Exercise Training Combined with Calanus Oil Supplementation Improves the Central Cardiodynamic Function in Older Women

. 2021 Dec 29 ; 14 (1) : . [epub] 20211229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35011022

Grantová podpora
16-29182A Ministry of Health of the Czech Republic
PROGRES Q36 Charles University
260531/SVV/2020 Charles University

The aim of this study was to investigate the possible beneficial effects of exercise training (ET) with omega-3/Calanus oil supplementation on cardiorespiratory and adiposity parameters in elderly women. Fifty-five women (BMI: 19-37 kg/m2, 62-80 years old) were recruited and randomly assigned to the 4 month intervention with ET and omega-3 supplementation (Calanus oil, ET-Calanus) or ET and the placebo (sunflower oil; ET-Placebo). The body composition was determined by dual-energy X-ray absorptiometry (DXA), and cardiorespiratory parameters were measured using spiroergometry and PhysioFlow hemodynamic testing. Both interventions resulted in an increased lean mass whereas the fat mass was reduced in the leg and trunk as well as the android and gynoid regions. The content of trunk fat (in percent of the total fat) was lower and the content of the leg fat was higher in the ET-Calanus group compared with the ET-Placebo. Although both interventions resulted in similar improvements in cardiorespiratory fitness (VO2max), it was explained by an increased peripheral oxygen extraction (a-vO2diff) alone in the ET-Placebo group whereas increased values of both a-vO2diff and maximal cardiac output (COmax) were observed in the ET-Calanus group. Changes in COmax were associated with changes in systemic vascular resistance, circulating free fatty acids, and the omega-3 index. In conclusion, Calanus oil supplementation during a 4 month ET intervention in elderly women improved the cardiorespiratory function, which was due to combined central and peripheral cardiodynamic mechanisms.

Zobrazit více v PubMed

Dalle S., Rossmeislova L., Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017;8:1045. doi: 10.3389/fphys.2017.01045. PubMed DOI PMC

Rosenberg I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997;127:990S–991S. doi: 10.1093/jn/127.5.990S. PubMed DOI

Zamboni M., Rossi A.P., Fantin F., Zamboni G., Chirumbolo S., Zoico E., Mazzali G. Adipose tissue, diet and aging. Mech. Ageing Dev. 2014;136–137:129–137. doi: 10.1016/j.mad.2013.11.008. PubMed DOI

Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V., Abraham J., Adair T., Aggarwal R., Ahn S.Y., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0. PubMed DOI PMC

Mei Y.-X., Wu H., Zhang H.-Y., Hou J., Zhang Z.-X., Liao W., Liu X.-T., Sang S.-X., Mao Z.-X., Yang D.-B., et al. Health-related quality of life and its related factors in coronary heart disease patients: Results from the Henan Rural Cohort study. Sci. Rep. 2021;11:5011. doi: 10.1038/s41598-021-84554-6. PubMed DOI PMC

Ruiz J.R., Sui X., Lobelo F., Morrow J.R., Jr., Jackson A.W., Sjostrom M., Blair S.N. Association between muscular strength and mortality in men: Prospective cohort study. BMJ. 2008;337:a439. doi: 10.1136/bmj.a439. PubMed DOI PMC

Tamura Y., Tanaka Y., Sato F., Choi J.B., Watada H., Niwa M., Kinoshita J., Ooka A., Kumashiro N., Igarashi Y., et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2005;90:3191–3196. doi: 10.1210/jc.2004-1959. PubMed DOI

Way K.L., Hackett D.A., Baker M.K., Johnson N.A. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab. J. 2016;40:253–271. doi: 10.4093/dmj.2016.40.4.253. PubMed DOI PMC

Williams M.A., Stewart K.J. Impact of strength and resistance training on cardiovascular disease risk factors and outcomes in older adults. Clin. Geriatr. Med. 2009;25:703–714. doi: 10.1016/j.cger.2009.07.003. PubMed DOI

Lavie C.J., Arena R., Swift D.L., Johannsen N.M., Sui X., Lee D.C., Earnest C.P., Church T.S., O’Keefe J.H., Milani R.V., et al. Exercise and the cardiovascular system: Clinical science and cardiovascular outcomes. Circ. Res. 2015;117:207–219. doi: 10.1161/CIRCRESAHA.117.305205. PubMed DOI PMC

Kodama S., Saito K., Tanaka S., Maki M., Yachi Y., Asumi M., Sugawara A., Totsuka K., Shimano H., Ohashi Y., et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 2009;301:2024–2035. doi: 10.1001/jama.2009.681. PubMed DOI

Lee D.C., Sui X., Artero E.G., Lee I.M., Church T.S., McAuley P.A., Stanford F.C., Kohl H.W., 3rd, Blair S.N. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: The Aerobics Center Longitudinal Study. Circulation. 2011;124:2483–2490. doi: 10.1161/CIRCULATIONAHA.111.038422. PubMed DOI PMC

Marik P.E., Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: A systematic review. Clin. Cardiol. 2009;32:365–372. doi: 10.1002/clc.20604. PubMed DOI PMC

Rizos E.C., Ntzani E.E., Bika E., Kostapanos M.S., Elisaf M.S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA. 2012;308:1024–1033. doi: 10.1001/2012.jama.11374. PubMed DOI

Walser B., Stebbins C.L. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise. Eur. J. Appl. Physiol. 2008;104:455–461. doi: 10.1007/s00421-008-0791-x. PubMed DOI

Capó X., Martorell M., Sureda A., Llompart I., Tur J.A., Pons A. Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur. J. Nutr. 2015;54:35–49. doi: 10.1007/s00394-014-0683-2. PubMed DOI

Toko H., Morita H., Katakura M., Hashimoto M., Ko T., Bujo S., Adachi Y., Ueda K., Murakami H., Ishizuka M., et al. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci. Rep. 2020;10:15553. doi: 10.1038/s41598-020-72686-0. PubMed DOI PMC

Hoper A.C., Salma W., Khalid A.M., Hafstad A.D., Sollie S.J., Raa J., Larsen T.S., Aasum E. Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br. J. Nutr. 2013;110:2186–2193. doi: 10.1017/S0007114513001839. PubMed DOI

Jansen K.M., Moreno S., Garcia-Roves P.M., Larsen T.S. Dietary Calanus oil recovers metabolic flexibility and rescues postischemic cardiac function in obese female mice. Am. J. Physiol. Heart Circ. Physiol. 2019;317:H290–H299. doi: 10.1152/ajpheart.00191.2019. PubMed DOI

Cook C.M., Larsen T.S., Derrig L.D., Kelly K.M., Tande K.S. Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids. 2016;51:1137–1144. doi: 10.1007/s11745-016-4189-y. PubMed DOI

Bergvik M., Leiknes O., Altin D., Dahl K.R., Olsen Y. Dynamics of the lipid content and biomass of Calanus finmarchicus (copepodite V) in a Norwegian Fjord. Lipids. 2012;47:881–895. doi: 10.1007/s11745-012-3700-3. PubMed DOI

Schots P.C., Pedersen A.M., Eilertsen K.E., Olsen R.L., Larsen T.S. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharm. 2020;11:961. doi: 10.3389/fphar.2020.00961. PubMed DOI PMC

Naguib Y.M. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000;48:1150–1154. doi: 10.1021/jf991106k. PubMed DOI

Cizkova T., Stepan M., Dadova K., Ondrujova B., Sontakova L., Krauzova E., Matous M., Koc M., Gojda J., Kracmerova J., et al. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J. Clin. Endocrinol. Metab. 2020;105:e4510–e4526. doi: 10.1210/clinem/dgaa630. PubMed DOI

Daďová K., Petr M., Šteffl M., Sontáková L., Chlumský M., Matouš M., Štich V., Štěpán M., Šiklová M. Effect of Calanus Oil Supplementation and 16 Week Exercise Program on Selected Fitness Parameters in Older Women. Nutrients. 2020;12:481. doi: 10.3390/nu12020481. PubMed DOI PMC

Mozaffarian D., Rimm E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA. 2006;296:1885–1899. doi: 10.1001/jama.296.15.1885. PubMed DOI

Fielding B.A. Omega-3 index as a prognosis tool in cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:360–365. doi: 10.1097/MCO.0000000000000404. PubMed DOI

Brezinova M., Cajka T., Oseeva M., Stepan M., Dadova K., Rossmeislova L., Matous M., Siklova M., Rossmeisl M., Kuda O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158576. doi: 10.1016/j.bbalip.2019.158576. PubMed DOI

Stults-Kolehmainen M.A., Stanforth P.R., Bartholomew J.B., Lu T., Abolt C.J., Sinha R. DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men. Nutr. Diabetes. 2013;3:e64. doi: 10.1038/nutd.2013.5. PubMed DOI PMC

Gonzalez-Represas A., Mourot L. Stroke volume and cardiac output measurement in cardiac patients during a rehabilitation program: Comparison between tonometry, impedancemetry and echocardiography. Int. J. Cardiovasc. Imaging. 2020;36:447–455. doi: 10.1007/s10554-019-01738-y. PubMed DOI

Louvaris Z., Spetsioti S., Andrianopoulos V., Chynkiamis N., Habazettl H., Wagner H., Zakynthinos S., Wagner P.D., Vogiatzis I. Cardiac output measurement during exercise in COPD: A comparison of dye dilution and impedance cardiography. Clin. Respir. J. 2019;13:222–231. doi: 10.1111/crj.13002. PubMed DOI

Siebenmann C., Rasmussen P., Sorensen H., Zaar M., Hvidtfeldt M., Pichon A., Secher N.H., Lundby C. Cardiac output during exercise: A comparison of four methods. Scand. J. Med. Sci. Sports. 2015;25:e20–e27. doi: 10.1111/sms.12201. PubMed DOI

Murias J.M., Kowalchuk J.M., Paterson D.H. Mechanisms for increases in V O2max with endurance training in older and young women. Med. Sci. Sports Exerc. 2010;42:1891–1898. doi: 10.1249/MSS.0b013e3181dd0bba. PubMed DOI

Spina R.J. Cardiovascular adaptations to endurance exercise training in older men and women. Exerc. Sport Sci. Rev. 1999;27:317–332. doi: 10.1249/00003677-199900270-00012. PubMed DOI

Storen O., Helgerud J., Saebo M., Stoa E.M., Bratland-Sanda S., Unhjem R.J., Hoff J., Wang E. The Effect of Age on the V O2max Response to High-Intensity Interval Training. Med. Sci. Sports Exerc. 2017;49:78–85. doi: 10.1249/MSS.0000000000001070. PubMed DOI

Salma W., Franekova V., Lund T., Hoper A., Ludvigsen S., Lund J., Aasum E., Ytrehus K., Belke D.D., Larsen T.S. Dietary Calanus oil antagonizes angiotensin II-induced hypertension and tissue wasting in diet-induced obese mice. Prostaglandins Leukot Essent Fat. Acids. 2016;108:13–21. doi: 10.1016/j.plefa.2016.03.006. PubMed DOI

Bloomer R.J., Larson D.E., Fisher-Wellman K.H., Galpin A.J., Schilling B.K. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: A randomized, placebo controlled, cross-over study. Lipids Health Dis. 2009;8:36. doi: 10.1186/1476-511X-8-36. PubMed DOI PMC

Bouwens M., van de Rest O., Dellschaft N., Bromhaar M.G., de Groot L.C., Geleijnse J.M., Muller M., Afman L.A. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am. J. Clin. Nutr. 2009;90:415–424. doi: 10.3945/ajcn.2009.27680. PubMed DOI

Rababa’h A.M., Guillory A.N., Mustafa R., Hijjawi T. Oxidative Stress and Cardiac Remodeling: An Updated Edge. Curr Cardiol Rev. 2018;14:53–59. doi: 10.2174/1573403X14666180111145207. PubMed DOI PMC

Fulghum K., Hill B.G. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front. Cardiovasc. Med. 2018;5:127. doi: 10.3389/fcvm.2018.00127. PubMed DOI PMC

Antuna-Puente B., Feve B., Fellahi S., Bastard J.P. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2–11. doi: 10.1016/j.diabet.2007.09.004. PubMed DOI

Kolwicz S.C., Jr. An “Exercise” in Cardiac Metabolism. Front. Cardiovasc. Med. 2018;5:66. doi: 10.3389/fcvm.2018.00066. PubMed DOI PMC

Sloan C., Tuinei J., Nemetz K., Frandsen J., Soto J., Wride N., Sempokuya T., Alegria L., Bugger H., Abel E.D. Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice. Diabetes. 2011;60:1424–1434. doi: 10.2337/db10-1106. PubMed DOI PMC

Lee Y., Wang M.Y., Kakuma T., Wang Z.W., Babcock E., McCorkle K., Higa M., Zhou Y.T., Unger R.H. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 2001;276:5629–5635. doi: 10.1074/jbc.M008553200. PubMed DOI

Wasserfurth P., Nebl J., Schuchardt J.P., Muller M., Bosslau T.K., Kruger K., Hahn A. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers-A Pilot Study. Nutrients. 2020;12:2139. doi: 10.3390/nu12072139. PubMed DOI PMC

McGlory C., Calder P.C., Nunes E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019;6:144. doi: 10.3389/fnut.2019.00144. PubMed DOI PMC

Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011;18:629–639. doi: 10.5551/jat.7922. PubMed DOI

Cornish S.M., Myrie S.B., Bugera E.M., Chase J.E., Turczyn D., Pinder M. Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr. Res. 2018;60:87–95. doi: 10.1016/j.nutres.2018.09.005. PubMed DOI

Rodacki C.L., Rodacki A.L., Pereira G., Naliwaiko K., Coelho I., Pequito D., Fernandes L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012;95:428–436. doi: 10.3945/ajcn.111.021915. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...