Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36685945
PubMed Central
PMC9853188
DOI
10.3389/fgene.2022.1044980
PII: 1044980
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, arthropod pests, climate change, epigenetic regulations, histone modifications, insecticide resistance, symbiotic microbes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Arthropod pests are remarkably capable of rapidly adapting to novel forms of environmental stress, including insecticides and climate change. The dynamic interplay between epigenetics and genetics explains the largely unexplored reality underlying rapid climatic adaptation and the development of insecticide resistance in insects. Epigenetic regulation modulates gene expression by methylating DNA and acetylating histones that play an essential role in governing insecticide resistance and adaptation to climate change. This review summarises and discusses the significance of recent advances in epigenetic regulation that facilitate phenotypic plasticity in insects and their symbiotic microbes to cope with selection pressure implied by extensive insecticide applications and climate change. We also discuss how epigenetic changes are passed on to multiple generations through sexual recombination, which remains enigmatic. Finally, we explain how these epigenetic signatures can be utilized to manage insecticide resistance and pest resilience to climate change in Anthropocene.
Zobrazit více v PubMed
Adcock I., Lee K.-Y. (2006). Abnormal histone acetylase and deacetylase expression and function in lung inflammation. Inflamm. Res. 55 (8), 311–321. 10.1007/s00011-006-0081-1 PubMed DOI
Alyokhin A., Baker M., Mota-Sanchez D., Dively G., Grafius E. (2008). Colorado potato beetle resistance to insecticides. Am. J. Potato Res. 85 (6), 395–413. 10.1007/s12230-008-9052-0 DOI
Alyokhin A., Guillemette R., Choban R. (2009). Stimulatory and suppressive effects of novaluron on the Colorado potato beetle reproduction. J. Econ. entomology 102 (6), 2078–2083. 10.1603/029.102.0609 PubMed DOI
Ambros V. (2004). The functions of animal microRNAs. Nature 431 (7006), 350–355. 10.1038/nature02871 PubMed DOI
Anway M. D., Cupp A. S., Uzumcu M., Skinner M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. science 308 (5727), 1466–1469. 10.1126/science.1108190 PubMed DOI PMC
Asgari S. (2011). Role of microRNAs in insect host–microorganism interactions. Front. physiology 2, 48. 10.3389/fphys.2011.00048 PubMed DOI PMC
Babski J., Maier L.-K., Heyer R., Jaschinski K., Prasse D., Jäger D., et al. (2014). Small regulatory RNAs in archaea. RNA Biol. 11 (5), 484–493. 10.4161/rna.28452 PubMed DOI PMC
Babendreier D., Joller D., Romeis J., Bigler F., Widmer F. (2007). Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59 (3), 600–610. 10.1111/j.1574-6941.2006.00249.x PubMed DOI
Baccarelli A., Bollati V. (2009). Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21 (2), 243–251. 10.1097/mop.0b013e32832925cc PubMed DOI PMC
Baldwin J. M. (1896). A new factor in evolution. Am. Nat. 30 (354), 441–451. 10.1086/276408 DOI
Bartel D. P., Chen C.-Z. (2004). Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5 (5), 396–400. 10.1038/nrg1328 PubMed DOI
Bartel D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116 (2), 281–297. 10.1016/s0092-8674(04)00045-5 PubMed DOI
Bartel D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell 136 (2), 215–233. 10.1016/j.cell.2009.01.002 PubMed DOI PMC
Bayarsaihan D. (2011). Epigenetic mechanisms in inflammation. J. Dent. Res. 90 (1), 9–17. 10.1177/0022034510378683 PubMed DOI PMC
Beeler S. M., Wong G. T., Zheng J. M., Bush E. C., Remnant E. J., Oldroyd B. P., et al. (2014). Whole-genome DNA methylation profile of the jewel wasp (Nasonia vitripennis). G3 Genes, Genomes, Genet. 4 (3), 383–388. 10.1534/g3.113.008953 PubMed DOI PMC
Ben-Yosef M., Pasternak Z., Jurkevitch E., Yuval B. (2015). Symbiotic bacteria enable olive fly larvae to overcome host defences. R. Soc. open Sci. 2 (7), 150170. 10.1098/rsos.150170 PubMed DOI PMC
Bonasio R., Li Q., Lian J., Mutti N. S., Jin L., Zhao H., et al. (2012). Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22 (19), 1755–1764. 10.1016/j.cub.2012.07.042 PubMed DOI PMC
Bonasio R., Tu S., Reinberg D. (2010). Molecular signals of epigenetic states. science 330 (6004), 612–616. 10.1126/science.1191078 PubMed DOI PMC
Bourguet D., Guillemaud T. (2016). The hidden and external costs of pesticide use. Sustain. Agric. Rev. 19, 35–120. 10.1007/978-3-319-26777-7_2 DOI
Boush M. G., Matsumura F. (1967). Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomology 60 (4), 918–920. 10.1093/jee/60.4.918 DOI
Brander S. M., Biales A. D., Connon R. E. (2017). The role of epigenomics in aquatic toxicology. Environ. Toxicol. Chem. 36 (10), 2565–2573. 10.1002/etc.3930 PubMed DOI PMC
Bras A., Roy A., Heckel D. G., Anderson P., Karlsson Green K. (2022). Pesticide resistance in arthropods: Ecology matters too. Ecol. Lett. 25 (8), 1746–1759. 10.1111/ele.14030 PubMed DOI PMC
Brevik K., Bueno E. M., McKay S., Schoville S. D., Chen Y. H. (2021). Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata . Evol. Appl. 14 (3), 746–757. 10.1111/eva.13153 PubMed DOI PMC
Brevik K., Schoville S. D., Mota‐Sanchez D., Chen Y. H. (2018). Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Manag. Sci. 74 (8), 1953–1963. 10.1002/ps.4899 PubMed DOI
Broderick N. A., Raffa K. F., Handelsman J. (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. 103 (41), 15196–15199. 10.1073/pnas.0604865103 PubMed DOI PMC
Brune A., Dietrich C. (2015). The gut microbiota of termites: Digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69, 145–166. 10.1146/annurev-micro-092412-155715 PubMed DOI
Burdge G. C., Hoile S. P., Uller T., Thomas N. A., Gluckman P. D., Hanson M. A., et al. (2011). Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PloS one 6 (11), e28282. 10.1371/journal.pone.0028282 PubMed DOI PMC
Bushati N., Cohen S. (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205. 10.1146/annurev.cellbio.23.090506.123406 PubMed DOI
Calabrese E. J., Blain R. B. (2011). The hormesis database: The occurrence of hormetic dose responses in the toxicological literature. Regul. Toxicol. Pharmacol. 61 (1), 73–81. 10.1016/j.yrtph.2011.06.003 PubMed DOI
Cantone I., Fisher A. G. (2013). Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol. 20 (3), 282–289. 10.1038/nsmb.2489 PubMed DOI
Carriére Y., Tabashnik B. (2001). Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268 (1475), 1475–1480. 10.1098/rspb.2001.1689 PubMed DOI PMC
Ceja-Navarro J. A., Vega F. E., Karaoz U., Hao Z., Jenkins S., Lim H. C., et al. (2015). Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6 (1), 7618–7619. 10.1038/ncomms8618 PubMed DOI PMC
Chakraborty A., Ashraf M. Z., Modlinger R., Synek J., Schlyter F., Roy A. (2020a). Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): Identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 10 (1), 18572. 10.1038/s41598-020-75203-5 PubMed DOI PMC
Chakraborty A., Modlinger R., Ashraf M. Z., Synek J., Schlyter F., Roy A. (2020b). Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 11, 568853. 10.3389/fmicb.2020.568853 PubMed DOI PMC
Chang H., Xu Z., Li W., Cai C., Wang W., Ge P., et al. (2022). HDAC3 knockdown dysregulates juvenile hormone and apoptosis-related genes in helicoverpa armigera. Int. J. Mol. Sci. 23 (23), 14820. 10.3390/ijms232314820 PubMed DOI PMC
Cheng D., Guo Z., Riegler M., Xi Z., Liang G., Xu Y. (2017). Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5 (1), 13–12. 10.1186/s40168-017-0236-z PubMed DOI PMC
Cheng X.-Y., Tian X.-L., Wang Y.-S., Lin R.-M., Mao Z.-C., Chen N., et al. (2013). Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Sci. Rep. 3 (1), 1869. 10.1038/srep01869 PubMed DOI PMC
Choi I. K., Hyun S. (2012). Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila. Dev. Comp. Immunol. 37 (1), 50–54. 10.1016/j.dci.2011.12.008 PubMed DOI
Cingolani P., Cao X., Khetani R. S., Chen C.-C., Coon M., Sammak A., et al. (2013). Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC genomics 14 (1), 666. 10.1186/1471-2164-14-666 PubMed DOI PMC
Council N. R. (1986). Pesticide resistance: Strategies and tactics for management. United States: National Academies Press.
Crews D., Gore A. C., Hsu T. S., Dangleben N. L., Spinetta M., Schallert T., et al. (2007). Transgenerational epigenetic imprints on mate preference. Proc. Natl. Acad. Sci. 104 (14), 5942–5946. 10.1073/pnas.0610410104 PubMed DOI PMC
Darwin C. (1859). On the origin of species london john murray. London: John Murray.
Darwin C. (1868). The variation of animals and plants under domestication. Cambridge: Cambridge University Press.
Dawson T. P., Jackson S. T., House J. I., Prentice I. C., Mace G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. science 332 (6025), 53–58. 10.1126/science.1200303 PubMed DOI
Day T., Bonduriansky R. (2011). A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am. Nat. 178 (2), E18–E36. 10.1086/660911 PubMed DOI
Dermauw W., Wybouw N., Rombauts S., Menten B., Vontas J., Grbić M., et al. (2013). A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl. Acad. Sci. 110 (2), E113–E122. 10.1073/pnas.1213214110 PubMed DOI PMC
Després L., David J.-P., Gallet C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22 (6), 298–307. 10.1016/j.tree.2007.02.010 PubMed DOI
Douglas A. E. (2015). Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. entomology 60, 17–34. 10.1146/annurev-ento-010814-020822 PubMed DOI PMC
Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. (1998). Rates of spontaneous mutation. Genetics 148 (4), 1667–1686. 10.1093/genetics/148.4.1667 PubMed DOI PMC
Drewell R. A., Bush E. C., Remnant E. J., Wong G. T., Beeler S. M., Stringham J. L., et al. (2014). The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera . Development 141 (13), 2702–2711. 10.1242/dev.110163 PubMed DOI PMC
Enayati A. A., Ranson H., Hemingway J. (2005). Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 14 (1), 3–8. 10.1111/j.1365-2583.2004.00529.x PubMed DOI
Engel P., Moran N. A. (2013). The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37 (5), 699–735. 10.1111/1574-6976.12025 PubMed DOI
Fablet M., Vieira C. (2011). Evolvability, epigenetics and transposable elements. Biomol. Concepts 2, 333–341. 10.1515/BMC.2011.035 PubMed DOI
Fassi Fehri L., Koch M., Belogolova E., Khalil H., Bolz C., Kalali B., et al. (2010). Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PloS one 5 (3), e9500. 10.1371/journal.pone.0009500 PubMed DOI PMC
Feliciello I., Parazajder J., Akrap I., Ugarković Đ. (2013). First evidence of DNA methylation in insect Tribolium castaneum: Environmental regulation of DNA methylation within heterochromatin. Epigenetics 8 (5), 534–541. 10.4161/epi.24507 PubMed DOI PMC
Feyereisen R., Dermauw W., Van Leeuwen T. (2015). Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochem. physiology 121, 61–77. 10.1016/j.pestbp.2015.01.004 PubMed DOI
Ffrench-Constant R. H. (2014). Insecticide resistance comes of age. Genome Biol. 15, 106. 10.1186/gb4162 PubMed DOI PMC
Ffrench-Constant R. H. (2013). The molecular genetics of insecticide resistance. Genetics 194 (4), 807–815. 10.1534/genetics.112.141895 PubMed DOI PMC
Ffrench-Constant R. H. (2007). Which came first: Insecticides or resistance? Trends Genet. 23 (1), 1–4. 10.1016/j.tig.2006.11.006 PubMed DOI
Field L. M. (2000). Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem. J. 349 (3), 863–868. 10.1042/bj3490863 PubMed DOI PMC
Field L. M., Devonshire A. L., Ffrench-Constant R. H., Forde B. G. (1989). Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). FEBS Lett. 243 (2), 323–327. 10.1016/0014-5793(89)80154-1 DOI
Flores K., Wolschin F., Corneveaux J. J., Allen A. N., Huentelman M. J., Amdam G. V. (2012). Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC genomics 13 (1), 480–489. 10.1186/1471-2164-13-480 PubMed DOI PMC
Foret S., Kucharski R., Pellegrini M., Feng S., Jacobsen S. E., Robinson G. E., et al. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl. Acad. Sci. 109 (13), 4968–4973. 10.1073/pnas.1202392109 PubMed DOI PMC
Franks S. J., Hoffmann A. A. (2012). Genetics of climate change adaptation. Annu. Rev. Genet. 46 (1), 185–208. 10.1146/annurev-genet-110711-155511 PubMed DOI
Franks S. J., Sim S., Weis A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. 104 (4), 1278–1282. 10.1073/pnas.0608379104 PubMed DOI PMC
Fullaondo A., Lee S. Y. (2012). Identification of putative miRNA involved in Drosophila melanogaster immune response. Dev. Comp. Immunol. 36 (2), 267–273. 10.1016/j.dci.2011.03.034 PubMed DOI
Gaddelapati S. C., Kalsi M., Roy A., Palli S. R. (2018). Cap'n'collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata . Insect Biochem. Mol. Biol. 99, 54–62. 10.1016/j.ibmb.2018.05.006 PubMed DOI
Gaddelapati S. C., Albishi N. M., Dhandapani R. K., Palli S. R. (2022). Juvenile hormone-induced histone deacetylase 3 suppresses apoptosis to maintain larval midgut in the yellow fever mosquito. Proc. Natl. Acad. Sci. 119 (11), e2118871119. 10.1073/pnas.2118871119 PubMed DOI PMC
Gaddelapati S. C., Dhandapani R. K., Palli S. R. (2020). CREB-binding protein regulates metamorphosis and compound eye development in the yellow fever mosquito, Aedes aegypti . Biochimica Biophysica Acta (BBA)-Gene Regul. Mech. 1863 (8), 194576. 10.1016/j.bbagrm.2020.194576 PubMed DOI PMC
Gardner J. L., Peters A., Kearney M. R., Joseph L., Heinsohn R. (2011). Declining body size: A third universal response to warming? Trends Ecol. Evol. 26 (6), 285–291. 10.1016/j.tree.2011.03.005 PubMed DOI
George S., Gaddelapati S. C., Palli S. R. (2019). Histone deacetylase 1 suppresses Krüppel homolog 1 gene expression and influences juvenile hormone action in Tribolium castaneum . Proc. Natl. Acad. Sci. 116 (36), 17759–17764. 10.1073/pnas.1909554116 PubMed DOI PMC
George S., Palli S. R. (2020b). Histone deacetylase 11 knockdown blocks larval development and metamorphosis in the red flour beetle, Tribolium castaneum . Front. Genet. 11, 683. 10.3389/fgene.2020.00683 PubMed DOI PMC
George S., Palli S. R. (2020a). Histone deacetylase 3 is required for development and metamorphosis in the red flour beetle, Tribolium castaneum . BMC genomics 21 (1), 1–14. 10.1186/s12864-020-06840-3 PubMed DOI PMC
Georghiou G. P., Taylor C. E. (1977). Genetic and biological influences in the evolution of insecticide resistance. J. Econ. entomology 70 (3), 319–323. 10.1093/jee/70.3.319 PubMed DOI
Giraldez A. J., Cinalli R. M., Glasner M. E., Enright A. J., Thomson J. M., Baskerville S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science 308 (5723), 833–838. 10.1126/science.1109020 PubMed DOI
Glastad K., Hunt B. G., Yi S., Goodisman M. (2011). DNA methylation in insects: On the brink of the epigenomic era. Insect Mol. Biol. 20 (5), 553–565. 10.1111/j.1365-2583.2011.01092.x PubMed DOI
Glastad K. M., Hunt B. G., Goodisman M. A. (2019). Epigenetics in insects: Genome regulation and the generation of phenotypic diversity. Annu. Rev. Entomol. 64 (185), 185–203. 10.1146/annurev-ento-011118-111914 PubMed DOI
Glastad K. M., Hunt B. G., Goodisman M. A. (2014). Evolutionary insights into DNA methylation in insects. Curr. Opin. Insect Sci. 1, 25–30. 10.1016/j.cois.2014.04.001 PubMed DOI
Gomes A. F. F., Omoto C., Cônsoli F. L. (2020). Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 93 (2), 833–851. 10.1007/s10340-020-01202-0 DOI
Gómez-Díaz E., Jordà M., Peinado M. A., Rivero A. (2012). Epigenetics of host–pathogen interactions: The road ahead and the road behind. PLoS Pathog. 8 (11), e1003007. 10.1371/journal.ppat.1003007 PubMed DOI PMC
Good P., Booth B. B., Chadwick R., Hawkins E., Jonko A., Lowe J. A. (2016). Large differences in regional precipitation change between a first and second 2 K of global warming. Nat. Commun. 7 (1), 13667–13668. 10.1038/ncomms13667 PubMed DOI PMC
Greer E. L., Maures T. J., Ucar D., Hauswirth A. G., Mancini E., Lim J. P., et al. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans . Nature 479 (7373), 365–371. 10.1038/nature10572 PubMed DOI PMC
Gressel J. (2011). Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manag. Sci. 67 (3), 253–257. 10.1002/ps.2071 PubMed DOI
Gupta A., Nair S. (2020). Dynamics of insect–microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357. 10.3389/fmicb.2020.01357 PubMed DOI PMC
Gupta A., Nair S. (2022). Heritable epigenomic modifications influence stress resilience and rapid adaptations in the Brown planthopper (nilaparvata lugens). Int. J. Mol. Sci. 23 (15), 8728. 10.3390/ijms23158728 PubMed DOI PMC
Haddi K., Mendes M. V., Barcellos M. S., Lino-Neto J., Freitas H. L., Guedes R. N. C., et al. (2016). Sexual success after stress? Imidacloprid-induced hormesis in males of the neotropical stink bug euschistus heros. PloS one 11 (6), e0156616. 10.1371/journal.pone.0156616 PubMed DOI PMC
Hamon M. A., Cossart P. (2008). Histone modifications and chromatin remodeling during bacterial infections. Cell host microbe 4 (2), 100–109. 10.1016/j.chom.2008.07.009 PubMed DOI
Hansen A. K., Degnan P. H. (2014). Widespread expression of conserved small RNAs in small symbiont genomes. ISME J. 8 (12), 2490–2502. 10.1038/ismej.2014.121 PubMed DOI PMC
Hardy N. B., Peterson D. A., Ross L., Rosenheim J. A. (2018). Does a plant‐eating insect's diet govern the evolution of insecticide resistance? Comparative tests of the pre‐adaptation hypothesis. Evol. Appl. 11 (5), 739–747. 10.1111/eva.12579 PubMed DOI PMC
Hawkins N. J., Bass C., Dixon A., Neve P. (2019). The evolutionary origins of pesticide resistance. Biol. Rev. 94 (1), 135–155. 10.1111/brv.12440 PubMed DOI PMC
He Y., Du Y., Li J., Liu P., Wang Q., Li Z. (2015). Analysis of DNA methylation in different tissues of Fenneropenaeus chinensis from the wild population and Huanghai No. 1. Acta Oceanol. Sin. 34 (12), 175–180. 10.1007/s13131-015-0765-x DOI
Heard E., Martienssen R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell 157 (1), 95–109. 10.1016/j.cell.2014.02.045 PubMed DOI PMC
Heckel D. G. (2014). Insect detoxification and sequestration strategies. Annu. Plant Rev. Insect‐Plant Interact. 47, 77–114. 10.1002/9781118829783.ch3 DOI
Hill J. K., Griffiths H. M., Thomas C. D. (2011). Climate change and evolutionary adaptations at species' range margins. Annu. Rev. entomology 56, 143–159. 10.1146/annurev-ento-120709-144746 PubMed DOI
Holoch D., Moazed D. (2015). RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16 (2), 71–84. 10.1038/nrg3863 PubMed DOI PMC
Hu Y.-T., Wu T.-C., Yang E.-C., Wu P.-C., Lin P.-T., Wu Y.-L. (2017). Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci. Rep. 7 (1), 1–14. 10.1038/srep41255 PubMed DOI PMC
Hunt B. G., Glastad K. M., Yi S. V., Goodisman M. A. (2013b). Patterning and regulatory associations of DNA methylation are mirrored by histone modifications in insects. Genome Biol. Evol. 5 (3), 591–598. 10.1093/gbe/evt030 PubMed DOI PMC
Hunt B. G., Glastad K. M., Yi S. V., Goodisman M. A. (2013a). The function of intragenic DNA methylation: Insights from insect epigenomes. Integr. Comp. Biol. 53 (2), 319–328. 10.1093/icb/ict003 PubMed DOI
Hunter R. G., Gagnidze K., McEwen B. S., Pfaff D. W. (2015). Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proc. Natl. Acad. Sci. 112 (22), 6828–6833. 10.1073/pnas.1411260111 PubMed DOI PMC
Hussain M., Frentiu F. D., Moreira L. A., O'Neill S. L., Asgari S. (2011). Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti . Proc. Natl. Acad. Sci. 108 (22), 9250–9255. 10.1073/pnas.1105469108 PubMed DOI PMC
Huxley J. (1940). The origins of Species. Va. Q. Rev. 16 (1), 14–23.
Jablonka E., Raz G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84 (2), 131–176. 10.1086/598822 PubMed DOI
Jaenisch R., Bird A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (3), 245–254. 10.1038/ng1089 PubMed DOI
Jenkins A. M., Muskavitch M. A. (2015). Evolution of an epigenetic gene ensemble within the genus Anopheles. Genome Biol. Evol. 7 (3), 901–915. 10.1093/gbe/evv041 PubMed DOI PMC
Jeremias G., Barbosa J., Marques S. M., Asselman J., Gonçalves F. J., Pereira J. L. (2018). Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 27 (13), 2790–2806. 10.1111/mec.14727 PubMed DOI
Kalsi M., Palli S. R. (2017). Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum . Insect Biochem. Mol. Biol. 90, 43–52. 10.1016/j.ibmb.2017.09.009 PubMed DOI
Karell P., Ahola K., Karstinen T., Valkama J., Brommer J. E. (2011). Climate change drives microevolution in a wild bird. Nat. Commun. 2 (1), 1–7. 10.1038/ncomms1213 PubMed DOI PMC
Kausar S., Abbas M. N., Cui H. (2021). A review on the DNA methyltransferase family of insects: Aspect and prospects. Int. J. Biol. Macromol. 186, 289–302. 10.1016/j.ijbiomac.2021.06.205 PubMed DOI
Kikuchi Y., Hayatsu M., Hosokawa T., Nagayama A., Tago K., Fukatsu T. (2012). Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. 109 (22), 8618–8622. 10.1073/pnas.1200231109 PubMed DOI PMC
Kim D., Thairu M. W., Hansen A. K. (2016). Novel insights into insect-microbe interactions—Role of epigenomics and small RNAs. Front. Plant Sci. 7, 1164. 10.3389/fpls.2016.01164 PubMed DOI PMC
Kinnison M. T., Hendry A. P. (2001). “The pace of modern life II: From rates of contemporary microevolution to pattern and process,” in Microevolution rate, pattern, process (Germany: Springer; ), 145–164. PubMed
Kishimoto S., Uno M., Okabe E., Nono M., Nishida E. (2017). Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans . Nat. Commun. 8 (1), 1–12. 10.1038/ncomms14031 PubMed DOI PMC
Kuzawa C. W., Thayer Z. M. (2011). Timescales of human adaptation: The role of epigenetic processes. Epigenomics 3 (2), 221–234. 10.2217/epi.11.11 PubMed DOI
Laland K., Uller T., Feldman M., Sterelny K., Müller G. B., Moczek A., et al. (2014). Does evolutionary theory need a rethink? Nature 514 (7521), 161–164. 10.1038/514161a PubMed DOI
Lee C. E., Gelembiuk G. W. (2008). Evolutionary origins of invasive populations. Evol. Appl. 1 (3), 427–448. 10.1111/j.1752-4571.2008.00039.x PubMed DOI PMC
Lee D.-H., Jacobs D. R., Jr, Porta M. (2009). Hypothesis: A unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. Environ. health Perspect. 117 (12), 1799–1802. 10.1289/ehp.0900741 PubMed DOI PMC
Lehmann P., Lyytinen A., Piiroinen S., Lindström L. (2014). Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Oecologia 176 (1), 57–68. 10.1007/s00442-014-3009-4 PubMed DOI
Li-Byarlay H., Li Y., Stroud H., Feng S., Newman T. C., Kaneda M., et al. (2013). RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. 110 (31), 12750–12755. 10.1073/pnas.1310735110 PubMed DOI PMC
Liebers R., Rassoulzadegan M., Lyko F. (2014). Epigenetic regulation by heritable RNA. PLoS Genet. 10 (4), e1004296. 10.1371/journal.pgen.1004296 PubMed DOI PMC
Lyko F., Maleszka R. (2011). Insects as innovative models for functional studies of DNA methylation. Trends Genet. 27 (4), 127–131. 10.1016/j.tig.2011.01.003 PubMed DOI
Lyko F., Ramsahoye B. H., Jaenisch R. (2000). DNA methylation in Drosophila melanogaster . Nature 408 (6812), 538–540. 10.1038/35046205 PubMed DOI
Marhold J., Rothe N., Pauli A., Mund C., Kuehle K., Brueckner B., et al. (2004). Conservation of DNA methylation in dipteran insects. Insect Mol. Biol. 13 (2), 117–123. 10.1111/j.0962-1075.2004.00466.x PubMed DOI
Marks P. A., Miller T., Richon V. M. (2003). Histone deacetylases. Curr. Opin. Pharmacol. 3 (4), 344–351. 10.1016/s1471-4892(03)00084-5 PubMed DOI
McGuigan K., Hoffmann A. A., Sgrò C. M. (2021). How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need? Philosophical Trans. R. Soc. B 376 (1826), 20200119. 10.1098/rstb.2020.0119 PubMed DOI PMC
McMahon S. M., Harrison S. P., Armbruster W. S., Bartlein P. J., Beale C. M., Edwards M. E., et al. (2011). Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol. 26 (5), 249–259. 10.1016/j.tree.2011.02.012 PubMed DOI
Mukherjee K., Dobrindt U. (2022). The emerging role of epigenetic mechanisms in insect defense against pathogens. Curr. Opin. Insect Sci. 49, 8–14. 10.1016/j.cois.2021.10.004 PubMed DOI
Mukherjee K., Fischer R., Vilcinskas A. (2012). Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front. zoology 9 (1), 25–12. 10.1186/1742-9994-9-25 PubMed DOI PMC
Mukherjee K., Twyman R. M., Vilcinskas A. (2015). Insects as models to study the epigenetic basis of disease. Prog. biophysics Mol. Biol. 118 (1-2), 69–78. 10.1016/j.pbiomolbio.2015.02.009 PubMed DOI
Muturi E. J., Dunlap C., Smartt C. T., Shin D. (2021). Resistance to permethrin alters the gut microbiota of Aedes aegypti . Sci. Rep. 11 (1), 14406–14408. 10.1038/s41598-021-93725-4 PubMed DOI PMC
Nilsson E. E., Sadler-Riggleman I., Skinner M. K. (2018). Environmentally induced epigenetic transgenerational inheritance of disease. Environ. Epigenetics 4 (2), dvy016. 10.1093/eep/dvy016 PubMed DOI PMC
Niu Y., DesMarais T. L., Tong Z., Yao Y., Costa M. (2015). Oxidative stress alters global histone modification and DNA methylation. Free Radic. Biol. Med. 82, 22–28. 10.1016/j.freeradbiomed.2015.01.028 PubMed DOI PMC
Olivares-Castro G., Cáceres-Jensen L., Guerrero-Bosagna C., Villagra C. (2021). Insect epigenetic mechanisms facing anthropogenic-derived contamination, an overview. Insects 12 (9), 780. 10.3390/insects12090780 PubMed DOI PMC
Oliver K. M., Russell J. A., Moran N. A., Hunter M. S. (2003). Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. 100 (4), 1803–1807. 10.1073/pnas.0335320100 PubMed DOI PMC
Olson-Manning C. F., Wagner M. R., Mitchell-Olds T. (2012). Adaptive evolution: Evaluating empirical support for theoretical predictions. Nat. Rev. Genet. 13 (12), 867–877. 10.1038/nrg3322 PubMed DOI PMC
Oppold A., Kreß A., Bussche J. V., Diogo J., Kuch U., Oehlmann J., et al. (2015). Epigenetic alterations and decreasing insecticide sensitivity of the Asian tiger mosquito Aedes albopictus . Ecotoxicol. Environ. Saf. 122, 45–53. 10.1016/j.ecoenv.2015.06.036 PubMed DOI
Oppold A.-M., Müller R. (2017). “Epigenetics: A hidden target of insecticides,” in Advances in insect physiology (Netherlands: Elsevier; ), 313–324.
Paenke I., Sendhoff B., Kawecki T. J. (2007). Influence of plasticity and learning on evolution under directional selection. Am. Nat. 170 (2), E47–E58. 10.1086/518952 PubMed DOI
Palli S. R. (2020). CncC/Maf‐mediated xenobiotic response pathway in insects. Archives Insect Biochem. Physiology 104 (2), e21674. 10.1002/arch.21674 PubMed DOI PMC
Palli S. R. (2021). Epigenetic regulation of post-embryonic development. Curr. Opin. Insect Sci. 43, 63–69. 10.1016/j.cois.2020.09.011 PubMed DOI PMC
Peleg S., Feller C., Forne I., Schiller E., Sévin D. C., Schauer T., et al. (2016). Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep. 17 (3), 455–469. 10.15252/embr.201541132 PubMed DOI PMC
Pembrey M. E., Bygren L. O., Kaati G., Edvinsson S., Northstone K., Sjöström M., et al. (2006). Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14 (2), 159–166. 10.1038/sj.ejhg.5201538 PubMed DOI
Peschansky V. J., Wahlestedt C. (2014). Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9 (1), 3–12. 10.4161/epi.27473 PubMed DOI PMC
Piiroinen S., Boman S., Lyytinen A., Mappes J., Lindström L. (2014). Sublethal effects of deltamethrin exposure of parental generations on physiological traits and overwintering in L eptinotarsa decemlineata. J. Appl. Entomology 138 (1-2), 149–158. 10.1111/jen.12088 DOI
Piiroinen S., Ketola T., Lyytinen A., Lindström L. (2011). Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle. Funct. Ecol. 25 (3), 527–536. 10.1111/j.1365-2435.2010.01804.x DOI
Piiroinen S., Lyytinen A., Lindström L. (2013). Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol. Appl. 6 (2), 313–323. 10.1111/eva.12001 PubMed DOI PMC
Pimentel D., Acquay H., Biltonen M., Rice P., Silva M., Nelson J., et al. (1992). Environmental and economic costs of pesticide use. BioScience 42 (10), 750–760. 10.2307/1311994 DOI
Popp J. (2011). Cost-benefit analysis of crop protection measures. J. für Verbraucherschutz und Lebensmittelsicherheit 6 (1), 105–112. 10.1007/s00003-011-0677-4 DOI
Poulos R. C., Olivier J., Wong J. W. (2017). The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic acids Res. 45 (13), 7786–7795. 10.1093/nar/gkx463 PubMed DOI PMC
Ramya S. L., Venkatesan T., Murthy K. S., Jalali S. K., Varghese A. (2016a). Degradation of acephate by Enterobacter asburiae, Bacillus cereus and Pantoea agglomerans isolated from diamondback moth Plutella xylostella (L), a pest of cruciferous crops. J. Environ. Biol. 37 (4), 611–618. PubMed
Ramya S. L., Venkatesan T., Srinivasa Murthy K., Jalali S. K., Verghese A. (2016b). Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47, 327–336. 10.1016/j.bjm.2016.01.012 PubMed DOI PMC
Rechavi O., Lev I. (2017). Principles of transgenerational small RNA inheritance in Caenorhabditis elegans . Curr. Biol. 27 (14), R720–R730. 10.1016/j.cub.2017.05.043 PubMed DOI
Regev A., Lamb M. J., Jablonka E. (1998). The role of DNA methylation in invertebrates: Developmental regulation or genome defense? Mol. Biol. Evol. 15 (7), 880–891. 10.1093/oxfordjournals.molbev.a025992 DOI
Reynolds J., Bautista-Jimenez R., Denlinger D. (2016). Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata . Insect Biochem. Mol. Biol. 76, 29–37. 10.1016/j.ibmb.2016.06.012 PubMed DOI
Richard G., Jaquiéry J., Le Trionnaire G. (2021). Contribution of epigenetic mechanisms in the regulation of environmentally-induced polyphenism in insects. Insects 12 (7), 649. 10.3390/insects12070649 PubMed DOI PMC
Richard G., Le Trionnaire G., Danchin E., Sentis A. (2019). Epigenetics and insect polyphenism: Mechanisms and climate change impacts. Curr. Opin. insect Sci. 35, 138–145. 10.1016/j.cois.2019.06.013 PubMed DOI
Robertson K. D., Hayward S. D., Ling P. D., Samid D., Ambinder R. F. (1995). Transcriptional activation of the epstein-barr virus latency C promoter after 5-azacytidine treatment: Evidence that demethylation at a single CpG site is crucial. Mol. Cell. Biol. 15 (11), 6150–6159. 10.1128/mcb.15.11.6150 PubMed DOI PMC
Roy A., George S., Palli S. R. (2017). Multiple functions of CREB-binding protein during postembryonic development: Identification of target genes. BMC genomics 18 (1), 1–14. 10.1186/s12864-017-4373-3 PubMed DOI PMC
Roy A., Palli S. R. (2018). Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC genomics 19 (1), 1–15. 10.1186/s12864-018-5323-4 PubMed DOI PMC
Sato F., Tsuchiya S., Meltzer S. J., Shimizu K. (2011). MicroRNAs and epigenetics. FEBS J. 278 (10), 1598–1609. 10.1111/j.1742-4658.2011.08089.x PubMed DOI
Seisenberger S., Peat J. R., Reik W. (2013). Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr. Opin. Cell Biol. 25 (3), 281–288. 10.1016/j.ceb.2013.02.013 PubMed DOI
Sen M. K., Hamouzova K., Košnarová P., Roy A., Soukup J. (2022). Herbicide resistance in grass weeds: Epigenetic regulation matters too. Front. Plant Sci. 13, 1040958. 10.3389/fpls.2022.1040958 PubMed DOI PMC
Skinner M. K. (2014a). Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol. Cell. Endocrinol. 398 (1-2), 4–12. 10.1016/j.mce.2014.07.019 PubMed DOI PMC
Skinner M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6 (7), 838–842. 10.4161/epi.6.7.16537 PubMed DOI PMC
Skinner M. K. (2015). Environmental epigenetics and a unified theory of the molecular aspects of evolution: A neo-lamarckian concept that facilitates neo-darwinian evolution. Genome Biol. Evol. 7 (5), 1296–1302. 10.1093/gbe/evv073 PubMed DOI PMC
Skinner M. K. (2014b). Environmental stress and epigenetic transgenerational inheritance. BMC Med. 12 (1), 153–155. 10.1186/s12916-014-0153-y PubMed DOI PMC
Skinner M. K., Gurerrero-Bosagna C., Haque M. M., Nilsson E. E., Koop J. A., Knutie S. A., et al. (2014). Epigenetics and the evolution of Darwin’s finches. Genome Biol. Evol. 6 (8), 1972–1989. 10.1093/gbe/evu158 PubMed DOI PMC
Song J., Irwin J., Dean C. (2013). Remembering the prolonged cold of winter. Curr. Biol. 23 (17), R807–R811. 10.1016/j.cub.2013.07.027 PubMed DOI
Sparks T. C., Nauen R. (2015). Irac: Mode of action classification and insecticide resistance management. Pesticide Biochem. physiology 121, 122–128. 10.1016/j.pestbp.2014.11.014 PubMed DOI
Sparks T. C., Storer N., Porter A., Slater R., Nauen R. (2021). Insecticide resistance management and industry: The origins and evolution of the I nsecticide R esistance A ction C ommittee (IRAC) and the mode of action classification scheme. Pest Manag. Sci. 77 (6), 2609–2619. 10.1002/ps.6254 PubMed DOI PMC
Stat F. (2019). Food and agriculture organization of the united nations. Italy: FAOSTAT Statistical Database.
Stratonovitch P., Elias J., Denholm I., Slater R., Semenov M. A. (2014). An individual-based model of the evolution of pesticide resistance in heterogeneous environments: Control of meligethes aeneus population in oilseed rape crops. PLoS One 9 (12), e115631. 10.1371/journal.pone.0115631 PubMed DOI PMC
Suzuki M. M., Bird A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet. 9 (6), 465–476. 10.1038/nrg2341 PubMed DOI
Szyf M. (2015). Nongenetic inheritance and transgenerational epigenetics. Trends Mol. Med. 21 (2), 134–144. 10.1016/j.molmed.2014.12.004 PubMed DOI
Tabashnik B. E., Mota-Sanchez D., Whalon M. E., Hollingworth R. M., Carrière Y. (2014). Defining terms for proactive management of resistance to Bt crops and pesticides. J. Econ. entomology 107 (2), 496–507. 10.1603/ec13458 PubMed DOI
Terrapon N., Li C., Robertson H. M., Ji L., Meng X., Booth W., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5 (1), 1–12. 10.1038/ncomms4636 PubMed DOI
Thiebaut F., Hemerly A. S., Ferreira P. C. G. (2019). A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front. plant Sci. 10, 246. 10.3389/fpls.2019.00246 PubMed DOI PMC
Thomas C. D., Bodsworth E. J., Wilson R. J., Simmons A. D., Davies Z. G., Musche M., et al. (2001). Ecological and evolutionary processes at expanding range margins. Nature 411 (6837), 577–581. 10.1038/35079066 PubMed DOI
Turner B. M. (2009). Epigenetic responses to environmental change and their evolutionary implications. Philosophical Trans. R. Soc. B Biol. Sci. 364 (1534), 3403–3418. 10.1098/rstb.2009.0125 PubMed DOI PMC
Vandegehuchte M. B., De Coninck D., Vandenbrouck T., De Coen W. M., Janssen C. R. (2010a). Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna. Environ. Pollut. 158 (10), 3323–3329. 10.1016/j.envpol.2010.07.023 PubMed DOI
Vandegehuchte M. B., Kyndt T., Vanholme B., Haegeman A., Gheysen G., Janssen C. R. (2009). Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ. Int. 35 (4), 700–706. 10.1016/j.envint.2009.01.002 PubMed DOI
Vandegehuchte M. B., Lemière F., Vanhaecke L., Berghe W. V., Janssen C. R. (2010b). Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation. Comp. Biochem. Physiology Part C Toxicol. Pharmacol. 151 (3), 278–285. 10.1016/j.cbpc.2009.11.007 PubMed DOI
Waddington C. H. (1953). “Epigenetics and evolution,” in Symposia of the society for experimental biology (Downing St, Cambridge: Company Biologists Ltd Univ Cambridge Dept Zoology; ), 186–199.
Waddington C. H. (1942). The epigenotype. Endeavour 1, 18–20.
Xiang H., Li X., Dai F., Xu X., Tan A., Chen L., et al. (2013). Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC genomics 14 (1), 1–11. 10.1186/1471-2164-14-646 PubMed DOI PMC
Xiang H., Zhu J., Chen Q., Dai F., Li X., Li M., et al. (2010). Single base–resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol. 28 (5), 516–520. 10.1038/nbt.1626 PubMed DOI
Xu J., Roy A., Palli S. R. (2018). CREB-binding protein plays key roles in juvenile hormone action in the red flour beetle, Tribolium Castaneum. Sci. Rep. 8 (1), 1–11. 10.1038/s41598-018-19667-6 PubMed DOI PMC
Xu L., Qin J., Fu W., Wang S., Wu Q., Zhou X., et al. (2022). MAP4K4 controlled transcription factor POUM1 regulates PxABCG1 expression influencing Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochem. Physiology 182, 105053. 10.1016/j.pestbp.2022.105053 PubMed DOI
Yan H., Bonasio R., Simola D. F., Liebig J., Berger S. L., Reinberg D. (2015). DNA methylation in social insects: How epigenetics can control behavior and longevity. Annu. Rev. Entomology 60, 435–452. 10.1146/annurev-ento-010814-020803 PubMed DOI
Yang M., Zhang J., Zhu K., Xuan T., Liu X., Guo Y., et al. (2009). Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives Insect Biochem. Physiology Publ. Collab. Entomological Soc. Am. 71 (1), 3–15. 10.1002/arch.20254 PubMed DOI
Ye Y. H., Woolfit M., Huttley G. A., Rances E., Caragata E. P., Popovici J., et al. (2013). Infection with a virulent strain of Wolbachia disrupts genome wide-patterns of cytosine methylation in the mosquito Aedes aegypti . PLoS One 8 (6), e66482. 10.1371/journal.pone.0066482 PubMed DOI PMC
Zhang G., Hussain M., O’Neill S. L., Asgari S. (2013). Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti . Proc. Natl. Acad. Sci. 110 (25), 10276–10281. 10.1073/pnas.1303603110 PubMed DOI PMC
Zhang J., Xing Y., Li Y., Yin C., Ge C., Li F. (2015a). DNA methyltransferases have an essential role in female fecundity in Brown planthopper, Nilaparvata lugens. Biochem. Biophysical Res. Commun. 464 (1), 83–88. 10.1016/j.bbrc.2015.05.114 PubMed DOI
Zhang M., Chen J. L., Liang S. K., Li G. H., Wang F. H., Ahmad I. (2015b). Differentially methylated genomic fragments related with sexual dimorphism of rice pests, Sogatella furcifera. Insect Sci. 22 (6), 731–738. 10.1111/1744-7917.12179 PubMed DOI
Zhang S., Shen S., Yang Z., Kong X., Liu F., Zhen Z. (2020). Coding and non-coding RNAs: Molecular basis of forest-insect outbreaks. Front. Cell Dev. Biol. 8, 369. 10.3389/fcell.2020.00369 PubMed DOI PMC