The Role of Inflammation in Age-Related Sarcopenia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29311975
PubMed Central
PMC5733049
DOI
10.3389/fphys.2017.01045
Knihovny.cz E-zdroje
- Klíčová slova
- NSAID, inflammation, muscle protein metabolism, muscle wasting, protein supplementation, resistance training, sarcopenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Many physiological changes occur with aging. These changes often, directly or indirectly, result in a deterioration of the quality of life and even in a shortening of life expectancy. Besides increased levels of reactive oxygen species, DNA damage and cell apoptosis, another important factor affecting the aging process involves a systemic chronic low-grade inflammation. This condition has already been shown to be interrelated with several (sub)clinical conditions, such as insulin resistance, atherosclerosis and Alzheimer's disease. Recent evidence, however, shows that chronic low-grade inflammation also contributes to the loss of muscle mass, strength and functionality, referred to as sarcopenia, as it affects both muscle protein breakdown and synthesis through several signaling pathways. Classic interventions to counteract age-related muscle wasting mainly focus on resistance training and/or protein supplementation to overcome the anabolic inflexibility from which elderly suffer. Although the elderly benefit from these classic interventions, the therapeutic potential of anti-inflammatory strategies is of great interest, as these might add up to/support the anabolic effect of resistance exercise and/or protein supplementation. In this review, the molecular interaction between inflammation, anabolic sensitivity and muscle protein metabolism in sarcopenic elderly will be addressed.
Zobrazit více v PubMed
Abdulla H., Smith K., Atherton P. J., Idris I. (2016). Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown : a systematic review and meta-analysis. Diabetologia 59, 44–55. 10.1007/s00125-015-3751-0 PubMed DOI
Allaire J., Couture P., Leclerc M., Charest A., Marin J., Marie-claude L., et al. . (2016). A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women : the comparing EPA to DHA (ComparED) study. Am. J. Clin. Nutr. 104, 280–287. 10.3945/ajcn.116.131896 PubMed DOI
Altun M., Besche H. C., Overkleeft H. S., Piccirillo R., Edelmann M. J., Kessler B. M., et al. . (2010). Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J. Biol. Chem. 285, 39597–39608. 10.1074/jbc.M110.129718 PubMed DOI PMC
Andersson D. C., Betzenhauser M. J., Reiken S., Meli A. C., Umanskaya A., Xie W., et al. . (2011). Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 14, 196–207. 10.1016/j.cmet.2011.05.014 PubMed DOI PMC
Argilés J. M., Busquets S., Stemmler B., López-Soriano F. J. (2015). Cachexia and sarcopenia: mechanisms and potential targets for intervention. Curr. Opin. Pharmacol. 22, 100–106. 10.1016/j.coph.2015.04.003 PubMed DOI
Atherton P. J., Etheridge T., Watt P. W., Wilkinson D., Selby A., Rankin D., et al. . (2010). Muscle full effect after oral protein : time-dependent concordance and discordance between human muscle protein synthesis and mTORC1. Am. J. Clin. Nutr. 92, 1080–1088. 10.3945/ajcn.2010.29819 PubMed DOI
Bagga D., Wang L., Farias-Eisner R., Glaspy J. A., Reddy S. T. (2003). Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL- 6 secretion. Proc. Natl. Acad. Sci. U.S.A. 100, 1751–1756. 10.1073/pnas.0334211100 PubMed DOI PMC
Balage M., Averous J., Rémond D., Bos C., Pujos-Guillot E., Papet I., et al. . (2010). Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. J. Nutr. Biochem. 21, 325–331. 10.1016/j.jnutbio.2009.01.005 PubMed DOI
Baylis D., Bartlett D. B., Syddall H. E., Ntani G., Gale C. R., Cooper C., et al. . (2013). Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age (Omaha) 35, 963–971. 10.1007/s11357-012-9396-8 PubMed DOI PMC
Beaudart C., Buckinx F., Rabenda V., Gillain S., Cavalier E., Slomian J., et al. . (2014). The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power : a systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 99, 4336–4345. 10.1210/jc.2014-1742 PubMed DOI
Bellini M. J., Hereñú C. B., Goya R. G., Garcia-Segura L. M. (2011). Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. J. Neuroinflammation 8:21. 10.1186/1742-2094-8-21 PubMed DOI PMC
Bernet J. D., Doles J. D., Hall J. K., Tanaka K. K., Carter T. A., Olwin B. B. (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271. 10.1038/nm.3465 PubMed DOI PMC
Beyer I., Bautmans I., Njemini R., Demanet C., Bergmann P., Mets T. (2011). Effects on muscle performance of NSAID treatment with piroxicam versus placebo in geriatric patients with acute infection-induced inflammation. A double blind randomized controlled trial. BMC Musculoskelet. Disord. 12:292. 10.1186/1471-2474-12-292 PubMed DOI PMC
Beyer I., Mets T., Bautmans I. (2012). Chronic low-grade inflammation and age-related sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 15, 12–22. 10.1097/MCO.0b013e32834dd297 PubMed DOI
Bian A. L., Hu H. Y., Rong Y. D., Wang J., Wang J. X., Zhou X. Z. (2017). A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur. J. Med. Res. 22:25. 10.1186/s40001-017-0266-9 PubMed DOI PMC
Binder E., Bermudez-Silva F., André C., Elie M., Romero-Zerbo S. Y., Leste-Lasserre T., et al. . (2013). Leucine supplementation protects from insulin resistance by regulating adiposity levels. PLoS ONE 8:e74705. 10.1371/journal.pone.0074705 PubMed DOI PMC
Bischoff-Ferrari H., Borchers M., Gudat F., Dumuller U., Stahelin H., Dick W. (2004). Vitamin D receptor expression in human muscle tissue decreases with age. J. Bone Miner. Res. 19, 265–269. 10.1359/jbmr.2004.19.2.265 PubMed DOI
Bodine S. C., Baehr L. M. (2014). Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469–E484. 10.1152/ajpendo.00204.2014 PubMed DOI PMC
Bodine S. C., Stitt T. N., Gonzalez M., Kline W. O., Stover G. L., Bauerlein R., et al. . (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014–1019. 10.1038/ncb1101-1014 PubMed DOI
Bohé J., Low J. F. A., Wolfe R. R., Rennie M. J. (2001). Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J. Physiol. 532, 575–579. 10.1111/j.1469-7793.2001.0575f.x PubMed DOI PMC
Boland R. (1986). Role of vitamin D in skeletal muscle function. Endocr. Rev. 7, 434–448. 10.1210/edrv-7-4-434 PubMed DOI
Bondesen B. A., Mills S. T., Kegley K. M., Pavlath G. K., Brenda A., Mills S. T., et al. . (2004). The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am. J. Physiol. Cell Physiol. 287, C475–C483. 10.1152/ajpcell.00088.2004 PubMed DOI
Bonnefoy M., Cornu C., Normand S., Boutitie F., Bugnard F., Rahmani A., et al. . (2003). The effects of exercise and protein – energy supplements on body composition and muscle function in frail elderly individuals : a long-term controlled randomised study. Br. J. Nutr. 89, 731–738. 10.1079/BJN2003836 PubMed DOI
Børsheim E., Bui Q. T., Tissier S., Ferrando A. A., Wolfe R. R. (2006). Effect of amino acid supplementation on insulin sensitivity in elderly. Faseb J. 20:A159 10.1016/j.clnu.2008.01.001 PubMed DOI
Bossola M., Pacelli F., Costelli P., Tortorelli A., Rosa F., Doglietto G. B. (2008). Proteasome activities in the rectus abdominis muscle of young and older individuals. Biogerontology 9, 261–268. 10.1007/s10522-008-9135-9 PubMed DOI
Bowen S., Schuler G., Adams V. (2015). Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia. Sarcopenia Muscle 6, 197–207. 10.1002/jcsm.12043 PubMed DOI PMC
Bruunsgaard H., Andersen-ranberg K., Jeune B., Pedersen A. N., Skinhej P., Pedersen B. K. (1999). A high plasma concentration of TNF-a is associated with dementia in centenarians. J. Gerontol. Med. Sci. 54A, M357–M364. 10.1093/gerona/54.7.M357 PubMed DOI
Bruunsgaard H., Skinhéj P., Pedersen A. N. (2000). Ageing, tumour necrosis factor-alpha ( TNF- a ) and atherosclerosis. Clin. Exp. Immunol. 121, 255–260. 10.1046/j.1365-2249.2000.01281.x PubMed DOI PMC
Budui S. L., Rossi A. P., Zamboni M. (2015). The pathogenetic bases of sarcopenia. Clin. Cases Miner. Bone Metab. 12, 22–26. 10.11138/ccmbm/2015.12.1.022 PubMed DOI PMC
Buffière C., Mariotti F., Savary-Auzeloux I., Migné C., Meunier N., Hercberg S., et al. (2015). Slight chronic elevation of C-reactive protein is associated with lower aerobic fitness but does not impair meal-induced stimulation of muscle protein metabolism in healthy old men. J. Physiol. 593, 1259–1272. 10.1113/jphysiol.2014.286054 PubMed DOI PMC
Buse M. G., Reid S. S. (1975). Leucine: a possible regulator of protein turnover in muscle. J. Clin. Invest. 56, 1250–1261. 10.1172/JCI108201 PubMed DOI PMC
Cadwell K. (2016). Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat. Rev. Immunol. 16, 661–675. 10.1038/nri.2016.100 PubMed DOI PMC
Cai D., Li M., Tang M. K., Chan K. M. (2004). Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch. Biochem. Biophys. 425, 42–50. 10.1016/j.abb.2004.02.027 PubMed DOI
Calton E. K., Keane K. N., Newsholme P., Soares M. J. (2015). The impact of Vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS ONE 10:e0141770. 10.1371/journal.pone.0141770 PubMed DOI PMC
Candow D. G., Chilibeck P. D., Facci M., Abeysekara S., Zello G. A. (2006). Protein supplementation before and after resistance training in older men. Eur. J. Appl. Physiol. 97, 548–556. 10.1007/s00421-006-0223-8 PubMed DOI
Castillero E., Martín A. I., López-Menduiña M., Villanúa M. A., López-Calderón A. (2009). Eicosapentaenoic acid attenuates arthritis-induced muscle wasting acting on atrogin-1 and on myogenic regulatory factors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1322–R1331. 10.1152/ajpregu.00388.2009 PubMed DOI
Ceglia L., Harris S. S. (2013). Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 92, 151–162. 10.1007/s00223-012-9645-y PubMed DOI
Chanet A., Salles J., Guillet C., Giraudet C., Berry A., Patrac V., et al. . (2017). Vitamin D supplementation restores the blunted muscle protein synthesis response in deficient old rats through an impact on ectopic fat deposition. J. Nutr. Biochem. 46, 30–38. 10.1016/j.jnutbio.2017.02.024 PubMed DOI
Checouich M., Schilling M., Ershler W. B. (1995). Elevated plasma levels of interleukin-6 in postmenopausal women do not correlate with bone density. J. Am. Geriatr. Soc. 43, 236–239. 10.1111/j.1532-5415.1995.tb07328.x PubMed DOI
Chung H. Y., Sung B., Jung K. J., Zou Y., Yu B. P. (2006). The molecular inflammatory process in aging. Antioxid. Redox Signal. 8, 572–581. 10.1089/ars.2006.8.572 PubMed DOI
Churchward-Venne T. A., Breen L., Phillips S. M. (2014). Alterations in human muscle protein metabolism with aging: protein and exercise as countermeasures to offset sarcopenia. BioFactors 40, 199–205. 10.1002/biof.1138 PubMed DOI
Churchward-venne T. A., Burd N. A., Phillips S. M. (2012). Nutritional regulation of muscle protein synthesis with resistance exercise : strategies to enhance anabolism. Nutr. Metab. 9:40. 10.1186/1743-7075-9-40 PubMed DOI PMC
Clavel S., Coldefy A., Kurkdjian E. (2006). Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech. Ageing Dev. 127, 794–801. 10.1016/j.mad.2006.07.005 PubMed DOI
Cleasby M. E., Jamieson P. M., Atherton P. J. (2016). Insulin resistance and sarcopenia : mechanistic links between common co-morbidities. J. Endocrinol. 229, R67–R81. 10.1530/JOE-15-0533 PubMed DOI
Cohen H. J., Pieper C. F., Harris T., Rao K. M. K., Currie M. S. (1997). The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J. Gerontol. Med. Sci. 52A, M201–M208. 10.1093/gerona/52A.4.M201 PubMed DOI
Cohen-lahav M., Shany S., Tobvin D., Chaimovitz C., Douvdevani A. (2006). Vitamin D decreases NFkB activity by increasing IkBa levels. Nephrol. Dial. Transpl. 21, 889–897. 10.1093/ndt/gfi254 PubMed DOI
Collins C. A., Zammit P. S., Ruiz P., Morgan J. E., Partridge T. A. (2007). A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25, 885–894. 10.1634/stemcells.2006-0372 PubMed DOI
Combaret L., Dardevet D., Béchet D., Taillandier D., Mosoni L., Attaix D. (2009). Skeletal muscle proteolysis in aging. Curr. Opin. Clin. Nutr. Metab. Care 12, 37–41. 10.1097/MCO.0b013e32831b9c31 PubMed DOI
Conboy I. M., Conboy M. J., Wagers A. J., Girma E. R., Weismann I. L., Rando T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764. 10.1038/nature03260 PubMed DOI
Cornelison D. D. W., Wold B. J. (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270–283. 10.1006/dbio.1997.8721 PubMed DOI
Cruz-Jentoft A. J. (2017). Beta-hydroxy-beta-methyl butyrate (HMB): from experimental data to clinical evidence in sarcopenia. Curr. Protein. Pept. Sci. [Epub ahead of print]. 10.2174/1389203718666170529105026 PubMed DOI
Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., Boirie Y., Cederholm T., Landi F., et al. . (2010). Sarcopenia : european consensus on definition and diagnosis report of the european working group on sarcopenia in older people. Age Ageing 412–423. 10.1093/ageing/afq034 PubMed DOI PMC
Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., et al. . (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 19, 422–424. 10.1096/fj.04-2640fje PubMed DOI
Da Boit M., Sibson R., Sivasubramaniam S., Meakin J. R., Greig C. A., Aspden R. M., et al. (2017). Sex differences in the effect of fish oil supplementation on the adaptive response to resistance exercise training in older people: a randomized control trial. Am. J. Clin. Nutr. 105, 151–158. 10.3945/ajcn.116.140780 PubMed DOI PMC
Dardevet D., Rémond D., Peyron M.-A., Papet I., Savary-Auzeloux I., Mosoni L. (2012). Muscle wasting and resistance of muscle anabolism: the “anabolic threshold concept” for adapted nutritional strategies during sarcopenia. Sci. World J. 201:269531 10.1100/2012/269531 PubMed DOI PMC
Dargelos E., Brulé C., Combaret L., Hadj-Sassi A., Dulong S., Poussard S., et al. . (2007). Involvement of the calcium-dependent proteolytic system in skeletal muscle aging. Exp. Gerontol. 42, 1088–1098. 10.1016/j.exger.2007.08.009 PubMed DOI
Dargelos E., Poussard S., Brulé C., Daury L., Cottin P. (2008). Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie 90, 359–368. 10.1016/j.biochi.2007.07.018 PubMed DOI
Deer R. R., Volpi E. (2015). Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 18, 248–253. 10.1097/MCO.0000000000000162 PubMed DOI PMC
Degens H. (2010). The role of systemic inflammation in age-related muscle weakness and wasting. Scand. J. Med. Sci. Sport. 20, 28–38. 10.1111/j.1600-0838.2009.01018.x PubMed DOI
Deldicque L., Theisen D., Francaux M. (2005). Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur. J. Appl. Physiol. 94, 1–10. 10.1007/s00421-004-1255-6 PubMed DOI
Denison H. J., Cooper C., Sayer A. A., Robinson S. M. (2015). Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging 10, 859–869. 10.2147/CIA.S55842 PubMed DOI PMC
de Oliviera Nunes Teixeira V., Isabel Filippin L., Machado Xavier R. (2012). Mechanisms of muscle wasting in sarcopenia. Rev. Bras. Reum. 52, 247–259. PubMed
Deval C., Mordier S., Obled C., Bechet D., Combaret L., Attaix D., et al. . (2001). Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem. J. 360, 143–150. 10.1042/bj3600143 PubMed DOI PMC
Devries M. C., Phillips S. M. (2015). Supplemental protein in support of muscle mass and health : advantage whey. J. Food Sci. 80, A8–A15. 10.1111/1750-3841.12802 PubMed DOI
Dickinson J. M., Volpi E., Rasmussen B. B. (2014). Exercise and nutrition to target protein synthesis impairments in aging skeletal muscle. Exerc. Sport Sci. Rev. 41, 216–223. 10.1097/JES.0b013e3182a4e699 PubMed DOI PMC
Dideriksen K., Reitelseder S., Malmgaard-Clausen N. M., Bechshoeft R., Petersen R. K., Mikkelsen U. R., et al. . (2016). No effect of anti-inflammatory medication on postprandial and postexercise muscle protein synthesis in elderly men with slightly elevated systemic inflammation. Exp. Gerontol. 83, 120–129. 10.1016/j.exger.2016.07.016 PubMed DOI
Dirks A. J., Hofer T., Marzetti E., Pahor M., Leeuwenburgh C. (2006). Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res. Rev. 5, 179–195. 10.1016/j.arr.2006.03.002 PubMed DOI
Dirks A., Leeuwenburgh C. (2002). Apoptosis in skeletal muscle with aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R519–R527. 10.1152/ajpregu.00458.2001 PubMed DOI
Dirks A. J., Leeuwenburgh C. (2004). Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic. Biol. Med. 36, 27–39. 10.1016/j.freeradbiomed.2003.10.003 PubMed DOI
Drummond M. J., Marcus R. L., Lastayo P. C. (2012). Targeting anabolic impairment in response to resistance exercise in older adults with mobility impairments : potential mechanisms and rehabilitation approaches. J. Aging Res. 201:486930 10.1155/2012/486930 PubMed DOI PMC
Ebisui C., Tsujinaka T., Morimotoi T., Kan K., Iijimai S. (1995). Interleukin-6 induces proteolysis by activating intracellular proteases (cathepsins B and L, proteasome) in C2CI2 myotubes. Clin. Sci. 439, 431–439. 10.1042/cs0890431 PubMed DOI
Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516. 10.1080/01926230701320337 PubMed DOI PMC
Erik E., Altun M., Hägglund M., Ulfhake B. (2017). Atrogin-1/MAFbx and MuRF1 Are downregulated in aging-related loss of skeletal muscle. J. Gerontol. Biol. Sci. 61A, 663–674. 10.1093/gerona/61.7.663 PubMed DOI
Fan J., Kou X., Jia S., Yang X., Yang Y., Chen N. (2016). Autophagy as a potential target for sarcopenia. J. Cell. Physiol. 231, 1450–1459. 10.1002/jcp.25260 PubMed DOI
Fanzani A., Conraads V. M., Penna F., Martinet W. (2012). Molecular and cellular mechanisms of skeletal muscle atrophy : an update. J. Cachexia Sarcopenia Muscle 3, 163–179. 10.1007/s13539-012-0074-6 PubMed DOI PMC
Ferrucci L., Corsi A., Lauretani F., Bandinelli S., Bartali B., Taub D. D., et al. . (2005). The origins of age-related proinflammatory state. Blood 105, 2294–2300. 10.1182/blood-2004-07-2599 PubMed DOI PMC
Fiatarone M. A., O'Neill E. F., Ryan N. D., Clements K. M., Solares G. S., Nelson M. E., et al. . (1994). Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 330, 1769–1775. PubMed
Forrest K. Y., Stuhldreher W. L. (2011). Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 31, 48–54. 10.1016/j.nutres.2010.12.001 PubMed DOI
Frasca D., Blomberg B. B. (2016). Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17, 7–19. 10.1007/s10522-015-9578-8 PubMed DOI PMC
Frost R. A., Lang C. H. (2011). mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology 26, 83–96. 10.1152/physiol.00044.2010 PubMed DOI PMC
Fry C. S., Drummond M. J., Glynn E. L., Dickinson J. M., Gundermann D. M., Timmerman K. L., et al. . (2011). Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet. Muscle 1:11. 10.1186/2044-5040-1-11 PubMed DOI PMC
Fujita S., Rasmussen B. B., Cadenas J. G., Grady J. J., Volpi E. (2006). Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am. J. Physiol. Endocrinol. Metab. 291, E745–E754. 10.1152/ajpendo.00271.2005 PubMed DOI PMC
Gingras A.-A., White P. J., Chouinard P. Y., Julien P., Davis T. A., Dombrowski L., et al. . (2007). Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 579, 269–284. 10.1113/jphysiol.2006.121079 PubMed DOI PMC
Godard M. P., Williamson D. L., Trappe S. W. (2002). Oral amino-acid provision does not affect muscle strength or size gains in older men. Med. Sci. Sport. Exerc. 34, 1126–1131. 10.1097/00005768-200207000-00012 PubMed DOI
Greenhaff P. L., Karagounis L. G., Peirce N., Simpson E. J., Hazell M., Layfield R., et al. . (2008). Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 295, E595–E604. 10.1152/ajpendo.90411.2008 PubMed DOI PMC
Greig C. A., Atherton P. J., Rennie M. J. (2009). Can an NSAID a day keep muscle wasting away? J. Physiol. 587, 5799–5800. 10.1113/jphysiol.2009.184416 PubMed DOI PMC
Greig C. A., Gray C., Rankin D., Young A., Mann V., Noble B., et al. (2011). Blunting of adaptive responses to resistance exercise training in women over 75 y. Exp. Gerontol. 46, 884–890. 10.1016/j.exger.2011.07.010 PubMed DOI
Greiwe J. S., Cheng B. O., Rubin D. C., Yarasheski K. E., Semenkovich C. F. (2001). Resistance exercise decreases skeletal muscle tumor necrosis factor a in frail elderly humans. Faseb J. 15, 475–482. 10.1096/fj.00-0274com PubMed DOI
Hager K., Machein U., Krieger S., Platt D., Seefried G., Bauer J. (1994). Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiol. Aging 15, 771–772. 10.1016/0197-4580(94)90066-3 PubMed DOI
Ham D. J., Caldow M. K., Lynch G. S., Koopman R. (2014). Leucine as a treatment for muscle wasting : a critical review. Clin. Nutr. 33, 937–945. 10.1016/j.clnu.2014.09.016 PubMed DOI
Hao Y., Jackson J. R., Wang Y., Edens N., Pereira S. L., Alway S. E. (2011). B -Hydroxy- B-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R701–R715. 10.1152/ajpregu.00840.2010 PubMed DOI PMC
Haran P. H., Rivas D. A., Fielding R. A. (2012). Role and potential mechanisms of anabolic resistance in sarcopenia. J. Cachexia. Sarcopenia Muscle 3, 157–162. 10.1007/s13539-012-0068-4 PubMed DOI PMC
Harber M. P., Konopka A. R., Undem M. K., Hinkley J. M., Minchev K., Kaminsky L. A., et al. . (2012). Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J. Appl. Physiol. 113, 1495–1504. 10.1152/japplphysiol.00786.2012 PubMed DOI PMC
Harridge S. D. R. (2003). Ageing and local growth factors in muscle. Scand. J. Med. Sci. Sport. 13, 34–39. 10.1034/j.1600-0838.2003.20235.x PubMed DOI
Harris T. B., Ferrucci L., Tracy R. P., Corti M. C., Wacholder S., Ettinger W. H. (1999). Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am. J. Med. 106, 506–512. 10.1016/S0002-9343(99)00066-2 PubMed DOI
Hickson M. (2015). Nutritional interventions in sarcopenia: a critical review. Proc. Nutr. Soc. 74, 378–386. 10.1017/S0029665115002049 PubMed DOI
Hornberger T. A., Stuppard R., Conley K. E., Fedele M. J., Fiorotto M. L., Chin E. R., et al. (2004). Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem. J. 804, 795–804. 10.1042/bj20040274 PubMed DOI PMC
Iolascon G., Pietro G., Di Gimigliano F., Mauro G. L., Moretti A., Giamattei M. T., et al. . (2014). Physical exercise and sarcopenia in older people : position paper of the Italian Society of Orthopaedics and Medicine ( OrtoMed ). Clin. Cases Min. Bone Metab. 11, 215–221. 10.11138/ccmbm/2014.11.3.215 PubMed DOI PMC
Itariu B. K., Zeyda M., Hochbrugger E. E., Neuhofer A., Prager G., Schindler K., et al. (2012). Long-chain n 2 3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients : a randomized controlled trail. Am. J. Clin. Nutr. 96, 1137–1149. 10.3945/ajcn.112.037432 PubMed DOI
Jackson M. J. (2016). Reactive oxygen species in sarcopenia : should we focus on excess oxidative damage or defective redox signalling ? Mol. Aspects Med. 50, 33–40. 10.1016/j.mam.2016.05.002 PubMed DOI
Jang Y. C., Sinha M., Cerletti M., Dall'Osso C., Wagers A. (2011). Skeletal muscle stem cells : effects of aging and metabolism on muscle regenerative function. Cold Spring Harb. Symp. Quant. Biol. 76, 101–111. 10.1101/sqb.2011.76.010652 PubMed DOI
Janssen H. C., Samson M. M., Verhaar H. J. (2002). Vitamin D deficiency, muscle function, and falls in elderly people. Am. J. Clin. Nutr. 75, 611–615. PubMed
Ji J., Su L., Liu Z. (2016). Role of calpain in the inflammation. Biomed. Rep. 5, 647–652. 10.3892/br.2016.785 PubMed DOI PMC
Jiao J., Demontis F. (2017). Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr. Opin. Pharmacol. 34, 1–6. 10.1016/j.coph.2017.03.009 PubMed DOI
Jurk D., Wilson C., Passos J. F., Oakley F., Correia-Melo C., Greaves L., et al. . (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2:4172. 10.1038/ncomms5172 PubMed DOI PMC
Kamolrat T., Gray S. R. (2013). The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. Biochem. Biophys. Res. Commun. 432, 593–598. 10.1016/j.bbrc.2013.02.041 PubMed DOI
Katsanos C. S., Kobayashi H., Sheffield-moore M., Aarsland A., Wolfe R. R., Christos S., et al. . (2006). A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 291, E381–E387. 10.1152/ajpendo.00488.2005 PubMed DOI
Kefaloyianni E., Gaitanaki C., Beis I. (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF- κ B transactivation during oxidative stress in skeletal myoblasts. Cell. Signal. 18, 2238–2251. 10.1016/j.cellsig.2006.05.004 PubMed DOI
Klasing K., Austic R. (1984). Changes in protein synthesis due to an inflammatory challenge. Proc. Soc. Exp. Biol. Med. 176, 285–291. 10.3181/00379727-176-41872 PubMed DOI
Konopka A. R., Douglass M. D., Kaminsky L. A., Jemiolo B., Trappe T. A., Trappe S., et al. . (2010). Molecular adaptations to aerobic exercise training in skeletal muscle of older women. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1201–1207. 10.1093/gerona/glq109 PubMed DOI PMC
Konopka A. R., Harber M. P. (2014). Skeletal muscle hypertrophy after aerobic exercise training. Exerc. Sport Sci. Rev. 42, 53–61. 10.1249/JES.0000000000000007 PubMed DOI PMC
Kordinas V., Ioannidis A., Chatzipanagiotou S. (2016). The telomere/telomerase system in chronic inflammatory diseases. Cause or Effect? Genes (Basel) 7:60 10.3390/genes7090060 PubMed DOI PMC
Kovarik M., Muthny T., Sispera L., Holecek M. (2010). Effects of β -hydroxy- β -methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. J. Physiol. Biochem. 66, 311–319. 10.1007/s13105-010-0037-3 PubMed DOI
Krentz J. R., Quest B., Farthing J. P., Quest D. W., Chilibeck P. D. (2008). The effects of ibuprofen on muscle hypertrophy, strength, and soreness during resistance training. Appl. Physiol. Nutr. Metab. 33, 470–475. 10.1139/H08-019 PubMed DOI
Kukuljan S., Nowson C. A., Sanders K., Daly R. M. (2009). Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men : an 18-mo randomized controlled trial. J. Appl. Physiol. 107, 1864–1873. 10.1152/japplphysiol.00392.2009 PubMed DOI
Kumar V., Selby A., Rankin D., Patel R., Atherton P., Hildebrandt W., et al. . (2009). Age-related differences in the dose – response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 587, 211–217. 10.1113/jphysiol.2008.164483 PubMed DOI PMC
Landi F., Marzetti E., Liperoti R., Pahor M., Russo A., Martone A. M., et al. . (2013). Nonsteroidal anti-inflammatory drug (NSAID) use and sarcopenia in older people: results from the ilsirente study. J. Am. Med. Dir. Assoc. 14, 626.e9-626.e13. 10.1016/j.jamda.2013.04.012 PubMed DOI
Lang F., Ritter M., Völkl H., Häussinger D. (1993). The biological significance of cell volume. Ren. Phsyiol. Biochem. 16, 48–65. 10.1159/000173751 PubMed DOI
Langen R. C., Van Der Velden J. L., Schols A. M., Kelders M. C., Wouters E. F., Janssen-Heininger Y. M. W. (2004). Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J. 18, 227–237. 10.1096/fj.03-0251com PubMed DOI
Laplante M., Sabatini D. M. (2012). Review mTOR signaling in growth control and disease. Cell 149, 274–293. 10.1016/j.cell.2012.03.017 PubMed DOI PMC
Li Y., Atkins C. M., Sweatt J. D., Reid M. B. (1999). Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. Antioxid. Redox Signal. 1, 97–104. 10.1089/ars.1999.1.1-97 PubMed DOI
Lilienbaum A. (2013). Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 4, 1–26. PubMed PMC
Lilja M., Mandić M., Apró W., Melin M., Olsson K., Rosenborg S., et al. . (2017). High-doses of anti-inflammatory drugs compromise muscle strength and hypertrophic adaptations to resistance training in young adults. Acta Physiol. [Epub ahead of print]. 10.1111/apha.12948 PubMed DOI
Mackey A. L., Kjaer M., Dandanell S., Mikkelsen K. H., Holm L., Døssing S., et al. . (2007). The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J. Appl. Physiol. 103, 425–431. 10.1152/japplphysiol.00157.2007 PubMed DOI
Macotela Y., Emanuelli B., Bång A. M., Espinoza D. O., Boucher J., Beebe K., et al. . (2011). Dietary leucine - an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS ONE 6:e21187. 10.1371/journal.pone.0021187 PubMed DOI PMC
Marzani B., Balage M., Vénien A., Astruc T., Papet I., Dardevet D., et al. . (2008). Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats. J. Nutr. 138, 2205–2211. 10.3945/jn.108.094029 PubMed DOI
Marzetti E., Bernabei R. (2012). Apoptosis in skeletal myocytes : a potential target for interventions against sarcopenia and physical frailty – a mini-review. Gerontology 58, 99–106. 10.1159/000330064 PubMed DOI PMC
Marzetti E., Wohlgemuth S. E., Lees H. A., Giovannini S., Leeuwenburgh C. (2008). Age- related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech. Ageing Dev. 129, 542–549. 10.1016/j.mad.2008.05.005 PubMed DOI PMC
Mayot G., Breuille D., Jarret A. R., Obled C., Papet I. (2008). Systemic low-grade inflammation does not decrease skeletal muscle mass and protein synthesis in old rats. J. Musculoskelet. Neuronal. Interact. 8, 410–417. 10.1007/s10522-010-9302-7 PubMed DOI
McKane W. R., Khosla S., Peterson J. M., Egan K., Riggs B. L. (1994). Circulating levels of cytokines that modulate bone resorption : effects of age and menopause in women. J. Bone Miner. Res. 9, 1313–1318. 10.1002/jbmr.5650090821 PubMed DOI
Mendez R., Kollmorgen G., White M. F., Rhoads R. E. (1997). Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol. Cell. Biol. 17, 5184–5192. 10.1128/MCB.17.9.5184 PubMed DOI PMC
Mendias C. L., Tatsumi R., Allen R. E. (2004). Role of cyclooxygenase-1 and−2 in satellite cell proliferation, differentiation, and fusion. Muscle Nerve 30, 497–500. 10.1002/mus.20102 PubMed DOI
Migheli A., Mongini T., Doriguzzi C., Chiado L., Piva R., Ugo I., et al. (1997). Muscle apoptosis in humans occurs in normal and denervated muscle, but not in myotonic dystrophy, dystrophinopathies or inflammatory disease. Neurogenetics 1, 81–87. 10.1007/s100480050012 PubMed DOI
Mikkelsen U. R., Langberg H., Helmark I. C., Skovgaard D., Andersen L. L., Kjær M., et al. . (2009). Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J. Appl. Physiol. 107, 1600–1611. 10.1152/japplphysiol.00707.2009 PubMed DOI PMC
Montero-Fernández N., Serra-Rexach J. A. (2013). Role of exercise on sarcopenia in the elderly. Eur. J. Phys. Rehabil. Med. 49, 131–143. PubMed
Moore D. R., Churchward-Venne T. A., Witard O., Breen L., Burd N. A., Tipton K. D., et al. . (2015). Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 70, 57–62. 10.1093/gerona/glu103 PubMed DOI
Moore F. A., Phillips S., McClain C., Patel J. J., Martindale R. (2017). Nutrition support for persistent inflammation, immunosuppression, and catabolism syndrome. Nutr. Clin. Pract. 32, 121S−127S. 10.1177/0884533616687502 PubMed DOI PMC
Morton R. W., Murphy K. T., Mckellar S. R., Schoenfeld B. J., Henselmans M., Helms E., et al. . (2017). A systematic review, meta-analysis and meta- regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sport. Med. [Epub ahead of print]. 10.1136/bjsports-2017-097608 PubMed DOI PMC
Muir S. W., Montero-odasso M. (2011). Effect of vitamin D supplementation on muscle strength, gait and balance in older adults : a systematic review and meta-analysis. J. Am. Geriatr. Soc. 59, 2291–2300. 10.1111/j.1532-5415.2011.03733.x PubMed DOI
Nakashima K., Masaki S., Yamazaki M., Abe H. (2004). Cysteine suppresses oxidative stress-induced myofibrillar proteolysis in chick myotubes. Biosci. Biotechnol. Biochem. 68, 2326–2331. 10.1271/bbb.68.2326 PubMed DOI
Narici M. V., Reeves N. D., Morse C. I., Maganaris C. N. (2004). Muscular adaptations to resistance exercise in the elderly. J. Musculoskel Neuron Interact. 4, 161–164. PubMed
Nitahara J. A., Cheng W., Liu Y., Li B., Leri A., Li P., et al. . (1998). Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J. Mol. Cell Cardiol. 30, 519–535. 10.1006/jmcc.1997.0616 PubMed DOI
Norton L. E., Layman D. K., Bunpo P., Anthony T. G., Brana D. V., Garlick P. J. (2009). The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J. Nutr. 139, 1103–1109. 10.3945/jn.108.103853 PubMed DOI
Novak M. L., Billich W., Smith S. M., Sukhija K. B., Mcloughlin T. J., Hornberger T. A., et al. . (2009). COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1132–R1139. 10.1152/ajpregu.90874.2008 PubMed DOI PMC
Nowson C., O'Connell S. (2015). Protein requirements and recommendations for older people: a review. Nutrients 7, 6874–6899. 10.3390/nu7085311 PubMed DOI PMC
O'Connell K., Gannon J., Doran P., Ohlendieck K. (2007). Proteomic profiling reveals a severely perturbed protein expression pattern in aged skeletal muscle. Int. J. Mol. Med. 20, 145–153. PubMed
Ozaki H., Loenneke J. P., Thiebaud R. S., Stager J. M., Abe T. (2013). Possibility of leg muscle hypertrophy by ambulation in older adults : a brief review. Clin. Interv. Aging 8, 369–375. 10.2147/CIA.S43837 PubMed DOI PMC
Paddon-Jones D., Sheffield-Moore M., Zhang X., Volpi E., Wolf S. E., Aarsland A., et al. . (2004). Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am. J. Physiol. Endocrinol. Metab. 286, E321–E328. 10.1152/ajpendo.00368.2003 PubMed DOI
Paik J. K., Chae J. S., Kang R., Kwon N., Lee S., Lee J. H. (2013). Effect of age on atherogenicity of LDL and inflammatory markers in healthy women. Nutr. Metab. Cardiovasc. Dis. 23, 967–972. 10.1016/j.numecd.2012.08.002 PubMed DOI
Palma C., De Morisi F., Cheli S., Pambianco S., Cappello V., Vezzoli M., et al. . (2012). Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis. 3:e418. 10.1038/cddis.2012.159 PubMed DOI PMC
Paolisso G., Rizzo M. R., Mazziotti G., Tagliamonte M. R., Gambardella A., Rotondi M., et al. (1998). Advancing age and insulin resistance : role of plasma tumor necrosis factor-alpha. Am. J. Physiol. Endocrinol. Metab. 38, E294–E299. PubMed
Pattison J. S., Folk L. C., Madsen R. W., Childs T. E., Booth F. W., Scott J., et al. . (2003). Transcriptional profiling identifies extensive downregulation of extracellular matrix gene expression in sarcopenic rat soleus muscle. Physiol. Genomics 15, 34–43. 10.1152/physiolgenomics.00040.2003 PubMed DOI
Pedersen B. K., Akerstrom T. C. A., Nielsen A. R., Fischer C. P. (2007). Exercise and inflammation role of myokines in exercise and metabolism. Role Myokines Exerc. Metab. 103, 1093–1098. 10.1152/japplphysiol.00080.2007 PubMed DOI
Petersen S. G., Beyer N., Hansen M., Holm L., Aagaard P., Al M., et al. . (2011). Nonsteroidal anti-inflammatory drug or glucosamine reduced pain and improved muscle strength with resistance training in a randomized controlled trial of knee osteoarthritis patients. Arch. Phys. Med. Rehabil. 92, 1185–1193. 10.1016/j.apmr.2011.03.009 PubMed DOI
Peterson M. D., Sen A., Gordon P. M. (2011). Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med. Sci. Sport. Exerc. 43, 249–258. 10.1249/MSS.0b013e3181eb6265 PubMed DOI PMC
Phillips T., Leeuwenburgh C. (2005). Muscle fiber-specific apoptosis and TNF-α signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 19, 668–670. 10.1096/fj.04-2870fje PubMed DOI
Puzianowska-Kuznicka M., Owczarz M., Wieczorowska-Tobis K., Nadrowski P., Chudek J., Slusarczyk P., et al. . (2016). Interleukin-6 and C-reactive protein, successful aging, and mortality : the PolSenior study. Immun. Ageing 13:21. 10.1186/s12979-016-0076-x PubMed DOI PMC
Raue U., Slivka D., Minchev K., Trappe S. (2009). Improvements in whole muscle and myocellular function are limited with high-intensity resistance training in octogenarian women. J. Appl. Physiol. 106, 1611–1617. 10.1152/japplphysiol.91587.2008 PubMed DOI PMC
Rennie M. J. (2009). Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl. Physiol. Nutr. Metab. 34, 377–381. 10.1139/H09-012 PubMed DOI
Reuben D. B., Judd-hamilton L., Harris T. B., Seeman T. E. (2003). The associations between physical activity and inflammatory markers in high-functioning older persons: macarthur studies of successful aging. J. Am. Geriatr. Soc. 51, 1125–1130. 10.1046/j.1532-5415.2003.51380.x PubMed DOI
Rieu I., Magne H., Savary-auzeloux I., Averous J., Peyron M. A., Combaret L., et al. . (2009). Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J. Physiol. 587, 5483–5492. 10.1113/jphysiol.2009.178319 PubMed DOI PMC
Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., et al. . (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771. 10.1016/S0092-8674(94)90462-6 PubMed DOI
Rodacki L. F., Pereira G., Naliwaiko K., Coelho I., Pequito D. (2012). Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 95, 428–436. 10.3945/ajcn.111.021915 PubMed DOI
Rodemann H. P., Goldberg A. L. (1982). Arachidonic acid, prostaglandin E2, and F2α influence rates of protein turnover in skeletal and cardiac muscle. J. Biol. Chem. 257, 1632–1638. PubMed
Rodemann H. P., Waxman L., Goldberg A. L. (1982). The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease. J. Biol. Chem. 257, 8716–8723. PubMed
Rudnicki M. A., Le Grand F., McKinnell I., Kuang S. (2008). The molecular regulation of muscle stem cell function. Cold Spring Harb. Symp. Quant. Biol. 73, 323–331. 10.1101/sqb.2008.73.064 PubMed DOI
Sakuma K., Aoi W., Yamaguchi A. (2015). Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch. Eur. J. Physiol. 467, 213–229. 10.1007/s00424-014-1527-x PubMed DOI
Sakuma K., Yamaguchi A. (2012). Novel intriguing strategies attenuating to sarcopenia. J. Aging Res. 2012:251217. 10.1155/2012/251217 PubMed DOI PMC
Salles J., Chanet A., Giraudet C., Patrac V., Pierre P., Jourdan M., et al. (2013). 1, 25 ( OH ) 2 -vitamin D 3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol. Nutr. Food Res. 57, 2137–2146. 10.1002/mnfr.201300074 PubMed DOI
Schaap L. A., Pluijm S. M. F., Deeg D. J. H., Visser M. (2006). Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am. J. Med. 119, e9–e17. 10.1016/j.amjmed.2005.10.049 PubMed DOI
Schakman O., Dehoux M., Bouchuari S., Delaere S., Lause P., Decroly N., et al. . (2012). Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation. Am. J. Physiol. Endocrinol. Metab. 303, E729–E739. 10.1152/ajpendo.00060.2012 PubMed DOI PMC
Selless J., Boland R. (1991). Rapid stimulation of calcium uptake and protein phosphorylation in isolated cardiac muscle by 1, 25dihydroxyvitamin D3. Mol. Cell. Endocrinol. 77, 67–73. 10.1016/0303-7207(91)90059-2 PubMed DOI
Sinha M., Jang Y. C., Oh J., Khong D., Wu E. Y., Manohar R., et al. . (2014). Restoring systemic GDF11 levels mouse skeletal muscle. Science 344, 649–653. 10.1126/science.1251152 PubMed DOI PMC
Slivka D., Raue U., Hollon C., Minchev K., Trappe S. (2008). Single muscle fiber adaptations to resistance training in old (> 80 yr ) men : evidence for limited skeletal muscle plasticity. Am. J. Physiol. Regul Integr. Comp. Physiol. 295, R273–R280. 10.1152/ajpregu.00093.2008 PubMed DOI PMC
Smith G. I. (2016). The effects of dietary omega-3s on muscle composition and quality in older adults. Curr. Nutr. Rep. 5, 99–105. 10.1007/s13668-016-0161-y PubMed DOI PMC
Smith G. I., Julliand S., Reeds D. N., Sinacore D. R., Klein S., Mittendorfer B. (2015). Fish oil – derived n – 3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 102, 115–122. 10.3945/ajcn.114.105833 PubMed DOI PMC
Smith G., Rankin D., Smith G. I., Atherton P., Reeds D. N., Mohammed B. S., et al. . (2011). Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults : a randomized controlled trial. Am. J. Clin. Nutr. 93, 402–412. 10.3945/ajcn.110.005611 PubMed DOI PMC
Smith H. J., Mukerji P., Tisdale M. J. (2005). Attenuation of proteasome-induced proteolysis in skeletal muscle by β-hydroxy-β-methylbutyrate in cancer-induced muscle loss. Cancer Res. 65, 277–283. PubMed
Solerte S. B., Fioravanti M., Locatelli E., Bonacasa R., Zamboni M., Basso C., et al. . (2008). Improvement of blood glucose control and insulin sensitivity during a long-term (60 weeks) randomized study with amino acid dietary supplements in elderly subjects with type 2 diabetes mellitus. Am. J. Cardiol. 101, S82–S88. 10.1016/j.amjcard.2008.03.006 PubMed DOI
Soltow Q. A., Betters J. L., Sellman J. E., Lira V. A., Long J. H., Criswell D. S. (2006). Ibuprofen inhibits skeletal muscle hypertrophy in rats. Med. Sci. Sport. Exerc. 38, 840–846. 10.1249/01.mss.0000218142.98704.66 PubMed DOI
Sousa-Victor P., Gutarra S., Garcia-Prat L., Rodriguez-Ubreva J., Ortet L., Ruiz-Bonilla V., et al. . (2014). Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321. 10.1038/nature13013 PubMed DOI
Standley R. A., Liu S. Z., Jemiolo B., Trappe S. W., Trappe T. A. (2013). Prostaglandin E2 induces transcription of skeletal muscle mass regulators interleukin-6 and muscle RING finger-1 in humans. Prostaglandins Leukot. Essent. Fat. Acids 88, 361–364. 10.1016/j.plefa.2013.02.004 PubMed DOI PMC
Stipanuk M. H. (2007). Leucine and protein synthesis: mTOR and beyond. Nutr. Rev. 65, 122–129. 10.1111/j.1753-4887.2007.tb00289.x PubMed DOI
Stockton K. A., Mengersen K., Paratz J. D., Kandiah D., Bennell K. L. (2011). Effect of vitamin D supplementation on muscle strength : a systematic review and meta-analysis. Osteoporos. Int. 22, 859–871. 10.1007/s00198-010-1407-y PubMed DOI
Suematsu N., Tsutsui H., Wen J., Kang D., Ikeuchi M., Ide T., et al. . (2003). Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107, 1418–1423. 10.1161/01.CIR.0000055318.09997.1F PubMed DOI
Szalay K., Razga Z., Duda E. (1997). TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin. Eur. J. Cell Biol. 74, 391–398. PubMed
Tchkonia T., Zhu Y., Deursen J., Van Campisi J., Kirkland J. L. (2013). Review series Cellular senescence and the senescent secretory phenotype : therapeutic opportunities. J. Clin. Invest. 123, 966–972. 10.1172/JCI64098 PubMed DOI PMC
Thomas D. K., Quinn M. A., Saunders D. H., Greig C. A. (2016). Protein supplementation does not significantly augment the effects of resistance exercise training in older adults : a systematic review. J. Am. Med. Dir. Assoc. 17, 959e1-959.e9. 10.1016/j.jamda.2016.07.002 PubMed DOI PMC
Tian A., Ma H., Cao X., Zhang R., Wang X., Wu B. (2015). Vitamin D improves cognitive function and modulates Th17/T reg cell balance after hepatectomy in mice. Inflammation 38, 500–509. 10.1007/s10753-014-9956-4 PubMed DOI
Tieland M., Borgonjen-van Den Berg K. J., Van Loon L. J. C., De Groot L. C. P. G. M. (2012a). Dietary protein intake in community-dwelling, frail, and institutionalized elderly people : scope for improvement. Eur. J. Nutr. 51, 173–179. 10.1007/s00394-011-0203-6 PubMed DOI
Tieland M., van de Rest O., Dirks M. L., Van der Zwaluw N., Mensink M., Loon L. J. C., Van, et al. . (2012b). Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 13, 720–726. 10.1016/j.jamda.2012.07.005 PubMed DOI
Trappe T. A., White F., Lambert C. P., Cesar D., Hellerstein M., Evans W. J., et al. . (2002). Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am. J. Physiol. Endocrinol. Metab. 282, E551–E556. 10.1152/ajpendo.00352.2001 PubMed DOI
Trappe T. A., Carroll C. C., Dickinson J. M., Lemoine J. K., Haus J. M., Weinheimer E. M., et al. (2011). Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. J. Appl. Physiol. 111, 508–515. 10.1152/japplphysiol.01348.2010 PubMed DOI PMC
Tsujinaka T., Ebisui C., Fujita J., Kishibuchi M., Morimotoi T., Ogawa A., et al. . (1995). Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem. Biophys. Res. Commun. 207, 168–174. 10.1006/bbrc.1995.1168 PubMed DOI
Verdijk L. B., Jonkers R. A. M., Gleeson B. G., Beelen M., Meijer K., Savelberg H. H. C. M., et al. (2009). Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly. Am. J. Clin. Nutr. 89, 608–616. 10.3945/ajcn.2008.26626 PubMed DOI
Verhoeven S., Vanschoonbeek K., Verdijk L. B., Koopman R., Wodzig W. K. W. H., Dendale P., et al. (2009). Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 89, 1468–1475. 10.3945/ajcn.2008.26668 PubMed DOI
Visser M., Schaap L. A. (2011). Consequences of sarcopenia. Clin. Geriatr. Med. 27, 387–399. 10.1016/j.cger.2011.03.006 PubMed DOI
Volpi E., Lucidi P., Cruciani G., Monacchia F., Reboldi G., Brunetti P., et al. . (1996). Contribution of amino acids and insulin to protein anabolism during meal absorption. Diabetes 45, 1245–1252. 10.2337/diab.45.9.1245 PubMed DOI
Wang F., Liu J., Weng T., Shen K., Chen Z., Yu Y., et al. . (2017). The inflammation induced by lipopolysaccharide can be mitigated by short-chain fatty acid, butyrate, through upregulation of IL-10 in septic shock. Scand. J. Immunol. 85, 258–263. 10.1111/sji.12515 PubMed DOI
Wei H., Zhou Y., Jiang S., Tao Y., Sun H., Peng J., et al. . (2013). Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs : association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br. J. Nutr. 110, 671–680. 10.1017/S0007114512005740 PubMed DOI
Wei J., Xu H., Davies J. L., Hemmings G. P. (1992). Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci. 51, 1953–1956. 10.1016/0024-3205(92)90112-3 PubMed DOI
Welle S., Brooks A. I., Delehanty J. M., Needler N., Thornton C. A. (2003). Gene expression profile of aging in human muscle. Physiol. Genomics 14, 149–159. 10.1152/physiolgenomics.00049.2003 PubMed DOI
White Z., Terrill J., White R. B., McMahon C., Sheard P., Grounds M. D. (2016). Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet. Muscle 6:45. 10.1186/s13395-016-0117-3 PubMed DOI PMC
Whitehouse A. S., Smith H. J., Drake J. L., Tisdale M. J. (2001). Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 61, 3604–3609. PubMed
Whitehouse A. S., Tisdale M. J. (2001). Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. Biochem. Biophys. Res. Commun. 285, 598–602. 10.1006/bbrc.2001.5209 PubMed DOI
Wilkinson D. J., Hossain T., Hill D. S., Phillips B. E., Crossland H., Williams J., et al. . (2013). Effects of leucine and its metabolite β -hydroxy- β -methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 591, 2911–2923. 10.1113/jphysiol.2013.253203 PubMed DOI PMC
Williams J. A., Pontzer C. H., Shacter E. (2000). Regulation of macrophage interleukin-6 (IL-6) and IL-10 expression by prostaglandin E2: the role of p38 mitogen-activated protein kinase. J. Interf. Cytokine Res. 20, 291–298. 10.1089/107999000312423 PubMed DOI
Wilson D., Jackson T., Sapey E., Lord J. M. (2017). Frailty and Sarcopenia: the potential role of an aged immune system. Ageing Res. Rev. 36, 1–10. 10.1016/j.arr.2017.01.006 PubMed DOI
Wilson G. J., Layman D. K., Moulton C. J., Norton L. E., Anthony T. G., Proud C. G., et al. . (2011). Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats. Am. J. Physiol. Endocrinol. Metab. 301, E1236–E1242. 10.1152/ajpendo.00242.2011 PubMed DOI PMC
Wohlgemuth S. E., Seo A. Y., Marzetti E., Anne H., Leeuwenburgh C. (2010). Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp. Gerontol. 45, 138–148. 10.1016/j.exger.2009.11.002 PubMed DOI PMC
Wu H., Xia Y., Jiang J., Du H., Guo X., Liu X., et al. . (2015). Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults : a systematic review and meta-analysis. Arch. Gerontol. Geriatr. 61, 168–175. 10.1016/j.archger.2015.06.020 PubMed DOI
Wysokinski A., Sobów T., Kloszewska I., Kostka T. (2015). Mechanisms of the anorexia of aging — a review. Age (Omaha) 37:9821. 10.1007/s11357-015-9821-x PubMed DOI PMC
Xia Z., Cholewa J., Zhao Y., Shang H.-Y., Yang Y.-Q., Araujo Pessoa K., et al. . (2017). Targeting inflammation and downstream protein metabolism in sarcopenia: a brief up-dated description of concurrent exercise and leucine-based multimodal intervention. Front. Physiol. 8:434. 10.3389/fphys.2017.00434 PubMed DOI PMC
Xu Z., Tan Z., Zhang Q., Gui Q., Yang Y. (2015). The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people : a systematic review and meta-analysis. Br. J. Nutr. 113, 25–34. 10.1017/S0007114514002475 PubMed DOI
Yagasaki K., Morisaki N., Kitahara Y., Miura A., Funabiki R. (2003). Involvement of protein kinase C activation in L -leucine-induced stimulation of protein synthesis in L6 myotubes. Cytokine 43, 97–103. 10.1023/B:CYTO.0000039898.44839.90 PubMed DOI PMC
Yin H., Price F., Rudnicki M. A. (2013). Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67. 10.1152/physrev.00043.2011 PubMed DOI PMC
Yoshino J., Smith G. I., Kelly S. C., Julliand S., Reeds D. N., Mittendorfer B. (2016). Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol. Rep. 4:e12785. 10.14814/phy2.12785 PubMed DOI PMC
Yu X., Xing C., Pan Y., Ma H., Zhang J., Li W. (2012). IGF-1 alleviates ox-LDL-induced inflammation via reducing HMGB1 release in HAECs. Acta Biochim. Biophys. Sin. 44, 746–751. 10.1093/abbs/gms059 PubMed DOI
Zanchi N. E., Lancha A. H., Jr. (2008). Mechanical stimuli of skeletal muscle : implications on mTOR/p70s6k and protein synthesis. Eur. J. Appl. Physiol. 102, 253–263. 10.1007/s00421-007-0588-3 PubMed DOI
Zhang Y., Guo K., Leblanc R. E., Loh D., Schwartz G. J., Yu Y. (2007). Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56, 1647–1654. 10.2337/db07-0123 PubMed DOI
Zheng L., Zhang W., Zhou Y., Li F., Wei H., Peng J. (2016). Recent advances in understanding amino acid sensing mechanisms that regulate mTORC1. Int. J. Mol. Sci. 17:1636 10.3390/ijms17101636 PubMed DOI PMC
Neuroinflammation in Alzheimer's Disease
Ibuprofen does not impair skeletal muscle regeneration upon cardiotoxin-induced injury