Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae)

. 2023 May 23 ; 24 (11) : . [epub] 20230523

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37298113

Grantová podpora
SR/WOS-A/LS-337/2017 Department of Science & Technology

The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.

Zobrazit více v PubMed

Vonzun S., Messmer M.M., Boller T., Shrivas Y., Patil S.S., Riar A. Extent of bollworm and sucking pest damage on modern and traditional cotton species and potential for breeding in organic cotton. Sustainability. 2019;11:6353. doi: 10.3390/su11226353. DOI

Syed T.S., Abro G.H., Khanum A., Satta M. Effect of Host Plants on the Biology of Earias vittella (Fab)(Noctuidae:Lepidoptera) Under Laboratory Conditions. Pak. J. Zool. 2011;43:127–132.

Bras A., Roy A., Heckel D.G., Anderson P., Karlsson Green K. Pesticide resistance in arthropods: Ecology matters too. Ecol. Lett. 2022;25:1746–1759. doi: 10.1111/ele.14030. PubMed DOI PMC

Kranthi K.R., Jadhav D.R., Wanjari R.R., Ali S.S., Russell D. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res. 2001;91:37–46. PubMed

Gautam H.K., Singh N.N., Rai A.B. Screening of okra against shoot and fruit bores Earias vittella (Fab.) Indian J. Agric. Res. 2014;48:72. doi: 10.5958/j.0976-058X.48.1.013. DOI

Tabashnik B.E., Brévault T., Carrière Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013;31:510–521. doi: 10.1038/nbt.2597. PubMed DOI

Mamta B., Rajam M.V. RNAi technology: A new platform for crop pest control. Physiol. Mol. Biol. Plants. 2017;23:487–501. doi: 10.1007/s12298-017-0443-x. PubMed DOI PMC

Nitnavare R.B., Bhattacharya J., Singh S., Kour A., Hawkesford M.J., Arora N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. Front. Plant Sci. 2021;12:673576. doi: 10.3389/fpls.2021.673576. PubMed DOI PMC

Singh S., Gupta M., Pandher S., Kaur G., Goel N., Rathore P. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) Sci. Rep. 2019;9:13710. doi: 10.1038/s41598-019-49997-y. PubMed DOI PMC

Ganbaatar O., Cao B., Zhang Y., Bao D., Bao W., Wuriyanghan H. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol. 2017;17:9. doi: 10.1186/s12896-017-0328-7. PubMed DOI PMC

Zha W., Peng X., Chen R., Du B., Zhu L., He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE. 2011;6:e20504. doi: 10.1371/journal.pone.0020504. PubMed DOI PMC

Singh S., Gupta M., Pandher S., Kaur G., Rathore P., Palli S.R. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida) PLoS ONE. 2018;13:e0191116. doi: 10.1371/journal.pone.0191116. PubMed DOI PMC

Tariq K., Ali A., Davies T.G.E., Naz E., Naz L., Sohail S., Hou M., Ullah F. RNA interference-mediated knockdown of voltage-gated sodium channel (MpNav) gene causes mortality in peach-potato aphid, Myzus persicae. Sci. Rep. 2019;9:5291. doi: 10.1038/s41598-019-41832-8. PubMed DOI PMC

Terenius O., Papanicolaou A., Garbutt J.S., Eleftherianos I., Huvenne H., Kanginakudru S., Albrechtsen M., An C., Aymeric J.-L., Barthel A., et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011;57:231–245. doi: 10.1016/j.jinsphys.2010.11.006. PubMed DOI

Singh I.K., Singh S., Mogilicherla K., Shukla J.N., Palli S.R. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 2017;7:17059. doi: 10.1038/s41598-017-17134-2. PubMed DOI PMC

Shukla J.N., Kalsi M., Sethi A., Narva K.E., Fishilevich E., Singh S., Mogilicherla K., Palli S.R. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 2016;13:656–669. doi: 10.1080/15476286.2016.1191728. PubMed DOI PMC

Joga M.R., Zotti M.J., Smagghe G., Christiaens O. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Front. Physiol. 2016;7:553. doi: 10.3389/fphys.2016.00553. PubMed DOI PMC

Joga M.R., Mogilicherla K., Smagghe G., Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? Front. Plant Sci. 2021;12:733608. doi: 10.3389/fpls.2021.733608. PubMed DOI PMC

Scott J.G., Michel K., Bartholomay L.C., Siegfried B.D., Hunter W.B., Smagghe G., Zhu K.Y., Douglas A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013;59:1212–1221. doi: 10.1016/j.jinsphys.2013.08.014. PubMed DOI PMC

Liu H., Zhu X., Wei Y., Song C., Wang Y. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed. Pharmacother. 2023;157:114065. doi: 10.1016/j.biopha.2022.114065. PubMed DOI

Abballe L., Spinello Z., Antonacci C., Coppola L., Miele E., Catanzaro G., Miele E. Nanoparticles for drug and gene delivery in pediatric brain tumors’ cancer stem cells: Current knowledge and future perspectives. Pharmaceutics. 2023;15:505. doi: 10.3390/pharmaceutics15020505. PubMed DOI PMC

Das S., Debnath N., Cui Y., Unrine J., Palli S.R. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS Appl. Mater. Interfaces. 2015;7:19530–19535. doi: 10.1021/acsami.5b05232. PubMed DOI

Gurusamy D., Mogilicherla K., Palli S.R. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch. Insect. Biochem. Physiol. 2020;104:e21677. doi: 10.1002/arch.21677. PubMed DOI

Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q.M., Xu Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants. 2017;3:16207. doi: 10.1038/nplants.2016.207. PubMed DOI

Zhang X., Zhang J., Zhu K.Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae) Insect. Mol. Biol. 2010;19:683–693. doi: 10.1111/j.1365-2583.2010.01029.x. PubMed DOI

Kaur R., Gupta M., Singh S., Joshi N., Sharma A. Enhancing RNAi Efficiency to Decipher the Functional Response of Potential Genes in Bemisia tabaci AsiaII-1 (Gennadius) Through dsRNA Feeding Assays. Front. Physiol. 2020;11:123. doi: 10.3389/fphys.2020.00123. PubMed DOI PMC

Bulgarella M., Baty J.W., McGruddy R., Lester P.J. Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. PLoS ONE. 2023;18:e0279983. doi: 10.1371/journal.pone.0279983. PubMed DOI PMC

Mogilicherla K., Howell J.L., Palli S.R. Improving RNAi in the Brown Marmorated Stink Bug: Identification of target genes and reference genes for RT-qPCR. Sci. Rep. 2018;8:3720. doi: 10.1038/s41598-018-22035-z. PubMed DOI PMC

Haberhausen G., Pinsl J., Kuhn C.C., Markert-Hahn C. Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J. Clin. Microbiol. 1998;36:628–633. doi: 10.1128/JCM.36.3.628-633.1998. PubMed DOI PMC

Zhang S., An S., Li Z., Wu F., Yang Q., Liu Y., Cao J., Zhang H., Zhang Q., Liu X. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae) Gene. 2015;555:393–402. doi: 10.1016/j.gene.2014.11.038. PubMed DOI

Kaur R., Gupta M., Singh S., Pandher S. Evaluation and validation of experimental condition-specific reference genes for normalization of gene expression in Asia II-I Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Gene Expr. Patterns. 2019;34:119058. doi: 10.1016/j.gep.2019.119058. PubMed DOI

Chang Y.-W., Chen J.-Y., Lu M.-X., Gao Y., Tian Z.-H., Gong W.-R., Zhu W., Du Y.-Z. Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) PLoS ONE. 2017;12:e0181862. doi: 10.1371/journal.pone.0181862. PubMed DOI PMC

Ma K.-S., Li F., Liang P.-Z., Chen X.-W., Liu Y., Gao X.-W. Identification and Validation of Reference Genes for the Normalization of Gene Expression Data in qRT-PCR Analysis in Aphis gossypii (Hemiptera: Aphididae) J. Insect Sci. 2016;16:17. doi: 10.1093/jisesa/iew003. PubMed DOI PMC

Arya S.K., Jain G., Upadhyay S.K., Sarita, Singh H., Dixit S., Verma P.C. Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. Sci. Rep. 2017;7:13520. doi: 10.1038/s41598-017-13925-9. PubMed DOI PMC

Dzaki N., Ramli K.N., Azlan A., Ishak I.H., Azzam G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 2017;7:43618. doi: 10.1038/srep43618. PubMed DOI PMC

Koramutla M.K., Aminedi R., Bhattacharya R. Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt) Sci. Rep. 2016;6:25883. doi: 10.1038/srep25883. PubMed DOI PMC

Brar G.S., Kaur G., Singh S., Shukla J.N., Pandher S. Identification and validation of stage-specific reference genes for gene expression analysis in Callosobruchus maculatus (Coleoptera: Bruchidae) Gene Expr. Patterns. 2022;43:119233. doi: 10.1016/j.gep.2022.119233. PubMed DOI

Sellamuthu G., Bílý J., Joga M.R., Synek J., Roy A. Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae) Sci. Rep. 2022;12:4671. doi: 10.1038/s41598-022-08434-3. PubMed DOI PMC

Zhao W., Zhang B., Geng Z., Chang Y., Wei J., An S. The uncommon function and mechanism of the common enzyme glyceraldehyde-3-phosphate dehydrogenase in the metamorphosis of Helicoverpa armigera. Front. Bioeng. Biotechnol. 2022;10:1042867. doi: 10.3389/fbioe.2022.1042867. PubMed DOI PMC

Lu Y., Yuan M., Gao X., Kang T., Zhan S., Wan H., Li J. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae) PLoS ONE. 2013;8:e68059. doi: 10.1371/journal.pone.0068059. PubMed DOI PMC

Jeon J.H., Moon K., Kim Y., Kim Y.H. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci. Rep. 2020;10:13935. doi: 10.1038/s41598-020-70965-4. PubMed DOI PMC

Bansal R., Mamidala P., Mian M.A.R., Mittapalli O., Michel A.P. Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae) J. Econ. Entomol. 2012;105:1432–1438. doi: 10.1603/EC12095. PubMed DOI PMC

Sandiford S.L., Dong Y., Pike A., Blumberg B.J., Bahia A.C., Dimopoulos G. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium Antagonist. PLoS Pathog. 2015;11:e1004631. doi: 10.1371/journal.ppat.1004631. PubMed DOI PMC

Kimura K.-I., Minami R., Yamahama Y., Hariyama T., Hosoda N. Framework with cytoskeletal actin filaments forming insect footpad hairs inspires biomimetic adhesive device design. Commun. Biol. 2020;3:272. doi: 10.1038/s42003-020-0995-0. PubMed DOI PMC

Mounier N., Prudhomme J.-C. Differential expression of muscle and cytoplasmic actin genes during development of Bombyx mori. Insect Biochem. 1991;21:523–533. doi: 10.1016/0020-1790(91)90106-O. DOI

Zhu X., Yuan M., Shakeel M., Zhang Y., Wang S., Wang X., Zhan S., Kang T., Li J. Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) PLoS ONE. 2014;9:e84730. doi: 10.1371/journal.pone.0084730. PubMed DOI PMC

Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect. Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI

Yan X., Zhang Y., Xu K., Wang Y., Yang W. Selection and Validation of Reference Genes for Gene Expression Analysis in Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) Insects. 2021;12:589. doi: 10.3390/insects12070589. PubMed DOI PMC

Singh S., Gupta M., Pandher S., Kaur G., Goel N., Rathore P., Palli S.R. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.) (Thysanoptera: Thripidae) BMC Mol. Biol. 2019;20:6. doi: 10.1186/s12867-019-0123-1. PubMed DOI PMC

Qu C., Wang R., Che W., Zhu X., Li F., Luo C. Selection and evaluation of reference genes for expression analysis using quantitative real-time PCR in the Asian Ladybird Harmonia axyridis (Coleoptera: Coccinellidae) PLoS ONE. 2018;13:e0192521. doi: 10.1371/journal.pone.0192521. PubMed DOI PMC

Hoogewijs D., Houthoofd K., Matthijssens F., Vandesompele J., Vanfleteren J.R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 2008;9:9. doi: 10.1186/1471-2199-9-9. PubMed DOI PMC

Dombrovski M., Kuhar R., Mitchell A., Shelton H., Condron B. Cooperative foraging during larval stage affects fitness in Drosophila. J. Comp. Physiol. A. 2020;206:743–755. doi: 10.1007/s00359-020-01434-6. PubMed DOI PMC

Wei D.-D., He W., Miao Z.-Q., Tu Y.-Q., Wang L., Dou W., Wang J.-J. Characterization of Esterase Genes Involving Malathion Detoxification and Establishment of an RNA Interference Method in Liposcelis bostrychophila. Front. Physiol. 2020;11:274. doi: 10.3389/fphys.2020.00274. PubMed DOI PMC

Pavlidi N., Vontas J., Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect Sci. 2018;27:97–102. doi: 10.1016/j.cois.2018.04.007. PubMed DOI

Yu L., Tang W., He W., Ma X., Vasseur L., Baxter S.W., Yang G., Huang S., Song F., You M. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.) Sci. Rep. 2015;5:8952. doi: 10.1038/srep08952. PubMed DOI PMC

Chen C., Wang C., Liu Y., Shi X., Gao X. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci. Rep. 2018;8:2564. doi: 10.1038/s41598-018-20981-2. PubMed DOI PMC

Iga M., Kataoka H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 2012;35:838–843. doi: 10.1248/bpb.35.838. PubMed DOI

Jing Y.-P., Wen X., Li L., Zhang S., Zhang C., Zhou S. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proc. Natl. Acad. Sci. USA. 2021;118:e2106908118. doi: 10.1073/pnas.2106908118. PubMed DOI PMC

Santos C.G., Humann F.C., Hartfelder K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 2019;31:43–48. doi: 10.1016/j.cois.2018.07.010. PubMed DOI

Song J., Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 2020;77:1893–1909. doi: 10.1007/s00018-019-03361-5. PubMed DOI PMC

Zhu K.Y., Palli S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020;65:293–311. doi: 10.1146/annurev-ento-011019-025224. PubMed DOI PMC

Yoon J.-S., Shukla J.N., Gong Z.J., Mogilicherla K., Palli S.R. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochem. Mol. Biol. 2016;78:78–88. doi: 10.1016/j.ibmb.2016.09.002. PubMed DOI

Gupta M., Singh S., Kaur G., Pandher S., Kaur N., Goel N., Kaur R., Rathore P. Transcriptome analysis unravels RNAi pathways genes and putative expansion of CYP450 gene family in cotton leafhopper Amrasca biguttula (Ishida) Mol. Biol. Rep. 2021;48:4383–4396. doi: 10.1007/s11033-021-06453-3. PubMed DOI

Mogilicherla K., Chakraborty A., Taning C.N.T., Smagghe G., Roy A. RNAi in termites (Isoptera): Current status and prospects for pest management. Entomologia. 2022 doi: 10.1127/entomologia/2022/1636. DOI

Yoon J.-S., Mogilicherla K., Gurusamy D., Chen X., Chereddy S.C.R.R., Palli S.R. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. USA. 2018;115:8334–8339. doi: 10.1073/pnas.1809381115. PubMed DOI PMC

Black J.J., Wang Z., Goering L.M., Johnson A.W. Utp14 interaction with the small subunit processome. RNA. 2018;24:1214–1228. doi: 10.1261/rna.066373.118. PubMed DOI PMC

Peng Y., Wang K., Fu W., Sheng C., Han Z. Biochemical comparison of dsRNA degrading nucleases in four different insects. Front. Physiol. 2018;9:624. doi: 10.3389/fphys.2018.00624. PubMed DOI PMC

Prentice K., Smagghe G., Gheysen G., Christiaens O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect. Biochem. Mol. Biol. 2019;110:80–89. doi: 10.1016/j.ibmb.2019.04.001. PubMed DOI

Song H., Fan Y., Zhang J., Cooper A.M., Silver K., Li D., Li T., Ma E., Zhu K.Y., Zhang J. Contributions of dsRNAses to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest Manag. Sci. 2019;75:1707–1717. doi: 10.1002/ps.5291. PubMed DOI

Guan R.-B., Li H.-C., Fan Y.-J., Hu S.-R., Christiaens O., Smagghe G., Miao X.-X. A nuclease specific to lepidopteran insects suppresses RNAi. J. Biol. Chem. 2018;293:6011–6021. doi: 10.1074/jbc.RA117.001553. PubMed DOI PMC

Dhandapani R.K., Gurusamy D., Palli S.R. Protamine-Lipid-dsRNA Nanoparticles Improve RNAi Efficiency in the Fall Armyworm, Spodoptera frugiperda. J. Agric. Food Chem. 2022;70:6634–6643. doi: 10.1021/acs.jafc.2c00901. PubMed DOI

Geng K., Zhang Y., Zhao X., Zhang W., Guo X., He L., Liu K., Yang H., Hong H., Peng J., et al. Fluorescent Nanoparticle-RNAi-Mediated Silencing of Sterol Carrier Protein-2 Gene Expression Suppresses the Growth, Development, and Reproduction of Helicoverpa armigera. Nanomaterials. 2023;13:245. doi: 10.3390/nano13020245. PubMed DOI PMC

Avila L.A., Chandrasekar R., Wilkinson K.E., Balthazor J., Heerman M., Bechard J., Brown S., Park Y., Dhar S., Reeck G.R., et al. Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J. Control. Release. 2018;273:139–146. doi: 10.1016/j.jconrel.2018.01.010. PubMed DOI PMC

Christiaens O., Tardajos M.G., Martinez Reyna Z.L., Dash M., Dubruel P., Smagghe G. Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers. Front. Physiol. 2018;9:316. doi: 10.3389/fphys.2018.00316. PubMed DOI PMC

Dhandapani R.K., Gurusamy D., Howell J.L., Palli S.R. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci. Rep. 2019;9:8775. doi: 10.1038/s41598-019-45019-z. PubMed DOI PMC

Kunte N., McGraw E., Bell S., Held D., Avila L.-A. Prospects, challenges and current status of RNAi through insect feeding. Pest Manag. Sci. 2020;76:26–41. doi: 10.1002/ps.5588. PubMed DOI

Mysore K., Andrews E., Li P., Duman-Scheel M. Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. BMC Dev. Biol. 2014;14:9. doi: 10.1186/1471-213X-14-9. PubMed DOI PMC

Zhang Q., Hua G., Adang M.J. Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. Insect Biochem. Mol. Biol. 2015;60:33–38. doi: 10.1016/j.ibmb.2015.03.001. PubMed DOI

Ramesh Kumar D., Saravana Kumar P., Gandhi M.R., Al-Dhabi N.A., Paulraj M.G., Ignacimuthu S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Biol. Macromol. 2016;86:89–95. doi: 10.1016/j.ijbiomac.2016.01.030. PubMed DOI

Theerawanitchpan G., Saengkrit N., Sajomsang W., Gonil P., Ruktanonchai U., Saesoo S., Flegel T.W., Saksmerprome V. Chitosan and its quaternized derivative as effective long dsRNA carriers targeting shrimp virus in Spodoptera frugiperda 9 cells. J. Biotechnol. 2012;160:97–104. doi: 10.1016/j.jbiotec.2012.04.011. PubMed DOI

Whyard S., Singh A.D., Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 2009;39:824–832. doi: 10.1016/j.ibmb.2009.09.007. PubMed DOI

Johnson J.A., Bitra K., Zhang S., Wang L., Lynn D.E., Strand M.R. The UGA-CiE1 cell line from Chrysodeixis includens exhibits characteristics of granulocytes and is permissive to infection by two viruses. Insect Biochem. Mol. Biol. 2010;40:394–404. doi: 10.1016/j.ibmb.2010.03.005. PubMed DOI

Taning C.N.T., Christiaens O., Berkvens N., Casteels H., Maes M., Smagghe G. Oral RNAi to control Drosophila suzukii: Laboratory testing against larval and adult stages. J. Pest Sci. 2016;89:803–814. doi: 10.1007/s10340-016-0736-9. DOI

Barry G., Alberdi P., Schnettler E., Weisheit S., Kohl A., Fazakerley J.K., Bell-Sakyi L. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp. Appl. Acarol. 2013;59:319–338. doi: 10.1007/s10493-012-9598-x. PubMed DOI PMC

Zhang Y., Cui J., Zhou Y., Cao J., Gong H., Zhang H., Zhou J. Liposome mediated double-stranded RNA delivery to silence ribosomal protein P0 in the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis. 2018;9:638–644. doi: 10.1016/j.ttbdis.2018.01.015. PubMed DOI PMC

Costa B., Boueri B., Oliveira C., Silveira I., Ribeiro A.J. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin. Drug Deliv. 2022;19:577–594. doi: 10.1080/17425247.2022.2075846. PubMed DOI

Wang K., Peng Y., Jason Chen J., Peng Y., Wang X., Shen Z., Han Z. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis) Pestic. Biochem. Physiol. 2019;165:104467. doi: 10.1016/j.pestbp.2019.10.005. PubMed DOI

Gupta G.P., Rani S., Birah A., Raghuraman M. Mass rearing of the spotted bollworm, Earias vittella (Lepidoptera: Noctuidae) on an artificial diet. JTI. 2005;25:134–137. doi: 10.1079/IJT200567. DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Zerbino D.R., Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC

Schulz C., Gomez Perdiguero E., Chorro L., Szabo-Rogers H., Cagnard N., Kierdorf K., Prinz M., Wu B., Jacobsen S.E.W., Pollard J.W., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90. doi: 10.1126/science.1219179. PubMed DOI

Du J., Li M., Yuan Z., Guo M., Song J., Xie X., Chen Y. A decision analysis model for KEGG pathway analysis. BMC Bioinform. 2016;17:407. doi: 10.1186/s12859-016-1285-1. PubMed DOI PMC

Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Huang J.-H., Liu Y., Lin Y.-H., Belles X., Lee H.-J. Practical Use of RNA Interference: Oral Delivery of Double-stranded RNA in Liposome Carriers for Cockroaches. J. Vis. Exp. 2018;135:e57385. doi: 10.3791/57385. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...