Pesticide resistance in arthropods: Ecology matters too

. 2022 Aug ; 25 (8) : 1746-1759. [epub] 20220621

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35726578

Grantová podpora
INCA 600398 Marie Skłodowska Curie Actions
2014-6418 Swedish Research Council
Max-Planck-Gesellschaft
Carl Trygger Foundation for Scientific Research

Pesticide resistance development is an example of rapid contemporary evolution that poses immense challenges for agriculture. It typically evolves due to the strong directional selection that pesticide treatments exert on herbivorous arthropods. However, recent research suggests that some species are more prone to evolve pesticide resistance than others due to their evolutionary history and standing genetic variation. Generalist species might develop pesticide resistance especially rapidly due to pre-adaptation to handle a wide array of plant allelochemicals. Moreover, research has shown that adaptation to novel host plants could lead to increased pesticide resistance. Exploring such cross-resistance between host plant range evolution and pesticide resistance development from an ecological perspective is needed to understand its causes and consequences better. Much research has, however, been devoted to the molecular mechanisms underlying pesticide resistance while both the ecological contexts that could facilitate resistance evolution and the ecological consequences of cross-resistance have been under-studied. Here, we take an eco-evolutionary approach and discuss circumstances that may facilitate cross-resistance in arthropods and the consequences cross-resistance may have for plant-arthropod interactions in both target and non-target species and species interactions. Furthermore, we suggest future research avenues and practical implications of an increased ecological understanding of pesticide resistance evolution.

Zobrazit více v PubMed

Abbas, N. , Shad, S.A. & Razaq, M. (2012) Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 103, 181–188.

Acuna, R. , Padilla, B.E. , Florez‐Ramos, C.P. , Rubio, J.D. , Herrera, J.C. , Benavides, P. et al. (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the National Academy of Sciences, 109, 4197–4202. PubMed PMC

Agosta, S.J. & Klemens, J.A. (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution: ecological fitting. Ecology Letters, 11, 1123–1134. PubMed

Ali, J.G. & Agrawal, A.A. (2012) Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17, 293–302. PubMed

Amarillo‐Suárez, A. , Repizo, A. , Robles, J. , Diaz, J. & Bustamante, S. (2017) Ability of a generalist seed beetle to colonize an exotic host: effects of host plant origin and oviposition host. Neotropical Entomology, 46, 368–379. PubMed

Amezian, D. , Nauen, R. & Le Goff, G. (2021) Transcriptional regulation of xenobiotic detoxification genes in insects ‐ an overview. Pesticide Biochemistry and Physiology, 174, 104822. PubMed

Andersen, E.M. , Cambrelin, M.N. & Steidl, R.J. (2019) Responses of grassland arthropods to an invasion by nonnative grasses. Biological Invasions, 21, 405–416.

Anderson, P. & Anton, S. (2014) Experience‐based modulation of behavioural responses to plant volatiles and other sensory cues in insect herbivores: experience modulates herbivore behaviour. Plant, Cell & Environment, 37, 1826–1835. PubMed

Asser‐Kaiser, S. , Fritsch, E. , Undorf‐Spahn, K. , Kienzle, J. , Eberle, K.E. , Gund, N.A. et al. (2007) Rapid emergence of baculovirus resistance in codling moth due to dominant, sex‐linked inheritance. Science, 317, 1916–1918. PubMed

Audusseau, H. , Le Vaillant, M. , Janz, N. , Nylin, S. , Karlsson, B. & Schmucki, R. (2017) Species range expansion constrains the ecological niches of resident butterflies. Journal of Biogeography, 44, 28–38.

Babendreier, D. , Koku Agboyi, L. , Beseh, P. , Osae, M. , Nboyine, J. , Ofori, S.E.K. et al. (2020) The efficacy of alternative, environmentally friendly plant protection measures for control of fall armyworm, Spodoptera frugiperda, in maize. Insects, 11, 240. PubMed PMC

Backe, K. , Rousselet, J. , Bernard, A. , Frank, S. & Roques, A. (2021) Human health risks of invasive caterpillars increase with urban warming. Landscape Ecology, 36, 1475–1487.

Battisti, A. , Stastny, M. , Netherer, S. , Robinet, C. , Schopf, A. , Roques, A. et al. (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15, 2084–2096.

Bendis, R.J. & Relyea, R.A. (2016) If you see one, have you seen them all?: community‐wide effects of insecticide cross‐resistance in zooplankton populations near and far from agriculture. Environmental Pollution, 215, 234–246. PubMed

Beran, F. & Petschenka, G. (2022) Sequestration of plant defense compounds by insects: from mechanisms to insect–plant coevolution. Annual Review of Entomology, 67, 163–180. PubMed

Bernal, J.S. & Medina, R.F. (2018) Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores. Current Opinion in Insect Science, 26, 76–81. PubMed

Bernays, E.A. (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annual Review of Entomology, 46, 703–727. PubMed

Bezemer, T.M. , Harvey, J.A. & Cronin, J.T. (2014) Response of native insect communities to invasive plants. Annual Review of Entomology, 59, 119–141. PubMed

Blackburn, T.M. , Pyšek, P. , Bacher, S. , Carlton, J.T. , Duncan, R.P. , Jarošík, V. et al. (2011) A proposed unified framework for biological invasions. Trends in Ecology & Evolution, 26, 333–339. PubMed

Boivin, T. , Bouvier, J.‐C. , Beslay, D. & Sauphanor, B. (2003) Phenological segregation of insecticide resistance alleles in the codling moth Cydia pomonella (lepidoptera: Tortricidae): a case study of ecological divergences associated with adaptive changes in populations. Genetical Research, 81, 169–177. PubMed

Brevik, K. , Bueno, E.M. , McKay, S. , Schoville, S.D. & Chen, Y.H. (2021) Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata . Evolutionary Applications, 14, 746–757. PubMed PMC

Brevik, K. , Lindström, L. , McKay, S.D. & Chen, Y.H. (2018) Transgenerational effects of insecticides—implications for rapid pest evolution in agroecosystems. Current Opinion in Insect Science, 26, 34–40. PubMed

Brown, L.M. , Breed, G.A. , Severns, P.M. & Crone, E.E. (2017) Losing a battle but winning the war: moving past preference–performance to understand native herbivore–novel host plant interactions. Oecologia, 183, 441–453. PubMed

Bruce, T.J.A. & Pickett, J.A. (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry, 72, 1605–1611. PubMed

Carrasco, D. , Desurmont, G.A. , Laplanche, D. , Proffit, M. , Gols, R. , Becher, P.G. et al. (2018) With or without you: effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions. Global Change Biology, 24, 631–643. PubMed

Carrière, Y. , Deland, J.‐P. , Roff, D.A. & Vincent, C. (1994) Life‐history costs associated with the evolution of insecticide resistance. Proceedings of the Royal Society of London, 258, 35–50.

Ceja‐Navarro, J.A. , Vega, F.E. , Karaoz, U. , Hao, Z. , Jenkins, S. , Lim, H.C. et al. (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature Communications, 6, 7618. PubMed PMC

Chen, Y.H. , Gols, R. & Benrey, B. (2015) Crop domestication and its impact on naturally selected trophic interactions. Annual Review of Entomology, 60, 35–58. PubMed

Chen, Y.H. & Schoville, S.D. (2018) Editorial overview: ecology: ecological adaptation in agroecosystems: novel opportunities to integrate evolutionary biology and agricultural entomology. Current Opinion in Insect Science, 26, iv–viii. PubMed

Cheng, C. , Wickham, J.D. , Chen, L. , Xu, D. , Lu, M. & Sun, J. (2018) Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Microbiome, 6, 132. PubMed PMC

Cheng, T. , Wu, J. , Wu, Y. , Chilukuri, R.V. , Huang, L. , Yamamoto, K. et al. (2017) Genomic adaptation to polyphagy and insecticides in a major east Asian noctuid pest. Nature Ecology and Evolution, 1, 1747–1756. PubMed

Crossley, M.S. , Snyder, W.E. & Hardy, N.B. (2021) Insect‐plant relationships predict the speed of insecticide adaptation. Evolutionary Applications, 14, 290–296. PubMed PMC

de Almeida, L.G. , de Moraes, L.A.B. , Trigo, J.R. , Omoto, C. & Cônsoli, F.L. (2017) The gut microbiota of insecticide‐resistant insects houses insecticide‐degrading bacteria: a potential source for biotechnological exploitation. PLoS One, 12, e0174754. PubMed PMC

Dermauw, W. , Pym, A. , Bass, C. , Van Leeuwen, T. & Feyereisen, R. (2018) Does host plant adaptation lead to pesticide resistance in generalist herbivores? Current Opinion in Insect Science, 26, 25–33. PubMed

Dermauw, W. , Wybouw, N. , Rombauts, S. , Menten, B. , Vontas, J. , Grbic, M. et al. (2013) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae . Proceedings of the National Academy of Sciences, 110, E113–E122. PubMed PMC

Des Roches, S. , Brans, K.I. , Lambert, M.R. , Rivkin, L.R. , Savage, A.M. , Schell, C.J. et al. (2021) Socio‐eco‐evolutionary dynamics in cities. Evolutionary Applications, 14, 248–267. PubMed PMC

Desneux, N. , Decourtye, A. & Delpuech, J.‐M. (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106. PubMed

Després, L. , David, J.‐P. & Gallet, C. (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22, 298–307. PubMed

Diegisser, T. , Tritsch, C. , Seitz, A. & Johannesen, J. (2009) Infestation of a novel host plant by Tephritis conura (Diptera: Tephritidae) in northern Britain: host‐range expansion or host shift? Genetica, 137, 87–97. PubMed

Dubey, A. , Lewis, M.T. , Dively, G.P. & Hamby, K.A. (2020) Ecological impacts of pesticide seed treatments on arthropod communities in a grain crop rotation. Journal of Applied Ecology, 57, 936–951.

Fenibo, E.O. , Ijoma, G.N. & Matambo, T. (2021) Biopesticides in sustainable agriculture: a critical sustainable development driver governed by Green chemistry principles. Frontiers in Sustainable Food Systems, 5, 619058.

Feyereisen, R. (2006) Evolution of insect P450. Biochemical Society Transactions, 34, 1252–1255. PubMed

Feyereisen, R. , Dermauw, W. & Van Leeuwen, T. (2015) Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology, 121, 61–77. PubMed

ffrench‐Constant, R.H. , Anthony, N. , Aronstein, K. , Rocheleau, T. & Stilwell, G. (2000) Cyclodiene insecticide resistance: from molecular to population genetics. Annual Review of Entomology, 45, 449–466. PubMed

Fox, C.W. , Zitomer, R. , Deas, J.B. & Messina, F.J. (2017) Asymmetric evolution of egg laying behavior following reciprocal host shifts by a seed‐feeding beetle. Evolutionary Ecology, 31, 753–767.

Francoeur, C.B. , Khadempour, L. , Moreira‐Soto, R.D. , Gotting, K. , Book, A.J. , Pinto‐Tomás, A.A. , et al. (2020). Bacteria contribute to plant secondary compound degradation in a generalist herbivore system. mBio, 11, e02146‐20. PubMed PMC

Fussmann, G.F. , Loreau, M. & Abrams, P.A. (2007) Eco‐evolutionary dynamics of communities and ecosystems. Functional Ecology, 21, 465–477.

Gomes, A.F.F. , Omoto, C. & Cônsoli, F.L. (2020) Gut bacteria of field‐collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory‐selected resistant strains. Journal of Pest Science, 93, 833–851.

Graves, S.D. & Shapiro, A.M. (2003) Exotics as host plants of the California butterfly fauna. Biological Conservation, 110, 413–433.

Grbić, M. , Van Leeuwen, T. , Clark, R.M. , Rombauts, S. , Rouzé, P. , Grbić, V. et al. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479, 487–492. PubMed PMC

Gripenberg, S. , Mayhew, P.J. , Parnell, M. & Roslin, T. (2010) A meta‐analysis of preference‐performance relationships in phytophagous insects. Ecology Letters, 13, 383–393. PubMed

Grosman, A.H. , Holtz, A.M. , Pallini, A. , Sabelis, M.W. & Janssen, A. (2017) Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomologia Experimentalis et Applicata, 162, 261–271.

Gutiérrez, Y. , Bacca, T. , Zambrano, L.S. , Pineda, M. & Guedes, R.N. (2019) Trade‐off and adaptive cost in a multiple‐resistant strain of the invasive potato tuber moth Tecia solanivora . Pest Management Science, 75, 1655–1662. PubMed

Hamann, E. , Blevins, C. , Franks, S.J. , Jameel, M.I. & Anderson, J.T. (2021) Climate change alters plant–herbivore interactions. The New Phytologist, 229, 1894–1910. PubMed

Hammer, T.J. , Janzen, D.H. , Hallwachs, W. , Jaffe, S.P. & Fierer, N. (2017) Caterpillars lack a resident gut microbiome. Proceedings of the National Academy of Sciences, 114, 9641–9646. PubMed PMC

Hanski, I. (2012) Eco‐evolutionary dynamics in a changing world: eco‐evolutionary dynamics in a changing world. Annals of the New York Academy of Sciences, 1249, 1–17. PubMed

Hardy, N.B. , Kaczvinsky, C. , Bird, G. & Normark, B.B. (2020) What we Don't know about diet‐breadth evolution in herbivorous insects. Annual Review of Ecology, Evolution, and Systematics, 51, 103–122.

Hardy, N.B. , Peterson, D.A. , Ross, L. & Rosenheim, J.A. (2018) Does a plant‐eating insect's diet govern the evolution of insecticide resistance? Comparative tests of the pre‐adaptation hypothesis. Evolutionary Applications, 11, 739–747. PubMed PMC

Harvey, J.A. , Bukovinszky, T. & van der Putten, W.H. (2010) Interactions between invasive plants and insect herbivores: a plea for a multitrophic perspective. Biological Conservation, 143, 2251–2259.

Hawkins, N.J. , Bass, C. , Dixon, A. & Neve, P. (2019) The evolutionary origins of pesticide resistance. Biological Reviews, 94, 135–155. PubMed PMC

Heckel, D.G. (2014) Insect detoxification and sequestration strategies. In: Voelckel, C. & Jander, G. (Eds.) Annual plant reviews. Chichester, UK: John Wiley & Sons, Ltd, pp. 77–114.

Heidel‐Fischer, H.M. , Kirsch, R. , Reichelt, M. , Ahn, S.‐J. , Wielsch, N. , Baxter, S.W. et al. (2019) An insect counteradaptation against host plant defenses evolved through concerted neofunctionalization. Molecular Biology and Evolution, 36, 930–941. PubMed PMC

Heithausen, S. (2021) Friends with benefits? – does gut microbiome of Spodoptera littoralis affect insecticide resistance and are there any costs of insecticide resistance development? Swedish University of Agricultural Sciences (SLU). Alnarp.

Hendry, A.P. (2016) Key questions on the role of phenotypic plasticity in eco‐evolutionary dynamics. The Journal of Heredity, 107, 25–41. PubMed

Hendry, A.P. (2018). Eco‐evolutionary dynamics. PubMed

Hendry, A.P. (2019) A critique for eco‐evolutionary dynamics. Functional Ecology, 33, 84–94.

Hendry, A.P. , Gotanda, K.M. & Svensson, E.I. (2017) Human influences on evolution, and the ecological and societal consequences. Philosophical Transactions of the Royal Society B, 372, 20160028. PubMed PMC

Hilbeck, A. , Defarge, N. , Bøhn, T. , Krautter, M. , Conradin, C. , Amiel, C. et al. (2018) Impact of antibiotics on efficacy of cry toxins produced in two different genetically modified Bt maize varieties in two lepidopteran herbivore species, Ostrinia nubilalis and Spodoptera littoralis . Toxins, 10, 489. PubMed PMC

Hill, J.K. , Griffiths, H.M. & Thomas, C.D. (2011) Climate change and evolutionary adaptations at Species' range margins. Annual Review of Entomology, 56, 143–159. PubMed

Hill, M.P. , Clusella‐Trullas, S. , Terblanche, J.S. & Richardson, D.M. (2016) Drivers, impacts, mechanisms and adaptation in insect invasions. Biological Invasions, 18, 883–891.

Hu, B. , Huang, H. , Hu, S. , Ren, M. , Wei, Q. , Tian, X. et al. (2021) Changes in both trans‐ and cis‐regulatory elements mediate insecticide resistance in a lepidopteron pest. Spodoptera exigua. PLOS Genet., 17, e1009403. PubMed PMC

Hua, J. , Jones, D.K. , Mattes, B.M. , Cothran, R.D. , Relyea, R.A. & Hoverman, J.T. (2015) The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations. Evolutionary Applications, 8, 586–596. PubMed PMC

Itoh, H. , Tago, K. , Hayatsu, M. & Kikuchi, Y. (2018) Detoxifying symbiosis: microbe‐mediated detoxification of phytotoxins and pesticides in insects. Natural Product Reports, 35, 434–454. PubMed

Jahner, J.P. , Bonilla, M.M. , Badik, K.J. , Shapiro, A.M. & Forister, M.L. (2011) Use of exotic hosts by lepidoptera: widespread species colonize more novel hosts. Evolution, 65, 2719–2724. PubMed

Janz, N. , Nyblom, K. & Nylin, S. (2001) Evolutionary dynamics of host‐plant specialization: a case study of the tribe Nymphalini. Evolution, 55, 783–796. PubMed

Jung, M. , Kim, S. , Kim, H.G. & Lee, D.‐H. (2018) Lethal and sublethal effects of synthetic insecticides on the locomotory and feeding behavior of Riptortus pedestris (Hemiptera: Alydidae) under laboratory conditions. Journal of Asia‐Pacific Entomology, 21, 179–185.

Karlsson Green, K. , Stenberg, J.A. & Lankinen, Å. (2020) Making sense of integrated Pest management (IPM) in the light of evolution. Evolutionary Applications, 13, 1791–1805. PubMed PMC

Kirsch, R. , Gramzow, L. , Theißen, G. , Siegfried, B.D. , ffrench‐Constant, R.H. , Heckel, D.G. et al. (2014) Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochemistry and Molecular Biology, 52, 33–50. PubMed

Lakatos, K.T. , László, Z. & Tóthmérész, B. (2016) Resource dependence in a new ecosystem: a host plant and its colonizing community. Acta Oecologica, 73, 80–86.

Lalouette, L. , Pottier, M.‐A. , Wycke, M.‐A. , Boitard, C. , Bozzolan, F. , Maria, A. et al. (2016) Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. Environmental Science and Pollution Research, 23, 3073–3085. PubMed

Lancaster, L.T. (2020) Host use diversification during range shifts shapes global variation in lepidopteran dietary breadth. Nature Ecology and Evolution, 4, 963–969. PubMed

Le Goff, G. & Giraudo, M. (2019) Effects of pesticides on the environment and insecticide resistance. In: Picimbon, J.‐F. (Ed.) Olfactory concepts of insect control ‐ alternative to insecticides. Cham: Springer International Publishing, pp. 51–78.

Le Goff, G. & Nauen, R. (2021) Recent advances in the understanding of molecular mechanisms of resistance in Noctuid pests. Basel, Switzerland: MDPI, pp. 158. 10.3390/books978-3-0365-1757-5 PubMed DOI PMC

Li, H. , Zhang, H. , Guan, R. & Miao, X. (2013) Identification of differential expression genes associated with host selection and adaptation between two sibling insect species by transcriptional profile analysis. BMC Genomics, 14, 582. PubMed PMC

Liu, X.‐D. & Guo, H.‐F. (2019) Importance of endosymbionts Wolbachia and rickettsia in insect resistance development. Current Opinion in Insect Science, 33, 84–90. PubMed

Main, A.R. , Webb, E.B. , Goyne, K.W. & Mengel, D. (2020) Reduced species richness of native bees in field margins associated with neonicotinoid concentrations in non‐target soils. Agriculture, Ecosystems and Environment, 287, 106693.

Maino, J.L. , Umina, P.A. & Hoffmann, A.A. (2018) Climate contributes to the evolution of pesticide resistance. Global Ecology and Biogeography, 27, 223–232.

Mansoor, M.M. & Shad, S.A. (2020) Biochemical mechanism, inheritance and cross‐resistance to cyromazine in a non‐target Chrysoperla carnea: a potential predator of whiteflies and aphids. Chemosphere, 260, 127620. PubMed

Melander, A.L. (1914) Can insects become resistant to sprays? Journal of Economic Entomology, 7, 167–173.

Montezano, D.G. , Specht, A. , Sosa‐Gómez, D.R. , Roque‐Specht, V.F. , Sousa‐Silva, J.C. , Paula‐Moraes, S.V. et al. (2018) Host plants of Spodoptera frugiperda (lepidoptera: Noctuidae) in the Americas. African Entomology: Journal of the Entomological Society of Southern Africa, 26, 286–300.

Muraro, D.S. , Garlet, C.G. , Godoy, D.N. , Cossa, G.E. , Rodrigues, G.L.dS.J. , Stacke, R.F. et al. (2019) Laboratory and field survival of Spodoptera frugiperda (lepidoptera: Noctuidae) on Bt and non‐Bt maize and its susceptibility to insecticides. Pest Management Science, 75, 2202–2210. PubMed

Muturi, E.J. , Dunlap, C. , Smartt, C.T. & Shin, D. (2021) Resistance to permethrin alters the gut microbiota of Aedes aegypti . Scientific Reports, 11, 14406. PubMed PMC

Näsvall, K. , Wiklund, C. , Mrazek, V. , Künstner, A. , Talla, V. , Busch, H. et al. (2021) Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly. Molecular Ecology, 30, 499–516. PubMed PMC

Nauen, R. , Bass, C. , Feyereisen, R. & Vontas, J. (2022) The role of cytochrome P450s in insect toxicology and resistance. Annual Review of Entomology, 67, 105–124. PubMed

Nishida, R. (2002) Sequestration of defensive substances from plants by lepidoptera. Annual Review of Entomology, 47, 57–92. PubMed

Nylin, S. , Agosta, S. , Bensch, S. , Boeger, W.A. , Braga, M.P. , Brooks, D.R. et al. (2018) Embracing Colonizations: a new paradigm for species association dynamics. Trends in Ecology & Evolution, 33, 4–14. PubMed

Oppold, A. , Kreß, A. , Vanden Bussche, J. , Diogo, J.B. , Kuch, U. , Oehlmann, J. et al. (2015) Epigenetic alterations and decreasing insecticide sensitivity of the Asian tiger mosquito Aedes albopictus . Ecotoxicology and Environmental Safety, 122, 45–53. PubMed

Oppold, A.‐M. & Müller, R. (2017) Epigenetics: a hidden target of insecticides. In: Epigenetics: a hidden target of insecticides. In: Advances in Insect Physiology. Elsevier, pp. 313–324.

Palli, S.R. (2020) CncC/Maf‐mediated xenobiotic response pathway in insects. In: CncC/Maf‐mediated xenobiotic response pathway in insects. Insect Biochem. Physiol: Arch, p. 104. PubMed PMC

Palumbi, S.R. (2001) Humans as the World's greatest evolutionary force. Science, 293, 1786–1790. PubMed

Pearse, I.S. , Harris, D.J. , Karban, R. & Sih, A. (2013) Predicting novel herbivore‐plant interactions. Oikos, 122, 1554–1564.

Pelletier, F. , Garant, D. & Hendry, A.P. (2009) Eco‐evolutionary dynamics. Philosophical Transactions of the Royal Society B, 364, 1483–1489. PubMed PMC

Prasad, A. , Chirom, O. & Prasad, M. (2021) Insect herbivores benefit from horizontal gene transfer. Trends in Plant Science, 26, 1096–1097. PubMed

Pureswaran, D.S. , Roques, A. & Battisti, A. (2018) Forest insects and climate change. Current Rheumatology Reports, 4, 35–50.

Rabhi, K.K. , Deisig, N. , Demondion, E. , Le Corre, J. , Robert, G. , Tricoire‐Leignel, H. et al. (2016) Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect. Proceedings of the Royal Society B: Biological Sciences, 283, 20152987. PubMed PMC

Rainio, M.J. , Margus, A. , Lehmann, P. , Helander, M. & Lindström, L. (2019) Effects of a glyphosate‐based herbicide on survival and oxidative status of a non‐target herbivore, the Colorado potato beetle (Leptinotarsa decemlineata). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 215, 47–55. PubMed

Rassati, D. , Marini, L. & Malacrinò, A. (2019) Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ, 7, e8103. PubMed PMC

Renault, D. , Laparie, M. , McCauley, S.J. & Bonte, D. (2018) Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annual Review of Entomology, 63, 345–368. PubMed

Rosenheim, J.A. , Johnson, M.W. , Mau, R.F.L. , Welter, S.C. & Tabashnik, B.E. (1996) Biochemical Preadaptations, founder events, and the evolution of resistance in arthropods. Journal of Economic Entomology, 89, 263–273.

Sánchez‐Guillén, R.A. , Córdoba‐Aguilar, A. , Hansson, B. , Ott, J. & Wellenreuther, M. (2016) Evolutionary consequences of climate‐induced range shifts in insects: evolutionary consequences of range shifts. Biological Reviews, 91, 1050–1064. PubMed

Schmidt‐Jeffris, R.A. , Beers, E.H. & Sater, C. (2021) Meta‐analysis and review of pesticide non‐target effects on phytoseiids, key biological control agents. Pest Management Science, 77, 4848–4862. PubMed

Schoener, T.W. (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science, 331, 426–429. PubMed

Sgolastra, F. , Medrzycki, P. , Bortolotti, L. , Maini, S. , Porrini, C. , Simon‐Delso, N. et al. (2020) Bees and pesticide regulation: lessons from the neonicotinoid experience. Biological Conservation, 241, 108356.

Simon, J.‐C. , d'Alençon, E. , Guy, E. , Jacquin‐Joly, E. , Jaquiery, J. , Nouhaud, P. et al. (2015) Genomics of adaptation to host‐plants in herbivorous insects. Briefings in Functional Genomics, 14, 413–423. PubMed

Simon, J.‐C. & Peccoud, J. (2018) Rapid evolution of aphid pests in agricultural environments. Current Opinion in Insect Science, 26, 17–24. PubMed

Singer, M.C. & Parmesan, C. (2021) Colonizations cause diversification of host preferences: a mechanism explaining increased generalization at range boundaries expanding under climate change. Global Change Biology, 27, 3505–3518. PubMed

Snell‐Rood, E.C. & Ehlman, S.M. (2021). Ecology and evolution of plasticity. In: Phenotypic Plasticity & Evolution (ed. pfennig, D.W.). CRC press, pp. 139–160.

Sparks, T.C. & Nauen, R. (2015) IRAC: mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122–128. PubMed

Tabashnik, B.E. , Brévault, T. & Carrière, Y. (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology, 31, 510–521. PubMed

Tabashnik, B.E. , Finson, N. & Johnson, M.W. (1991) Managing resistance to bacillus thuringiensis: lessons from the diamondback moth (lepidoptera: Plutellidae). Journal of Economic Entomology, 84, 49–55.

Taerum, S.J. , Duong, T.A. , de Beer, Z.W. , Gillette, N. , Sun, J.‐H. , Owen, D.R. et al. (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS One, 8, e78126. PubMed PMC

Taylor, C.E. , Quaglia, F. & Georghiou, G.P. (1983) Evolution of resistance to insecticides: a cage study on the influence of migration and insecticide decay rates. Journal of Economic Entomology, 76, 704–707.

Turcotte, M.M. , Araki, H. , Karp, D.S. , Poveda, K. & Whitehead, S.R. (2017) The eco‐evolutionary impacts of domestication and agricultural practices on wild species. Philosophical Transactions of the Royal Society B, 372, 20160033. PubMed PMC

Utsumi, S. (2011) Eco‐evolutionary dynamics in herbivorous insect communities mediated by induced plant responses. Population Ecology, 53, 23–34.

Utsumi, S. (2015) Feeding evolution of a herbivore influences an arthropod community through plants: implications for plant‐mediated eco‐evolutionary feedback loop. Journal of Ecology, 103, 829–839.

Walsh, T.K. , Heckel, D.G. , Wu, Y. , Downes, S. , Gordon, K.H.J. & Oakeshott, J.G. (2022) Determinants of insecticide resistance evolution: comparative analysis among heliothines. Annual Review of Entomology, 2022, 67, 387–406. PubMed

Wang, H. , Liu, H. , Peng, H. , Wang, Y. , Zhang, C. , Guo, X. et al. (2022) A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide. PLoS Neglected Tropical Diseases, 16, e0010208. PubMed PMC

Wybouw, N. , Zhurov, V. , Martel, C. , Bruinsma, K.A. , Hendrickx, F. , Grbić, V. et al. (2015) Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Molecular Ecology, 24, 4647–4663. PubMed

Xu, L. , Qin, J. , Fu, W. , Wang, S. , Wu, Q. , Zhou, X. et al. (2022) MAP4K4 controlled transcription factor POUM1 regulates PxABCG1 expression influencing Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 182, 105053. PubMed

Xu, W. , Papanicolaou, A. , Zhang, H.‐J. & Anderson, A. (2016) Expansion of a bitter taste receptor family in a polyphagous insect herbivore. Scientific Reports, 6, 23666. PubMed PMC

Zalucki, J.M. , Heckel, D.G. , Wang, P. , Kuwar, S. , Vassão, D.G. , Perkins, L. et al. (2021) A generalist feeding on Brassicaceae: it does not get any better with selection. Plants, 10, 954. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...