Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SR/WOS-A/LS-337/2017
Department of Science & Technology
PubMed
37298113
PubMed Central
PMC10252998
DOI
10.3390/ijms24119161
PII: ijms24119161
Knihovny.cz E-zdroje
- Klíčová slova
- cotton, dsRNA stability, nanoparticle encapsulated dsRNA, reference genes, spotted bollworm, transcriptome,
- MeSH
- adenosintrifosfatasy MeSH
- dvouvláknová RNA genetika MeSH
- můry * genetika MeSH
- nanočástice * MeSH
- protony MeSH
- RNA interference MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- dvouvláknová RNA MeSH
- protony MeSH
The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.
Pharmaceutical Sciences and Drug Research Punjabi University Patiala 140072 Punjab India
Regional Research Station Punjab Agricultural University Faridkot 151203 Punjab India
Zobrazit více v PubMed
Vonzun S., Messmer M.M., Boller T., Shrivas Y., Patil S.S., Riar A. Extent of bollworm and sucking pest damage on modern and traditional cotton species and potential for breeding in organic cotton. Sustainability. 2019;11:6353. doi: 10.3390/su11226353. DOI
Syed T.S., Abro G.H., Khanum A., Satta M. Effect of Host Plants on the Biology of Earias vittella (Fab)(Noctuidae:Lepidoptera) Under Laboratory Conditions. Pak. J. Zool. 2011;43:127–132.
Bras A., Roy A., Heckel D.G., Anderson P., Karlsson Green K. Pesticide resistance in arthropods: Ecology matters too. Ecol. Lett. 2022;25:1746–1759. doi: 10.1111/ele.14030. PubMed DOI PMC
Kranthi K.R., Jadhav D.R., Wanjari R.R., Ali S.S., Russell D. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res. 2001;91:37–46. PubMed
Gautam H.K., Singh N.N., Rai A.B. Screening of okra against shoot and fruit bores Earias vittella (Fab.) Indian J. Agric. Res. 2014;48:72. doi: 10.5958/j.0976-058X.48.1.013. DOI
Tabashnik B.E., Brévault T., Carrière Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013;31:510–521. doi: 10.1038/nbt.2597. PubMed DOI
Mamta B., Rajam M.V. RNAi technology: A new platform for crop pest control. Physiol. Mol. Biol. Plants. 2017;23:487–501. doi: 10.1007/s12298-017-0443-x. PubMed DOI PMC
Nitnavare R.B., Bhattacharya J., Singh S., Kour A., Hawkesford M.J., Arora N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. Front. Plant Sci. 2021;12:673576. doi: 10.3389/fpls.2021.673576. PubMed DOI PMC
Singh S., Gupta M., Pandher S., Kaur G., Goel N., Rathore P. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) Sci. Rep. 2019;9:13710. doi: 10.1038/s41598-019-49997-y. PubMed DOI PMC
Ganbaatar O., Cao B., Zhang Y., Bao D., Bao W., Wuriyanghan H. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol. 2017;17:9. doi: 10.1186/s12896-017-0328-7. PubMed DOI PMC
Zha W., Peng X., Chen R., Du B., Zhu L., He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE. 2011;6:e20504. doi: 10.1371/journal.pone.0020504. PubMed DOI PMC
Singh S., Gupta M., Pandher S., Kaur G., Rathore P., Palli S.R. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida) PLoS ONE. 2018;13:e0191116. doi: 10.1371/journal.pone.0191116. PubMed DOI PMC
Tariq K., Ali A., Davies T.G.E., Naz E., Naz L., Sohail S., Hou M., Ullah F. RNA interference-mediated knockdown of voltage-gated sodium channel (MpNav) gene causes mortality in peach-potato aphid, Myzus persicae. Sci. Rep. 2019;9:5291. doi: 10.1038/s41598-019-41832-8. PubMed DOI PMC
Terenius O., Papanicolaou A., Garbutt J.S., Eleftherianos I., Huvenne H., Kanginakudru S., Albrechtsen M., An C., Aymeric J.-L., Barthel A., et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011;57:231–245. doi: 10.1016/j.jinsphys.2010.11.006. PubMed DOI
Singh I.K., Singh S., Mogilicherla K., Shukla J.N., Palli S.R. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 2017;7:17059. doi: 10.1038/s41598-017-17134-2. PubMed DOI PMC
Shukla J.N., Kalsi M., Sethi A., Narva K.E., Fishilevich E., Singh S., Mogilicherla K., Palli S.R. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 2016;13:656–669. doi: 10.1080/15476286.2016.1191728. PubMed DOI PMC
Joga M.R., Zotti M.J., Smagghe G., Christiaens O. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Front. Physiol. 2016;7:553. doi: 10.3389/fphys.2016.00553. PubMed DOI PMC
Joga M.R., Mogilicherla K., Smagghe G., Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? Front. Plant Sci. 2021;12:733608. doi: 10.3389/fpls.2021.733608. PubMed DOI PMC
Scott J.G., Michel K., Bartholomay L.C., Siegfried B.D., Hunter W.B., Smagghe G., Zhu K.Y., Douglas A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013;59:1212–1221. doi: 10.1016/j.jinsphys.2013.08.014. PubMed DOI PMC
Liu H., Zhu X., Wei Y., Song C., Wang Y. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed. Pharmacother. 2023;157:114065. doi: 10.1016/j.biopha.2022.114065. PubMed DOI
Abballe L., Spinello Z., Antonacci C., Coppola L., Miele E., Catanzaro G., Miele E. Nanoparticles for drug and gene delivery in pediatric brain tumors’ cancer stem cells: Current knowledge and future perspectives. Pharmaceutics. 2023;15:505. doi: 10.3390/pharmaceutics15020505. PubMed DOI PMC
Das S., Debnath N., Cui Y., Unrine J., Palli S.R. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS Appl. Mater. Interfaces. 2015;7:19530–19535. doi: 10.1021/acsami.5b05232. PubMed DOI
Gurusamy D., Mogilicherla K., Palli S.R. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch. Insect. Biochem. Physiol. 2020;104:e21677. doi: 10.1002/arch.21677. PubMed DOI
Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q.M., Xu Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants. 2017;3:16207. doi: 10.1038/nplants.2016.207. PubMed DOI
Zhang X., Zhang J., Zhu K.Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae) Insect. Mol. Biol. 2010;19:683–693. doi: 10.1111/j.1365-2583.2010.01029.x. PubMed DOI
Kaur R., Gupta M., Singh S., Joshi N., Sharma A. Enhancing RNAi Efficiency to Decipher the Functional Response of Potential Genes in Bemisia tabaci AsiaII-1 (Gennadius) Through dsRNA Feeding Assays. Front. Physiol. 2020;11:123. doi: 10.3389/fphys.2020.00123. PubMed DOI PMC
Bulgarella M., Baty J.W., McGruddy R., Lester P.J. Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. PLoS ONE. 2023;18:e0279983. doi: 10.1371/journal.pone.0279983. PubMed DOI PMC
Mogilicherla K., Howell J.L., Palli S.R. Improving RNAi in the Brown Marmorated Stink Bug: Identification of target genes and reference genes for RT-qPCR. Sci. Rep. 2018;8:3720. doi: 10.1038/s41598-018-22035-z. PubMed DOI PMC
Haberhausen G., Pinsl J., Kuhn C.C., Markert-Hahn C. Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J. Clin. Microbiol. 1998;36:628–633. doi: 10.1128/JCM.36.3.628-633.1998. PubMed DOI PMC
Zhang S., An S., Li Z., Wu F., Yang Q., Liu Y., Cao J., Zhang H., Zhang Q., Liu X. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae) Gene. 2015;555:393–402. doi: 10.1016/j.gene.2014.11.038. PubMed DOI
Kaur R., Gupta M., Singh S., Pandher S. Evaluation and validation of experimental condition-specific reference genes for normalization of gene expression in Asia II-I Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Gene Expr. Patterns. 2019;34:119058. doi: 10.1016/j.gep.2019.119058. PubMed DOI
Chang Y.-W., Chen J.-Y., Lu M.-X., Gao Y., Tian Z.-H., Gong W.-R., Zhu W., Du Y.-Z. Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) PLoS ONE. 2017;12:e0181862. doi: 10.1371/journal.pone.0181862. PubMed DOI PMC
Ma K.-S., Li F., Liang P.-Z., Chen X.-W., Liu Y., Gao X.-W. Identification and Validation of Reference Genes for the Normalization of Gene Expression Data in qRT-PCR Analysis in Aphis gossypii (Hemiptera: Aphididae) J. Insect Sci. 2016;16:17. doi: 10.1093/jisesa/iew003. PubMed DOI PMC
Arya S.K., Jain G., Upadhyay S.K., Sarita, Singh H., Dixit S., Verma P.C. Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. Sci. Rep. 2017;7:13520. doi: 10.1038/s41598-017-13925-9. PubMed DOI PMC
Dzaki N., Ramli K.N., Azlan A., Ishak I.H., Azzam G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 2017;7:43618. doi: 10.1038/srep43618. PubMed DOI PMC
Koramutla M.K., Aminedi R., Bhattacharya R. Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt) Sci. Rep. 2016;6:25883. doi: 10.1038/srep25883. PubMed DOI PMC
Brar G.S., Kaur G., Singh S., Shukla J.N., Pandher S. Identification and validation of stage-specific reference genes for gene expression analysis in Callosobruchus maculatus (Coleoptera: Bruchidae) Gene Expr. Patterns. 2022;43:119233. doi: 10.1016/j.gep.2022.119233. PubMed DOI
Sellamuthu G., Bílý J., Joga M.R., Synek J., Roy A. Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae) Sci. Rep. 2022;12:4671. doi: 10.1038/s41598-022-08434-3. PubMed DOI PMC
Zhao W., Zhang B., Geng Z., Chang Y., Wei J., An S. The uncommon function and mechanism of the common enzyme glyceraldehyde-3-phosphate dehydrogenase in the metamorphosis of Helicoverpa armigera. Front. Bioeng. Biotechnol. 2022;10:1042867. doi: 10.3389/fbioe.2022.1042867. PubMed DOI PMC
Lu Y., Yuan M., Gao X., Kang T., Zhan S., Wan H., Li J. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae) PLoS ONE. 2013;8:e68059. doi: 10.1371/journal.pone.0068059. PubMed DOI PMC
Jeon J.H., Moon K., Kim Y., Kim Y.H. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci. Rep. 2020;10:13935. doi: 10.1038/s41598-020-70965-4. PubMed DOI PMC
Bansal R., Mamidala P., Mian M.A.R., Mittapalli O., Michel A.P. Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae) J. Econ. Entomol. 2012;105:1432–1438. doi: 10.1603/EC12095. PubMed DOI PMC
Sandiford S.L., Dong Y., Pike A., Blumberg B.J., Bahia A.C., Dimopoulos G. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium Antagonist. PLoS Pathog. 2015;11:e1004631. doi: 10.1371/journal.ppat.1004631. PubMed DOI PMC
Kimura K.-I., Minami R., Yamahama Y., Hariyama T., Hosoda N. Framework with cytoskeletal actin filaments forming insect footpad hairs inspires biomimetic adhesive device design. Commun. Biol. 2020;3:272. doi: 10.1038/s42003-020-0995-0. PubMed DOI PMC
Mounier N., Prudhomme J.-C. Differential expression of muscle and cytoplasmic actin genes during development of Bombyx mori. Insect Biochem. 1991;21:523–533. doi: 10.1016/0020-1790(91)90106-O. DOI
Zhu X., Yuan M., Shakeel M., Zhang Y., Wang S., Wang X., Zhan S., Kang T., Li J. Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) PLoS ONE. 2014;9:e84730. doi: 10.1371/journal.pone.0084730. PubMed DOI PMC
Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect. Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI
Yan X., Zhang Y., Xu K., Wang Y., Yang W. Selection and Validation of Reference Genes for Gene Expression Analysis in Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) Insects. 2021;12:589. doi: 10.3390/insects12070589. PubMed DOI PMC
Singh S., Gupta M., Pandher S., Kaur G., Goel N., Rathore P., Palli S.R. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.) (Thysanoptera: Thripidae) BMC Mol. Biol. 2019;20:6. doi: 10.1186/s12867-019-0123-1. PubMed DOI PMC
Qu C., Wang R., Che W., Zhu X., Li F., Luo C. Selection and evaluation of reference genes for expression analysis using quantitative real-time PCR in the Asian Ladybird Harmonia axyridis (Coleoptera: Coccinellidae) PLoS ONE. 2018;13:e0192521. doi: 10.1371/journal.pone.0192521. PubMed DOI PMC
Hoogewijs D., Houthoofd K., Matthijssens F., Vandesompele J., Vanfleteren J.R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 2008;9:9. doi: 10.1186/1471-2199-9-9. PubMed DOI PMC
Dombrovski M., Kuhar R., Mitchell A., Shelton H., Condron B. Cooperative foraging during larval stage affects fitness in Drosophila. J. Comp. Physiol. A. 2020;206:743–755. doi: 10.1007/s00359-020-01434-6. PubMed DOI PMC
Wei D.-D., He W., Miao Z.-Q., Tu Y.-Q., Wang L., Dou W., Wang J.-J. Characterization of Esterase Genes Involving Malathion Detoxification and Establishment of an RNA Interference Method in Liposcelis bostrychophila. Front. Physiol. 2020;11:274. doi: 10.3389/fphys.2020.00274. PubMed DOI PMC
Pavlidi N., Vontas J., Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect Sci. 2018;27:97–102. doi: 10.1016/j.cois.2018.04.007. PubMed DOI
Yu L., Tang W., He W., Ma X., Vasseur L., Baxter S.W., Yang G., Huang S., Song F., You M. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.) Sci. Rep. 2015;5:8952. doi: 10.1038/srep08952. PubMed DOI PMC
Chen C., Wang C., Liu Y., Shi X., Gao X. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci. Rep. 2018;8:2564. doi: 10.1038/s41598-018-20981-2. PubMed DOI PMC
Iga M., Kataoka H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 2012;35:838–843. doi: 10.1248/bpb.35.838. PubMed DOI
Jing Y.-P., Wen X., Li L., Zhang S., Zhang C., Zhou S. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proc. Natl. Acad. Sci. USA. 2021;118:e2106908118. doi: 10.1073/pnas.2106908118. PubMed DOI PMC
Santos C.G., Humann F.C., Hartfelder K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 2019;31:43–48. doi: 10.1016/j.cois.2018.07.010. PubMed DOI
Song J., Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 2020;77:1893–1909. doi: 10.1007/s00018-019-03361-5. PubMed DOI PMC
Zhu K.Y., Palli S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020;65:293–311. doi: 10.1146/annurev-ento-011019-025224. PubMed DOI PMC
Yoon J.-S., Shukla J.N., Gong Z.J., Mogilicherla K., Palli S.R. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochem. Mol. Biol. 2016;78:78–88. doi: 10.1016/j.ibmb.2016.09.002. PubMed DOI
Gupta M., Singh S., Kaur G., Pandher S., Kaur N., Goel N., Kaur R., Rathore P. Transcriptome analysis unravels RNAi pathways genes and putative expansion of CYP450 gene family in cotton leafhopper Amrasca biguttula (Ishida) Mol. Biol. Rep. 2021;48:4383–4396. doi: 10.1007/s11033-021-06453-3. PubMed DOI
Mogilicherla K., Chakraborty A., Taning C.N.T., Smagghe G., Roy A. RNAi in termites (Isoptera): Current status and prospects for pest management. Entomologia. 2022 doi: 10.1127/entomologia/2022/1636. DOI
Yoon J.-S., Mogilicherla K., Gurusamy D., Chen X., Chereddy S.C.R.R., Palli S.R. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. USA. 2018;115:8334–8339. doi: 10.1073/pnas.1809381115. PubMed DOI PMC
Black J.J., Wang Z., Goering L.M., Johnson A.W. Utp14 interaction with the small subunit processome. RNA. 2018;24:1214–1228. doi: 10.1261/rna.066373.118. PubMed DOI PMC
Peng Y., Wang K., Fu W., Sheng C., Han Z. Biochemical comparison of dsRNA degrading nucleases in four different insects. Front. Physiol. 2018;9:624. doi: 10.3389/fphys.2018.00624. PubMed DOI PMC
Prentice K., Smagghe G., Gheysen G., Christiaens O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect. Biochem. Mol. Biol. 2019;110:80–89. doi: 10.1016/j.ibmb.2019.04.001. PubMed DOI
Song H., Fan Y., Zhang J., Cooper A.M., Silver K., Li D., Li T., Ma E., Zhu K.Y., Zhang J. Contributions of dsRNAses to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest Manag. Sci. 2019;75:1707–1717. doi: 10.1002/ps.5291. PubMed DOI
Guan R.-B., Li H.-C., Fan Y.-J., Hu S.-R., Christiaens O., Smagghe G., Miao X.-X. A nuclease specific to lepidopteran insects suppresses RNAi. J. Biol. Chem. 2018;293:6011–6021. doi: 10.1074/jbc.RA117.001553. PubMed DOI PMC
Dhandapani R.K., Gurusamy D., Palli S.R. Protamine-Lipid-dsRNA Nanoparticles Improve RNAi Efficiency in the Fall Armyworm, Spodoptera frugiperda. J. Agric. Food Chem. 2022;70:6634–6643. doi: 10.1021/acs.jafc.2c00901. PubMed DOI
Geng K., Zhang Y., Zhao X., Zhang W., Guo X., He L., Liu K., Yang H., Hong H., Peng J., et al. Fluorescent Nanoparticle-RNAi-Mediated Silencing of Sterol Carrier Protein-2 Gene Expression Suppresses the Growth, Development, and Reproduction of Helicoverpa armigera. Nanomaterials. 2023;13:245. doi: 10.3390/nano13020245. PubMed DOI PMC
Avila L.A., Chandrasekar R., Wilkinson K.E., Balthazor J., Heerman M., Bechard J., Brown S., Park Y., Dhar S., Reeck G.R., et al. Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J. Control. Release. 2018;273:139–146. doi: 10.1016/j.jconrel.2018.01.010. PubMed DOI PMC
Christiaens O., Tardajos M.G., Martinez Reyna Z.L., Dash M., Dubruel P., Smagghe G. Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers. Front. Physiol. 2018;9:316. doi: 10.3389/fphys.2018.00316. PubMed DOI PMC
Dhandapani R.K., Gurusamy D., Howell J.L., Palli S.R. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci. Rep. 2019;9:8775. doi: 10.1038/s41598-019-45019-z. PubMed DOI PMC
Kunte N., McGraw E., Bell S., Held D., Avila L.-A. Prospects, challenges and current status of RNAi through insect feeding. Pest Manag. Sci. 2020;76:26–41. doi: 10.1002/ps.5588. PubMed DOI
Mysore K., Andrews E., Li P., Duman-Scheel M. Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. BMC Dev. Biol. 2014;14:9. doi: 10.1186/1471-213X-14-9. PubMed DOI PMC
Zhang Q., Hua G., Adang M.J. Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. Insect Biochem. Mol. Biol. 2015;60:33–38. doi: 10.1016/j.ibmb.2015.03.001. PubMed DOI
Ramesh Kumar D., Saravana Kumar P., Gandhi M.R., Al-Dhabi N.A., Paulraj M.G., Ignacimuthu S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Biol. Macromol. 2016;86:89–95. doi: 10.1016/j.ijbiomac.2016.01.030. PubMed DOI
Theerawanitchpan G., Saengkrit N., Sajomsang W., Gonil P., Ruktanonchai U., Saesoo S., Flegel T.W., Saksmerprome V. Chitosan and its quaternized derivative as effective long dsRNA carriers targeting shrimp virus in Spodoptera frugiperda 9 cells. J. Biotechnol. 2012;160:97–104. doi: 10.1016/j.jbiotec.2012.04.011. PubMed DOI
Whyard S., Singh A.D., Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 2009;39:824–832. doi: 10.1016/j.ibmb.2009.09.007. PubMed DOI
Johnson J.A., Bitra K., Zhang S., Wang L., Lynn D.E., Strand M.R. The UGA-CiE1 cell line from Chrysodeixis includens exhibits characteristics of granulocytes and is permissive to infection by two viruses. Insect Biochem. Mol. Biol. 2010;40:394–404. doi: 10.1016/j.ibmb.2010.03.005. PubMed DOI
Taning C.N.T., Christiaens O., Berkvens N., Casteels H., Maes M., Smagghe G. Oral RNAi to control Drosophila suzukii: Laboratory testing against larval and adult stages. J. Pest Sci. 2016;89:803–814. doi: 10.1007/s10340-016-0736-9. DOI
Barry G., Alberdi P., Schnettler E., Weisheit S., Kohl A., Fazakerley J.K., Bell-Sakyi L. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp. Appl. Acarol. 2013;59:319–338. doi: 10.1007/s10493-012-9598-x. PubMed DOI PMC
Zhang Y., Cui J., Zhou Y., Cao J., Gong H., Zhang H., Zhou J. Liposome mediated double-stranded RNA delivery to silence ribosomal protein P0 in the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis. 2018;9:638–644. doi: 10.1016/j.ttbdis.2018.01.015. PubMed DOI PMC
Costa B., Boueri B., Oliveira C., Silveira I., Ribeiro A.J. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin. Drug Deliv. 2022;19:577–594. doi: 10.1080/17425247.2022.2075846. PubMed DOI
Wang K., Peng Y., Jason Chen J., Peng Y., Wang X., Shen Z., Han Z. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis) Pestic. Biochem. Physiol. 2019;165:104467. doi: 10.1016/j.pestbp.2019.10.005. PubMed DOI
Gupta G.P., Rani S., Birah A., Raghuraman M. Mass rearing of the spotted bollworm, Earias vittella (Lepidoptera: Noctuidae) on an artificial diet. JTI. 2005;25:134–137. doi: 10.1079/IJT200567. DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Zerbino D.R., Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
Schulz C., Gomez Perdiguero E., Chorro L., Szabo-Rogers H., Cagnard N., Kierdorf K., Prinz M., Wu B., Jacobsen S.E.W., Pollard J.W., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90. doi: 10.1126/science.1219179. PubMed DOI
Du J., Li M., Yuan Z., Guo M., Song J., Xie X., Chen Y. A decision analysis model for KEGG pathway analysis. BMC Bioinform. 2016;17:407. doi: 10.1186/s12859-016-1285-1. PubMed DOI PMC
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Huang J.-H., Liu Y., Lin Y.-H., Belles X., Lee H.-J. Practical Use of RNA Interference: Oral Delivery of Double-stranded RNA in Liposome Carriers for Cockroaches. J. Vis. Exp. 2018;135:e57385. doi: 10.3791/57385. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI