Exercise Training Combined with Calanus Oil Supplementation Improves the Central Cardiodynamic Function in Older Women
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-29182A
Ministry of Health of the Czech Republic
PROGRES Q36
Charles University
260531/SVV/2020
Charles University
PubMed
35011022
PubMed Central
PMC8747381
DOI
10.3390/nu14010149
PII: nu14010149
Knihovny.cz E-zdroje
- Klíčová slova
- aging, body composition, cardiac output, cardiorespiratory fitness, omega-3 fatty acids,
- MeSH
- cévní rezistence MeSH
- cvičení fyziologie MeSH
- kardiorespirační zdatnost fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- minutový srdeční výdej MeSH
- omega-3 mastné kyseliny aplikace a dávkování MeSH
- plankton chemie MeSH
- potravní doplňky * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- složení těla MeSH
- stárnutí fyziologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- omega-3 mastné kyseliny MeSH
The aim of this study was to investigate the possible beneficial effects of exercise training (ET) with omega-3/Calanus oil supplementation on cardiorespiratory and adiposity parameters in elderly women. Fifty-five women (BMI: 19-37 kg/m2, 62-80 years old) were recruited and randomly assigned to the 4 month intervention with ET and omega-3 supplementation (Calanus oil, ET-Calanus) or ET and the placebo (sunflower oil; ET-Placebo). The body composition was determined by dual-energy X-ray absorptiometry (DXA), and cardiorespiratory parameters were measured using spiroergometry and PhysioFlow hemodynamic testing. Both interventions resulted in an increased lean mass whereas the fat mass was reduced in the leg and trunk as well as the android and gynoid regions. The content of trunk fat (in percent of the total fat) was lower and the content of the leg fat was higher in the ET-Calanus group compared with the ET-Placebo. Although both interventions resulted in similar improvements in cardiorespiratory fitness (VO2max), it was explained by an increased peripheral oxygen extraction (a-vO2diff) alone in the ET-Placebo group whereas increased values of both a-vO2diff and maximal cardiac output (COmax) were observed in the ET-Calanus group. Changes in COmax were associated with changes in systemic vascular resistance, circulating free fatty acids, and the omega-3 index. In conclusion, Calanus oil supplementation during a 4 month ET intervention in elderly women improved the cardiorespiratory function, which was due to combined central and peripheral cardiodynamic mechanisms.
Department of Internal Medicine Královské Vinohrady University Hospital 10034 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences 14200 Prague Czech Republic
Zobrazit více v PubMed
Dalle S., Rossmeislova L., Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017;8:1045. doi: 10.3389/fphys.2017.01045. PubMed DOI PMC
Rosenberg I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997;127:990S–991S. doi: 10.1093/jn/127.5.990S. PubMed DOI
Zamboni M., Rossi A.P., Fantin F., Zamboni G., Chirumbolo S., Zoico E., Mazzali G. Adipose tissue, diet and aging. Mech. Ageing Dev. 2014;136–137:129–137. doi: 10.1016/j.mad.2013.11.008. PubMed DOI
Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V., Abraham J., Adair T., Aggarwal R., Ahn S.Y., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0. PubMed DOI PMC
Mei Y.-X., Wu H., Zhang H.-Y., Hou J., Zhang Z.-X., Liao W., Liu X.-T., Sang S.-X., Mao Z.-X., Yang D.-B., et al. Health-related quality of life and its related factors in coronary heart disease patients: Results from the Henan Rural Cohort study. Sci. Rep. 2021;11:5011. doi: 10.1038/s41598-021-84554-6. PubMed DOI PMC
Ruiz J.R., Sui X., Lobelo F., Morrow J.R., Jr., Jackson A.W., Sjostrom M., Blair S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ. 2008;337:a439. doi: 10.1136/bmj.a439. PubMed DOI PMC
Tamura Y., Tanaka Y., Sato F., Choi J.B., Watada H., Niwa M., Kinoshita J., Ooka A., Kumashiro N., Igarashi Y., et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2005;90:3191–3196. doi: 10.1210/jc.2004-1959. PubMed DOI
Way K.L., Hackett D.A., Baker M.K., Johnson N.A. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab. J. 2016;40:253–271. doi: 10.4093/dmj.2016.40.4.253. PubMed DOI PMC
Williams M.A., Stewart K.J. Impact of strength and resistance training on cardiovascular disease risk factors and outcomes in older adults. Clin. Geriatr. Med. 2009;25:703–714. doi: 10.1016/j.cger.2009.07.003. PubMed DOI
Lavie C.J., Arena R., Swift D.L., Johannsen N.M., Sui X., Lee D.C., Earnest C.P., Church T.S., O’Keefe J.H., Milani R.V., et al. Exercise and the cardiovascular system: Clinical science and cardiovascular outcomes. Circ. Res. 2015;117:207–219. doi: 10.1161/CIRCRESAHA.117.305205. PubMed DOI PMC
Kodama S., Saito K., Tanaka S., Maki M., Yachi Y., Asumi M., Sugawara A., Totsuka K., Shimano H., Ohashi Y., et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 2009;301:2024–2035. doi: 10.1001/jama.2009.681. PubMed DOI
Lee D.C., Sui X., Artero E.G., Lee I.M., Church T.S., McAuley P.A., Stanford F.C., Kohl H.W., 3rd, Blair S.N. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: The Aerobics Center Longitudinal Study. Circulation. 2011;124:2483–2490. doi: 10.1161/CIRCULATIONAHA.111.038422. PubMed DOI PMC
Marik P.E., Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: A systematic review. Clin. Cardiol. 2009;32:365–372. doi: 10.1002/clc.20604. PubMed DOI PMC
Rizos E.C., Ntzani E.E., Bika E., Kostapanos M.S., Elisaf M.S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA. 2012;308:1024–1033. doi: 10.1001/2012.jama.11374. PubMed DOI
Walser B., Stebbins C.L. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise. Eur. J. Appl. Physiol. 2008;104:455–461. doi: 10.1007/s00421-008-0791-x. PubMed DOI
Capó X., Martorell M., Sureda A., Llompart I., Tur J.A., Pons A. Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur. J. Nutr. 2015;54:35–49. doi: 10.1007/s00394-014-0683-2. PubMed DOI
Toko H., Morita H., Katakura M., Hashimoto M., Ko T., Bujo S., Adachi Y., Ueda K., Murakami H., Ishizuka M., et al. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci. Rep. 2020;10:15553. doi: 10.1038/s41598-020-72686-0. PubMed DOI PMC
Hoper A.C., Salma W., Khalid A.M., Hafstad A.D., Sollie S.J., Raa J., Larsen T.S., Aasum E. Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br. J. Nutr. 2013;110:2186–2193. doi: 10.1017/S0007114513001839. PubMed DOI
Jansen K.M., Moreno S., Garcia-Roves P.M., Larsen T.S. Dietary Calanus oil recovers metabolic flexibility and rescues postischemic cardiac function in obese female mice. Am. J. Physiol. Heart Circ. Physiol. 2019;317:H290–H299. doi: 10.1152/ajpheart.00191.2019. PubMed DOI
Cook C.M., Larsen T.S., Derrig L.D., Kelly K.M., Tande K.S. Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids. 2016;51:1137–1144. doi: 10.1007/s11745-016-4189-y. PubMed DOI
Bergvik M., Leiknes O., Altin D., Dahl K.R., Olsen Y. Dynamics of the lipid content and biomass of Calanus finmarchicus (copepodite V) in a Norwegian Fjord. Lipids. 2012;47:881–895. doi: 10.1007/s11745-012-3700-3. PubMed DOI
Schots P.C., Pedersen A.M., Eilertsen K.E., Olsen R.L., Larsen T.S. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharm. 2020;11:961. doi: 10.3389/fphar.2020.00961. PubMed DOI PMC
Naguib Y.M. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000;48:1150–1154. doi: 10.1021/jf991106k. PubMed DOI
Cizkova T., Stepan M., Dadova K., Ondrujova B., Sontakova L., Krauzova E., Matous M., Koc M., Gojda J., Kracmerova J., et al. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J. Clin. Endocrinol. Metab. 2020;105:e4510–e4526. doi: 10.1210/clinem/dgaa630. PubMed DOI
Daďová K., Petr M., Šteffl M., Sontáková L., Chlumský M., Matouš M., Štich V., Štěpán M., Šiklová M. Effect of Calanus Oil Supplementation and 16 Week Exercise Program on Selected Fitness Parameters in Older Women. Nutrients. 2020;12:481. doi: 10.3390/nu12020481. PubMed DOI PMC
Mozaffarian D., Rimm E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA. 2006;296:1885–1899. doi: 10.1001/jama.296.15.1885. PubMed DOI
Fielding B.A. Omega-3 index as a prognosis tool in cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:360–365. doi: 10.1097/MCO.0000000000000404. PubMed DOI
Brezinova M., Cajka T., Oseeva M., Stepan M., Dadova K., Rossmeislova L., Matous M., Siklova M., Rossmeisl M., Kuda O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158576. doi: 10.1016/j.bbalip.2019.158576. PubMed DOI
Stults-Kolehmainen M.A., Stanforth P.R., Bartholomew J.B., Lu T., Abolt C.J., Sinha R. DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men. Nutr. Diabetes. 2013;3:e64. doi: 10.1038/nutd.2013.5. PubMed DOI PMC
Gonzalez-Represas A., Mourot L. Stroke volume and cardiac output measurement in cardiac patients during a rehabilitation program: Comparison between tonometry, impedancemetry and echocardiography. Int. J. Cardiovasc. Imaging. 2020;36:447–455. doi: 10.1007/s10554-019-01738-y. PubMed DOI
Louvaris Z., Spetsioti S., Andrianopoulos V., Chynkiamis N., Habazettl H., Wagner H., Zakynthinos S., Wagner P.D., Vogiatzis I. Cardiac output measurement during exercise in COPD: A comparison of dye dilution and impedance cardiography. Clin. Respir. J. 2019;13:222–231. doi: 10.1111/crj.13002. PubMed DOI
Siebenmann C., Rasmussen P., Sorensen H., Zaar M., Hvidtfeldt M., Pichon A., Secher N.H., Lundby C. Cardiac output during exercise: A comparison of four methods. Scand. J. Med. Sci. Sports. 2015;25:e20–e27. doi: 10.1111/sms.12201. PubMed DOI
Murias J.M., Kowalchuk J.M., Paterson D.H. Mechanisms for increases in V O2max with endurance training in older and young women. Med. Sci. Sports Exerc. 2010;42:1891–1898. doi: 10.1249/MSS.0b013e3181dd0bba. PubMed DOI
Spina R.J. Cardiovascular adaptations to endurance exercise training in older men and women. Exerc. Sport Sci. Rev. 1999;27:317–332. doi: 10.1249/00003677-199900270-00012. PubMed DOI
Storen O., Helgerud J., Saebo M., Stoa E.M., Bratland-Sanda S., Unhjem R.J., Hoff J., Wang E. The Effect of Age on the V O2max Response to High-Intensity Interval Training. Med. Sci. Sports Exerc. 2017;49:78–85. doi: 10.1249/MSS.0000000000001070. PubMed DOI
Salma W., Franekova V., Lund T., Hoper A., Ludvigsen S., Lund J., Aasum E., Ytrehus K., Belke D.D., Larsen T.S. Dietary Calanus oil antagonizes angiotensin II-induced hypertension and tissue wasting in diet-induced obese mice. Prostaglandins Leukot Essent Fat. Acids. 2016;108:13–21. doi: 10.1016/j.plefa.2016.03.006. PubMed DOI
Bloomer R.J., Larson D.E., Fisher-Wellman K.H., Galpin A.J., Schilling B.K. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: A randomized, placebo controlled, cross-over study. Lipids Health Dis. 2009;8:36. doi: 10.1186/1476-511X-8-36. PubMed DOI PMC
Bouwens M., van de Rest O., Dellschaft N., Bromhaar M.G., de Groot L.C., Geleijnse J.M., Muller M., Afman L.A. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 2009;90:415–424. doi: 10.3945/ajcn.2009.27680. PubMed DOI
Rababa’h A.M., Guillory A.N., Mustafa R., Hijjawi T. Oxidative Stress and Cardiac Remodeling: An Updated Edge. Curr Cardiol Rev. 2018;14:53–59. doi: 10.2174/1573403X14666180111145207. PubMed DOI PMC
Fulghum K., Hill B.G. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front. Cardiovasc. Med. 2018;5:127. doi: 10.3389/fcvm.2018.00127. PubMed DOI PMC
Antuna-Puente B., Feve B., Fellahi S., Bastard J.P. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2–11. doi: 10.1016/j.diabet.2007.09.004. PubMed DOI
Kolwicz S.C., Jr. An “Exercise” in Cardiac Metabolism. Front. Cardiovasc. Med. 2018;5:66. doi: 10.3389/fcvm.2018.00066. PubMed DOI PMC
Sloan C., Tuinei J., Nemetz K., Frandsen J., Soto J., Wride N., Sempokuya T., Alegria L., Bugger H., Abel E.D. Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice. Diabetes. 2011;60:1424–1434. doi: 10.2337/db10-1106. PubMed DOI PMC
Lee Y., Wang M.Y., Kakuma T., Wang Z.W., Babcock E., McCorkle K., Higa M., Zhou Y.T., Unger R.H. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 2001;276:5629–5635. doi: 10.1074/jbc.M008553200. PubMed DOI
Wasserfurth P., Nebl J., Schuchardt J.P., Muller M., Bosslau T.K., Kruger K., Hahn A. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers-A Pilot Study. Nutrients. 2020;12:2139. doi: 10.3390/nu12072139. PubMed DOI PMC
McGlory C., Calder P.C., Nunes E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019;6:144. doi: 10.3389/fnut.2019.00144. PubMed DOI PMC
Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011;18:629–639. doi: 10.5551/jat.7922. PubMed DOI
Cornish S.M., Myrie S.B., Bugera E.M., Chase J.E., Turczyn D., Pinder M. Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr. Res. 2018;60:87–95. doi: 10.1016/j.nutres.2018.09.005. PubMed DOI
Rodacki C.L., Rodacki A.L., Pereira G., Naliwaiko K., Coelho I., Pequito D., Fernandes L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012;95:428–436. doi: 10.3945/ajcn.111.021915. PubMed DOI