am. J. Agr. Econ. 61 97–103. 10.2307/1239507 DOI
Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 806–811. 10.1038/35888 PubMed DOI
Fishilevich E., Vélez A. M., Storer N. P., Li H., Bowling A. J., Rangasamy M., et al. (2016). RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag. Sci. 72 1652–1663. 10.1002/ps.4324 PubMed DOI
Franceschi V. R., Krokene P., Krekling T., Christiansen E. (2000). Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am. J. Bot. 87 314–326. 10.2307/2656627 PubMed DOI
Fu D., Dai L., Gao H., Sun Y., Liu B., Chen H. (2019). Identification, expression patterns and RNA interference of aquaporins in Dendroctonus armandi (Coleoptera: Scolytinae) larvae during overwintering. Front. Physiol. 10:967. PubMed PMC
Ghosh S. K. B., Hunter W. B., Park A. L., Gundersen-Rindal D. E. (2018). Double-stranded RNA oral delivery methods to induce RNA interference in phloem and plant-sap-feeding hemipteran insects. JoVE 135:e57390. PubMed PMC
Gillet F.-X., Garcia R. A., Macedo L. L., Albuquerque E. V., Silva M., Grossi-de-Sa M. F. (2017). Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Front. Phys. 8:256. PubMed PMC
Godefroid M., Meseguer A. S., Saune L., Genson G., Streito J.-C., Rossi J.-P., et al. (2019). Restriction-site associated DNA markers provide new insights into the evolutionary history of the bark beetle genus Dendroctonus. Mole. Phylogenet. Evol. 139:106528. 10.1016/j.ympev.2019.106528 PubMed DOI
Grégoire J.-C., Raffa K. F., Lindgren B. S. (2015). “Economics and politics of bark beetles,” in Bark Beetles Biology and Ecology of Native and Invasive Species, eds Vega F. E., Hofstetter R. W. (London: Elsevier; ), 585–613. 10.1016/b978-0-12-417156-5.00015-0 DOI
Gressitt J. L., Sedlacek J., Szent-Ivany J. (1965). Flora and fauna on backs of large Papuan moss-forest weevils. Science 150 1833–1835. 10.1126/science.150.3705.1833 PubMed DOI
Gurusamy D., Mogilicherla K., Palli S. R. (2020a). Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Phys. 104:e21677. PubMed
Gurusamy D., Mogilicherla K., Shukla J. N., Palli S. R. (2020b). Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 104:e21678. PubMed
Haack R. A., Hérard F., Sun J., Turgeon J. J. (2010). Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Ann. Rev. Entomol. 55 521–546. 10.1146/annurev-ento-112408-085427 PubMed DOI
Haack R. A., Jendak E., Houping L., Marchant K. R., Petrice T. R., Poland T. M., et al. (2002). The emerald ash borer: a new exotic pest in North America. Newslett. Michigan Entomol. Soc. 47 1–5.
Haasnoot J., Westerhout E. M., Berkhout B. (2007). RNA interference against viruses: strike and counterstrike. Nat. Biotechnol. 25 1435–1443. 10.1038/nbt1369 PubMed DOI PMC
Haynes K. J., Allstadt A. J., Klimetzek D. (2014). Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Chang. Biol. 20 2004–2018. 10.1111/gcb.12506 PubMed DOI
Hegedus D., Erlandson M., Gillott C., Toprak U. (2009). New insights into peritrophic matrix synthesis, architecture, and function. Ann. Rev. Entomol. 54 285–302. 10.1146/annurev.ento.54.110807.090559 PubMed DOI
Hicke J. A., Meddens A. J., Kolden C. A. (2016). Recent tree mortality in the western United States from bark beetles and forest fires. Forest Sci. 62 141–153.
Hlásny T., Krokene P., Liebhold A., Montagné-Huck C., Müller J., Qin H., et al. (2019). Living with bark beetles: impacts, outlook and management options. From Science to Policy 8. Finland: European Forest Institute.
Holmes T. P. (1991). Price and welfare effects of catastrophic forest damage from southern pine beetle epidemics. Forest Sci. 37 500–516.
Hu J., Xia Y. (2019). Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F1F0-ATPase subunit genes. Pest Manag. Sci. 75 180–186. 10.1002/ps.5085 PubMed DOI
Hu Q., Wu W. (2016). Recombinant fungal entomopathogen RNAi target insect gene. Bioengineered 7 504–507. 10.1080/21655979.2016.1146833 PubMed DOI PMC
Hunter W. B., Glick E., Paldi N., Bextine B. R. (2012). Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest. Entomol. 37 85–87. 10.3958/059.037.0110 DOI
Hussain H. I., Yi Z., Rookes J. E., Kong L. X., Cahill D. M. (2013). Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J. Nanoparticle Res. 15 1–15.
Huvenne H., Smagghe G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56 227–235. 10.1016/j.jinsphys.2009.10.004 PubMed DOI
Joga M. R., Zotti M. J., Smagghe G., Christiaens O. (2016). RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front. Physiol. 7:553. PubMed PMC
Jose A. M., Hunter C. P. (2007). Transport of sequence-specific RNA interference information between cells. Annu. Rev. Genet. 41 305–330. 10.1146/annurev.genet.41.110306.130216 PubMed DOI PMC
Kanasty R. L., Whitehead K. A., Vegas A. J., Anderson D. G. (2012). Action and reaction: the biological response to siRNA and its delivery vehicles. Mole. Ther. 20 513–524. 10.1038/mt.2011.294 PubMed DOI PMC
Kandasamy D., Gershenzon J., Hammerbacher A. (2016). Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J. Chem. Ecol. 42 952–969. 10.1007/s10886-016-0768-x PubMed DOI PMC
Karny A., Zinger A., Kajal A., Shainsky-Roitman J., Schroeder A. (2018). Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 8 1–10. PubMed PMC
Katoch R., Thakur N. (2012). Insect gut nucleases: a challenge for RNA interference mediated insect control strategies. Int. J. Biochem. Biotechnol. 1 198–203.
Keeling C., Bearfield J., Young S., Blomquist G., Tittiger C. (2006). Effects of juvenile hormone on gene expression in the pheromone-producing midgut of the pine engraver beetle, Ips pini. Insect Mole. Biol. 15 207–216. 10.1111/j.1365-2583.2006.00629.x PubMed DOI
Keeling C. I., Henderson H., Li M., Yuen M., Clark E. L., Fraser J. D., et al. (2012). Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem. Mol. Biol. 42 525–536. 10.1016/j.ibmb.2012.03.010 PubMed DOI
Keeling C. I., Li M., Sandhu H. K., Henderson H., Saint Yuen M. M., Bohlmann J. (2016). Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. Insect Biochem. Mol. Biol. 70 170–183. 10.1016/j.ibmb.2016.01.002 PubMed DOI
Keeling C. I., Yuen M. M., Liao N. Y., Docking T. R., Chan S. K., Taylor G. A., et al. (2013). Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 14 1–20. PubMed PMC
Khajuria C., Ivashuta S., Wiggins E., Flagel L., Moar W., Pleau M., et al. (2018). Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 13:e0197059. 10.1371/journal.pone.0197059 PubMed DOI PMC
Klepzig K., Adams A., Handelsman J., Raffa K. (2009). Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Env Entomol. 38 67–77. 10.1603/022.038.0109 PubMed DOI
Knorr E., Fishilevich E., Tenbusch L., Frey M. L., Rangasamy M., Billion A., et al. (2018). Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Sci. Rep. 8 1–15. 10.1111/j.1748-5967.2011.00437.x PubMed DOI PMC
Kolliopoulou A., Kontogiannatos D., Swevers L. (2020). The use of engineered plant viruses in a trans-kingdom silencing strategy against their insect vectors. Front. Plant Sci. 11:917. PubMed PMC
Kolliopoulou A., Taning C. N., Smagghe G., Swevers L. (2017). Viral delivery of dsRNA for control of insect agricultural pests and vectors of human disease: prospects and challenges. Front. Physiol. 8:399. PubMed PMC
Kumar A., Falcao V. R., Sayre R. T. (2013). Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii. Algal Res. 2 321–332. 10.1016/j.algal.2013.09.002 DOI
Kumar P., Pandit S. S., Baldwin I. T. (2012). Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference. PLoS One 7:e31347. 10.1371/journal.pone.0031347 PubMed DOI PMC
Kurz W. A., Dymond C., Stinson G., Rampley G., Neilson E., Carroll A., et al. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature 452 987–990. 10.1038/nature06777 PubMed DOI
Kyre B. R., Bentz B. J., Rieske L. K. (2020). Susceptibility of mountain pine beetle (Dendroctonus ponderosae Hopkins) to gene silencing through RNAi provides potential as a novel management tool. Forest Ecol. Manag. 473:8. 10.1016/j.foreco.2020.118322 DOI
Kyre B. R., Rodrigues T. B., Rieske L. K. (2019). RNA interference and validation of reference genes for gene expression analyses using qPCR in southern pine beetle. Dendroctonus frontalis. Sci. Rep. 9 1–8. PubMed PMC
Lahr E. C., Krokene P. (2013). Conifer stored resources and resistance to a fungus associated with the spruce bark beetle Ips typographus. PLoS One 8:e72405. 10.1371/journal.pone.0072405 PubMed DOI PMC
Lam J. K., Chow M. Y., Zhang Y., Leung S. W. (2015). siRNA versus miRNA as therapeutics for gene silencing. Mole. Ther. Nucleic Acids 4:e252. 10.1038/mtna.2015.23 PubMed DOI PMC
Leelesh R. S., Rieske L. K. (2020). Oral Ingestion of Bacterially Expressed dsRNA Can Silence Genes and Cause Mortality in a Highly Invasive, Tree-Killing Pest, the Emerald Ash Borer. Insects 11:440. 10.3390/insects11070440 PubMed DOI PMC
Lehane M. (1997). Peritrophic matrix structure and function. Annu. Rev. Entomol. 42 525–550. 10.1146/annurev.ento.42.1.525 PubMed DOI
Lesk C., Coffel E., D’Amato A. W., Dodds K., Horton R. (2017). Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change 7 713–717. 10.1038/nclimate3375 PubMed DOI PMC
Leverkus A. B., Rey Benayas J. M., Castro J., Boucher D., Brewer S., Collins B. M., et al. (2018). Salvage logging effects on regulating and supporting ecosystem services—A systematic map. Canadian J. Forest Res. 48 983–1000. 10.1139/cjfr-2018-0114 PubMed DOI
Li H., Bowling A. J., Gandra P., Rangasamy M., Pence H. E., McEwan R. E., et al. (2018a). Systemic RNAi in western corn rootworm, Diabrotica virgifera virgifera, does not involve transitive pathways. Insect Sci. 25 45–56. 10.1111/1744-7917.12382 PubMed DOI
Li H., Guan R., Guo H., Miao X. (2015a). New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Env. 38 2277–2285. 10.1111/pce.12546 PubMed DOI
Li H., Khajuria C., Rangasamy M., Gandra P., Fitter M., Geng C., et al. (2015b). Long ds RNA but not si RNA initiates RNA i in western corn rootworm larvae and adults. J. Appl. Entomol. 139 432–445.
Li Z., Dai L., Chu H., Fu D., Sun Y., Chen H. (2018b). Identification, expression patterns, and functional characterization of chemosensory proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front. Physiol. 9:291. PubMed PMC
Lichtenberg S. S., Laisney J., Elhaj Baddar Z., Tsyusko O. V., Palli S. R., Levard C., et al. (2020). Comparison of Nanomaterials for Delivery of Double-Stranded RNA in Caenorhabditis elegans. J. Agricult. Food Chem. 68 7926–7934. 10.1021/acs.jafc.0c02840 PubMed DOI
Liu D., De Schutter K., Smargiasso N., De Pauw E., Van Damme E. J., Smagghe G. (2019). The N-glycan profile of the peritrophic membrane in the Colorado potato beetle larva (Leptinotarsa decemlineata). J. Insect Physiol. 115 27–32. 10.1016/j.jinsphys.2019.03.009 PubMed DOI
Lord N. P., Plimpton R. L., Sharkey C. R., Suvorov A., Lelito J. P., Willardson B. M., et al. (2016). A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol. Biol. 16 1–17. PubMed PMC
Lowe T. M., Eddy S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 955–964. 10.1093/nar/25.5.955 PubMed DOI PMC
Lü J., Liu Z., Guo W., Guo M., Chen S., Li H., et al. (2020). Feeding delivery of dsHvSnf7 is a promising method for management of the pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). Insects 11 34. 10.3390/insects11010034 PubMed DOI PMC
Lubojacký T. ČM. V. J. (2019). Analýza změn v produkci a zdravotním stavu smrkové tyčoviny v PLO 29, Nízký Jeseník. Zprávy lesnického výzkumu 64 77–85.
Luo Y., Wang X., Wang X., Yu D., Chen B., Kang L. (2013). Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Insect Mole. Biol. 22 574–583. 10.1111/imb.12046 PubMed DOI
Ma Z. Z., Zhou H., Wei Y. L., Yan S., Shen J. (2020). A novel plasmid–Escherichia coli system produces large batch dsRNAs for insect gene silencing. Pest Manag. Sci. 76 2505–2512. 10.1002/ps.5792 PubMed DOI
Martinez Z., De Schutter K., Van Damme E. J., Vogel E., Wynant N., Broeck J. V., et al. (2021). Accelerated delivery of dsRNA in lepidopteran midgut cells by a Galanthus nivalis lectin (GNA)-dsRNA-binding domain fusion protein. Pesticide Biochem. Physiol. 175:104853. 10.1016/j.pestbp.2021.104853 PubMed DOI
Martin-Ortigosa S., Valenstein J. S., Sun W., Moeller L., Fang N., Trewyn B. G., et al. (2012). Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8 413–422. 10.1002/smll.201101294 PubMed DOI
Máximo W. P., Howell J. L., Mogilicherla K., Basij M., Chereddy S. C., Palli S. R. (2020). Inhibitor of apoptosis is an effective target gene for RNAi-mediated control of Colorado potato beetle, Leptinotarsa decemlineata. Arch. Insect Biochem. Physiol. 104:e21685. PubMed
McKenna D. D., Scully E. D., Pauchet Y., Hoover K., Kirsch R., Geib S. M., et al. (2016). Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 17 1–18. 10.1673/031.009.2101 PubMed DOI PMC
Meddens A. J., Hicke J. A., Ferguson C. A. (2012). Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecolog. Appl. 22 1876–1891. 10.1890/11-1785.1 PubMed DOI
Mehlhorn S., Ulrich J., Baden C. U., Buer B., Maiwald F., Lueke B., et al. (2021). The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Pesticide Biochem. Physiol. 176:104870. 10.1016/j.pestbp.2021.104870 PubMed DOI
Melnyk C. W., Molnar A., Baulcombe D. C. (2011). Intercellular and systemic movement of RNA silencing signals. EMBO J. 30 3553–3563. 10.1038/emboj.2011.274 PubMed DOI PMC
Meng P., Hoover K., Keena M. (2015). Asian longhorned beetle (Coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe. J. Integr. Pest Manag. 6:4.
Meyering-Vos M., Müller A. (2007). RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J. Insect Physiol. 53 840–848. 10.1016/j.jinsphys.2007.04.003 PubMed DOI
Miller S. C., Miyata K., Brown S. J., Tomoyasu Y. (2012). Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLoS One 7:e47431. 10.1371/journal.pone.0047431 PubMed DOI PMC
Milletti F. (2012). Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17 850–860. 10.1016/j.drudis.2012.03.002 PubMed DOI
Mitter N., Worrall E. A., Robinson K. E., Li P., Jain R. G., Taochy C., et al. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants 3 1–10. 10.1079/9781789248890.0001 PubMed DOI
Mourrain P., Béclin C., Elmayan T., Feuerbach F., Godon C., Morel J.-B., et al. (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101 533–542. 10.1016/s0092-8674(00)80863-6 PubMed DOI
Murphy K. A., Tabuloc C. A., Cervantes K. R., Chiu J. C. (2016). Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 6 1–13. 10.1111/1744-7917.12006 PubMed DOI PMC
Mysore K., Li P., Wang C.-W., Hapairai L. K., Scheel N. D., Realey J. S., et al. (2019). Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasit. Vectors 12 1–15. PubMed PMC
Nadeau J. A., Petereit J., Tillett R., Jung K., Fotoohi M., MacLean M., et al. (2017). Comparative transcriptomics of mountain pine beetle pheromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genom. 18:1–15. 10.1155/2012/491748 PubMed DOI PMC
Numata K., Horii Y., Oikawa K., Miyagi Y., Demura T., Ohtani M. (2018). Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Sci. Rep. 8 1–17. PubMed PMC
Numata K., Ohtani M., Yoshizumi T., Demura T., Kodama Y. (2014). Local gene silencing in plants via synthetic ds RNA and carrier peptide. Plant Biotechnol. J. 12 1027–1034. 10.1111/pbi.12208 PubMed DOI
Oppert B., Perkin L. (2019). RNAiSeq: How to see the big picture. Front. Microbiol. 10:2570. PubMed PMC
Palli S. R. (2014). RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr. Opinion Insect Sci. 6 1–8. 10.1016/j.cois.2014.09.011 PubMed DOI PMC
Pampolini F., Rieske L. K. (2020). Emerald ash borer specific gene silencing has no effect on non-target organisms. Front. Agron. 2:29. 10.3389/fagro.2020.608827 DOI
Pampolini F., Rodrigues T. B., Leelesh R. S., Kawashima T., Rieske L. K. (2020). Confocal microscopy provides visual evidence and confirms the feasibility of dsRNA delivery to emerald ash borer through plant tissues. J. Pest Sci. 93 1143–1153. 10.1007/s10340-020-01230-w DOI
Pan Y., Birdsey R. A., Phillips O. L., Jackson R. B. (2013). The structure, distribution, and biomass of the world’s forests. Ann. Rev. Ecol. Evol. Syst. 44 593–622.
Papadopoulou N., Devos Y., Álvarez-Alfageme F., Lanzoni A., Waigmann E. (2020). Risk assessment considerations for genetically modified RNAi plants: EFSA’s activities and perspective. Front. Plant Sci. 11:445. PubMed PMC
Parrish S., Fleenor J., Xu S., Mello C., Fire A. (2000). Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mole. Cell 6 1077–1087. 10.1016/s1097-2765(00)00106-4 PubMed DOI
Pecot C. V., Calin G. A., Coleman R. L., Lopez-Berestein G., Sood A. K. (2011). RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11 59–67. PubMed PMC
Pettit J. M., Voelker S. L., DeRose R. J., Burton J. I. (2020). Spruce beetle outbreak was not driven by drought stress: Evidence from a tree-ring iso-demographic approach indicates temperatures were more important. Glob. Change Biol. 26 5829–5843. 10.1111/gcb.15274 PubMed DOI
Poland T. M., McCullough D. G. (2006). Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. J. Forestry 104 118–124.
Powell D., Groβe-Wilde E., Krokene P., Roy A., Chakraborty A., Löfstedt C., et al. (2020). A highly contiguous genome assembly of a major forest pest, the Eurasian spruce bark beetle Ips typographus. bioRxiv 10.1101/2020.11.28.401976 PubMed DOI PMC
Prentice K., Christiaens O., Pertry I., Bailey A., Niblett C., Ghislain M., et al. (2017). RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Manag. Sci. 73 44–52. 10.1002/ps.4337 PubMed DOI
Prentice K., Pertry I., Christiaens O., Bauters L., Bailey A., Niblett C., et al. (2015). Transcriptome analysis and systemic RNAi response in the African sweetpotato weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS One 10:e0115336. 10.1371/journal.pone.0115336 PubMed DOI PMC
Pye J. M., Holmes T. P., Prestemon J. P., Wear D. N. (2011). Economic impacts of the southern pine beetle. In: Coulson, RN; Klepzig, KD 2011. Southern Pine Beetle II. Gen. Tech. Rep. SRS-140. Asheville, NC: US Department of Agriculture Forest Service, Southern Research Station, 213–222.
Ramsfield T., Bentz B., Faccoli M., Jactel H., Brockerhoff E. (2016). Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89 245–252. 10.1093/forestry/cpw018 DOI
Regniere J. (2003). “Effect of climate change on range expansion by the mountain pine beetle in British Columbia,” in Mountain pine beetle symposium: challenges and solutions. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Information Report BC-X-399, eds Shore T.L., Brooks J.E., Stone J.E. (Victoria: British Columbia, Canada; ), 223–232.
Robert J. A., Pitt C., Bonnett T. R., Yuen M. M., Keeling C. I., Bohlmann J., et al. (2013). Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms. PLoS One 8:e77777. 10.1371/journal.pone.0077777 PubMed DOI PMC
Rodrigues T. B., Dhandapani R. K., Duan J. J., Palli S. R. (2017a). RNA interference in the Asian longhorned beetle: identification of key RNAi genes and reference genes for RT-qPCR. Sci. Rep. 7 1–10. PubMed PMC
Rodrigues T. B., Duan J. J., Palli S. R., Rieske L. K. (2018). Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis. Sci. Rep. 8 1–9. PubMed PMC
Rodrigues T. B., Rieske L. K., Duan J. J., Mogilicherla K., Palli S. R. (2017b). Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis. Sci. Rep. 7 1–8. PubMed PMC
Sachin M., Mahalakshmi S., Kekuda P. (2018). Insecticidal efficacy of lichens and their metabolites-A mini review. J. Appl. Pharm. Sci. 8 159–164.
Safranyik L., Carroll A. L., Régnière J., Langor D., Riel W., Shore T., et al. (2010). Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can. Entomol. 142 415–442. 10.4039/n08-cpa01 DOI
Saleh M.-C., van Rij R. P., Hekele A., Gillis A., Foley E., O’Farrell P. H., et al. (2006). The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 8 793–802. 10.1038/ncb1439 PubMed DOI PMC
Santos D., Remans S., Van den Brande S., Vanden Broeck J. (2021). RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. Plants 10:484. 10.3390/plants10030484 PubMed DOI PMC
Schiebel W., Haas B., Marinković S., Klanner A., Sänger H. (1993). RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. J. Biol. Chem. 268 11858–11867. 10.1016/s0021-9258(19)50279-4 PubMed DOI
Scott J. G., Michel K., Bartholomay L. C., Siegfried B. D., Hunter W. B., Smagghe G., et al. (2013). Towards the elements of successful insect RNAi. J. Insect Physiol. 59 1212–1221. 10.1016/j.jinsphys.2013.08.014 PubMed DOI PMC
Scully E. D., Hoover K., Carlson J. E., Tien M., Geib S. M. (2013). Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genom. 14 1–26. PubMed PMC
Seidl R., Spies T. A., Peterson D. L., Stephens S. L., Hicke J. A. (2016). Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 53 120–129. 10.1111/1365-2664.12511 PubMed DOI PMC
SFA S. (2010). Statistical yearbook of forestry 2010. Official Statistics of Sweden. Jönköping: Swedish Forest Agency, 337.
Shakesby A., Wallace I., Isaacs H., Pritchard J., Roberts D., Douglas A. (2009). A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem. Mol. Biol. 39 1–10. 10.1016/j.ibmb.2008.08.008 PubMed DOI
Sharma R., Taning C. N. T., Smagghe G., Christiaens O. (2021). Silencing of Double-Stranded Ribonuclease Improves Oral RNAi Efficacy in Southern Green Stinkbug Nezara viridula. Insects 12:115. 10.3390/insects12020115 PubMed DOI PMC
Shew A. M., Danforth D. M., Nalley L. L., Nayga, Tsiboe F., Dixon B. L. (2017). New innovations in agricultural biotech: Consumer acceptance of topical RNAi in rice production. Food Control 81 189–195. 10.1016/j.foodcont.2017.05.047 DOI
Shih J. D., Hunter C. P. (2011). SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17 1057–1065. 10.1261/rna.2596511 PubMed DOI PMC
Silva C. P., Silva J. R., Vasconcelos F. F., Petretski M. D., DaMatta R. A., Ribeiro A. F., et al. (2004). Occurrence of midgut perimicrovillar membranes in paraneopteran insect orders with comments on their function and evolutionary significance. Arthropod Struct. Dev. 33 139–148. 10.1016/j.asd.2003.12.002 PubMed DOI
Singh I. K., Singh S., Mogilicherla K., Shukla J. N., Palli S. R. (2017). Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7 1–12. 10.1002/9783527678679.dg03515 PubMed DOI PMC
Sinisterra-Hunter X., Hunter W. (2018). Towards a holistic integrated pest management: lessons learned from plant-insect mechanisms in the field. Biol. Plant-Insect Interact. 236 204–226. 10.1201/9781315119571-10 DOI
Six D. L. (2020). A major symbiont shift supports a major niche shift in a clade of tree-killing bark beetles. Ecol. Entomol. 45 190–201. 10.1111/een.12786 DOI
Six D. L., Elser J. J. (2020). Mutualism is not restricted to tree-killing bark beetles and fungi: the ecological stoichiometry of secondary bark beetles, fungi, and a scavenger. Ecolog. Entomol. 45 1134–1145. 10.1111/een.12897 DOI
Six D. L., Wingfield M. J. (2011). The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Ann. Rev. Entomol. 56 255–272. 10.1146/annurev-ento-120709-144839 PubMed DOI
Smardon A., Spoerke J. M., Stacey S. C., Klein M. E., Mackin N., Maine E. M. (2000). EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10 169–178. 10.1016/s0960-9822(00)00323-7 PubMed DOI
Speer B. R., Waggoner B. (1997). Lichens: Life History & Ecology. Univ. Calif. Museum Paleontol. Retr. 28:2015.
Swevers L., Vanden Broeck J., Smagghe G. (2013). The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front. Physiol. 4:319. PubMed PMC
Taning C. N., Arpaia S., Christiaens O., Dietz-Pfeilstetter A., Jones H., Mezzetti B., et al. (2020). RNA-based biocontrol compounds: current status and perspectives to reach the market. Pest Manag. Sci. 76 841–845. 10.1002/ps.5686 PubMed DOI
Taning C. N. T., Christiaens O., Berkvens N., Casteels H., Maes M., Smagghe G. (2016). Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. J. Pest Sci. 89 803–814. 10.1007/s10340-016-0736-9 DOI
Taning C. N. T., Gui S., De Schutter K., Jahani M., Castellanos N. L., Christiaens O., et al. (2021). A sequence complementarity-based approach for evaluating off-target transcript knockdown in Bombus terrestris, following ingestion of pest-specific dsRNA. J. Pest Sci. 94 487–503. 10.1007/s10340-020-01273-z DOI
Taning C. N. T., Mezzetti B., Kleter G., Smagghe G., Baraldi E. (2020). Does RNAi-Based Technology Fit within EU Sustainability Goals? Trends Biotechnol. 12:8. 10.1016/j.tibtech.2020.11.008 PubMed DOI
Terenius O., Papanicolaou A., Garbutt J. S., Eleftherianos I., Huvenne H., Kanginakudru S., et al. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57 231–245. PubMed
Thom D., Seidl R. (2016). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91 760–781. 10.1111/brv.12193 PubMed DOI PMC
Thompson J. D., Kornbrust D. J., Foy J. W., Solano E. C., Schneider D. J., Feinstein E., et al. (2012). Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther. 22 255–264. 10.1089/nat.2012.0371 PubMed DOI PMC
Timmons L., Court D. L., Fire A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 103–112. 10.1016/s0378-1119(00)00579-5 PubMed DOI
Tomoyasu Y., Miller S. C., Tomita S., Schoppmeier M., Grossmann D., Bucher G. (2008). Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 9 1–22. PubMed PMC
Ulrich J., Majumdar U., Schmitt-Engel C., Schwirz J., Schultheis D., Ströhlein N., et al. (2015). Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genom. 16 1–9. PubMed PMC
Ulvila J., Parikka M., Kleino A., Sormunen R., Ezekowitz R. A., Kocks C., et al. (2006). Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281 14370–14375. 10.1074/jbc.m513868200 PubMed DOI
Unnamalai N., Kang B. G., Lee W. S. (2004). Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Lett. 566 307–310. 10.1016/j.febslet.2004.04.018 PubMed DOI
Vaistij F. E., Jones L., Baulcombe D. C. (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14 857–867. 10.1105/tpc.010480 PubMed DOI PMC
Van Ekert E., Powell C. A., Shatters, Borovsky D. (2014). Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase. J. Insect Phys. 70 143–150. 10.1016/j.jinsphys.2014.08.001 PubMed DOI
Van Rooijen N., van Nieuwmegen R. (1980). Liposomes in immunology: multilamellar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immun. Comm. 9 243–256. 10.3109/08820138009065997 PubMed DOI
Walski T., Van Damme E. J., Smagghe G. (2014). Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. J. Insect Phys. 70 94–101. 10.1016/j.jinsphys.2014.09.004 PubMed DOI
Walter D. E., Proctor H. C. (1999). Mites: ecology, evolution, and behaviour. Wallingford: CABI Publishing.
Wang L.-J., Hsu M.-H., Liu T.-Y., Lin M.-Y., Sung C.-H. (2020a). Characterization of the complete mitochondrial genome of Euwallacea fornicatus (Eichhoff, 1868)(Coleoptera: Curculionidae: Scolytinae) and its phylogenetic implications. Mitochondrial DNA Part B 5 3502–3504. 10.1080/23802359.2020.1827070 PubMed DOI PMC
Wang M., Weiberg A., Lin F.-M., Thomma B. P., Huang H.-D., Jin H. (2016). Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2 1–10. 10.1079/9781789248890.0001 PubMed DOI PMC
Wang X., Swing C. J., Feng T., Xia S., Yu J., Zhang X. (2020b). Effects of environmental pH and ionic strength on the physical stability of cinnamaldehyde-loaded liposomes. J. Disp. Sci. Technol. 41 1568–1575. 10.1080/01932691.2019.1627887 DOI
Wang Y., Zhang H., Li H., Miao X. (2011). Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6:e18644. 10.1371/journal.pone.0018644 PubMed DOI PMC
Wermelinger B. (2004). Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. Forest Ecol. Manag. 202 67–82. 10.1016/j.foreco.2004.07.018 DOI
Whangbo J. S., Hunter C. P. (2008). Environmental RNA interference. Trends Genet. 24 297–305. PubMed
Whitten M. M., Facey P. D., Del Sol R., Fernández-Martínez L. T., Evans M. C., Mitchell J. J., et al. (2016). Symbiont-mediated RNA interference in insects. Proc. R. Soc. B: Biol. Sci. 283:20160042. 10.1098/rspb.2016.0042 PubMed DOI PMC
Whyard S., Singh A. D., Wong S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39 824–832. 10.1016/j.ibmb.2009.09.007 PubMed DOI
Wieser W. (1963). Adaptations of two intertidal isopods. II. Comparison between Campecopea hirsuta and Naesa bidentata (Sphaeromatidae). J. Mar. Biol. Assoc. U K 43 97–112. 10.1017/s0025315400005282 DOI
Williams D. W., Liebhold A. M. (2002). Climate change and the outbreak ranges of two North American bark beetles. Bark Beetles Fuels Fire Bibliogr. 2002:34.
Williamson D., Vité J. (1971). Impact of insecticidal control on the southern pine beetle population in east Texas. J. Econ. Entomol. 64 1440–1444. 10.1093/jee/64.6.1440 DOI
Willow J., Sulg S., Taning C. N. T., Silva A. I., Christiaens O., Kaasik R., et al. (2021). Targeting a coatomer protein complex-I gene via RNA interference results in effective lethality in the pollen beetle Brassicogethes aeneus. J. Pest Sci. 94 703–712. 10.1007/s10340-020-01288-6 DOI
Winston W. M., Molodowitch C., Hunter C. P. (2002). Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295 2456–2459. 10.1126/science.1068836 PubMed DOI
Wise J., VanWoerkom A., Acimovic S., Sundin G., Cregg B., Vandervoort C. (2014). Trunk injection: a discriminating delivering system for horticulture crop IPM. Entomol. Ornithol. Herpetol. 3:1.
Wu Y., Xu L., Chang L., Ma M., You L., Jiang C., et al. (2019). Bacillus thuringiensis cry1C expression from the plastid genome of poplar leads to high mortality of leaf-eating caterpillars. Tree Physiol. 39 1525–1532. 10.1093/treephys/tpz073 PubMed DOI
Wuriyanghan H., Falk B. W. (2013). RNA interference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant tobacco mosaic virus (TMV). PLoS One 8:e66050. 10.1371/journal.pone.0066050 PubMed DOI PMC
Wynant N., Santos D., Van Wielendaele P., Vanden Broeck J. (2014a). Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust. S chistocerca gregaria. Insect Mole. Biol. 23 320–329. PubMed
Wynant N., Santos D., Verdonck R., Spit J., Van Wielendaele P., Broeck J. V. (2014b). Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 46 1–8. 10.1016/j.ibmb.2013.12.008 PubMed DOI
Wytinck N., Manchur C. L., Li V. H., Whyard S., Belmonte M. F. (2020). dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. Plants 9:1780. 10.3390/plants9121780 PubMed DOI PMC
Xu H. J., Chen T., Ma X. F., Xue J., Pan P. L., Zhang X. C., et al. (2013). Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, N ilaparvata lugens (H emiptera: D elphacidae). Insect Mole. Biol. 22 635–647. 10.1111/imb.12051 PubMed DOI
Xu L., Xu S., Sun L., Zhang Y., Luo J., Bock R., et al. (2021). Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle. Microbiome 9 1–14. PubMed PMC
Yan S., Qian J., Cai C., Ma Z., Li J., Yin M., et al. (2020a). Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J. Pest Sci. 93 449–459. 10.1007/s10340-019-01157-x DOI
Yan S., Ren B., Zeng B., Shen J. (2020b). Improving RNAi efficiency for pest control in crop species. BioTechniques 68 283–290. 10.2144/btn-2019-0171 PubMed DOI PMC
Yan S., Ren B. Y., Shen J. (2021). Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Sci. 28 21–34. 10.1111/1744-7917.12822 PubMed DOI
Yoon J.-S., Mogilicherla K., Gurusamy D., Chen X., Chereddy S. C., Palli S. R. (2018). Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc Natl. Acad. Sci. 115 8334–8339. 10.1073/pnas.1809381115 PubMed DOI PMC
You L., Zhang F., Huang S., Merchant A., Zhou X., Li Z. (2020). Over-expression of RNA interference (RNAi) core machinery improves susceptibility to RNAi in silkworm larvae. Insect Mole Biol. 29 353–362. 10.1111/imb.12639 PubMed DOI
Zhang H., Li H. C., Miao X. X. (2013). Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci. 20 15–30. 10.1111/j.1744-7917.2012.01513.x PubMed DOI
Zhang X., Zhang J., Zhu K. (2010). Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mole. Biol. 19 683–693. 10.1111/j.1365-2583.2010.01029.x PubMed DOI
Zhang Y., Xu L., Li S., Zhang J. (2019). Bacteria-mediated RNA interference for management of Plagiodera versicolora (Coleoptera: Chrysomelidae). Insects 10:415. 10.3390/insects10120415 PubMed DOI PMC
Zhao C., Gonzales M. A. A., Poland T. M., Mittapalli O. (2015). Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis). J. Insect Physiol. 72 70–78. 10.1016/j.jinsphys.2014.12.002 PubMed DOI
Zhao D., Zheng C., Shi F., Xu Y., Zong S., Tao J. (2021). Expression analysis of genes related to cold tolerance in Dendroctonus valens. PeerJ 9:e10864. 10.7717/peerj.10864 PubMed DOI PMC
Zheng Y., Hu Y., Yan S., Zhou H., Song D., Yin M., et al. (2019). A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Manag. Sci. 75 1993–1999. 10.1002/ps.5313 PubMed DOI
Zhou Z., Li Y., Yuan C., Zhang Y., Qu L. (2015). Oral administration of TAT-PTD–diapause hormone fusion protein interferes with Helicoverpa armigera (Lepidoptera: Noctuidae) development. J. Insect Sci. 15:1. PubMed PMC
Zhu F., Xu J., Palli R., Ferguson J., Palli S. R. (2011). Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67 175–182. 10.1002/ps.2048 PubMed DOI
Zhu J.-Y., Zhao N., Yang B. (2012a). Global transcriptional analysis of olfactory genes in the head of pine shoot beetle, Tomicus yunnanensis. Comparative and functional genomics 2012 2012. PubMed PMC
Zhu J.-Y., Zhao N., Yang B. (2012b). Global transcriptome profiling of the pine shoot beetle, Tomicus yunnanensis (Coleoptera: Scolytinae). PLoS One 7:e32291. 10.1371/journal.pone.0032291 PubMed DOI PMC
Zhu K. Y., Palli S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 65 293–311. 10.1146/annurev-ento-011019-025224 PubMed DOI PMC
Zotti M., Dos Santos E. A., Cagliari D., Christiaens O., Taning C. N. T., Smagghe G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 74 1239–1250. 10.1002/ps.4813 PubMed DOI
Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle