• This record comes from PubMed

Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae)

. 2023 ; 14 () : 1157455. [epub] 20231121

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.

See more in PubMed

Adhitama N., Kato Y., Matsuura T., Watanabe H. (2020). Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PloS One 15 (10), e0239893. doi: 10.1371/journal.pone.0239893 PubMed DOI PMC

Ali J. G., Agrawal A. A. (2012). Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17 (5), 293–302. doi: 10.1016/j.tplants.2012.02.006 PubMed DOI

Arakane Y., Muthukrishnan S. (2010). Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 67 (2), 201–216. doi: 10.1007/s00018-009-0161-9 PubMed DOI PMC

Aranda G. P., Hinojos S. J., Sabandal P. R., Evans P. D., Han K.-A. (2017). Behavioral sensitization to the disinhibition effect of ethanol requires the dopamine/ecdysone receptor in Drosophila. Front. Syst. Neurosci. 11, 56. doi: 10.3389/fnsys.2017.00056 PubMed DOI PMC

Balakrishnan B., Su S., Wang K., Tian R., Chen M. (2018). Identification, expression, and regulation of an omega class glutathione S-transferase in Rhopalosiphum padi (L.)(Hemiptera: Aphididae) under insecticide stress. Front. Physiol. 9, 427. doi: 10.3389/fphys.2018.00427 PubMed DOI PMC

Bengtsson T., Weighill D., Proux-Wéra E., Levander F., Resjö S., Burra D. D., et al. . (2014). Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15 (1), 1–19. doi: 10.1186/1471-2164-15-315 PubMed DOI PMC

Berrada S., Fournier D., Cuany A., Nguyen T. (1994). Identification of resistance mechanisms in a selected laboratory strain of Cacopsylla pyri (Homoptera: Psyllidae): altered acetylcholinesterase and detoxifying oxidases. Pesticide Biochem. Physiol. 48 (1), 41–47. doi: 10.1006/pest.1994.1005 DOI

Board G. P., Baker T. R., Chelvanayagam G., Jermiin S. L. (1997). Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem. J. 328 (3), 929–935. doi: 10.1042/bj3280929 PubMed DOI PMC

Bosch-Serra D., Rodríguez M. A., Avilla J., Sarasúa M. J., Miarnau X. (2021). Esterase, glutathione S-transferase and NADPH-cytochrome P450 reductase activity evaluation in cacopsylla pyri L.(Hemiptera: psyllidae) individual adults. Insects 12 (4), 329. doi: 10.3390/insects12040329 PubMed DOI PMC

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 72 (1-2), 248–254. doi: 10.1016/0003-2697(76)90527-3 PubMed DOI

Bunker R. D., Bulloch E. M., Dickson J. M., Loomes K. M., Baker E. N. (2013). Structure and function of human xylulokinase, an enzyme with important roles in carbohydrate metabolism. J. Biol. Chem. 288 (3), 1643–1652. doi: 10.1074/jbc.M112.427997 PubMed DOI PMC

Cancino-Rodezno A., Alexander C., Villaseñor R., Pacheco S., Porta H., Pauchet Y., et al. . (2010). The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 40 (1), 58–63. doi: 10.1016/j.ibmb.2009.12.010 PubMed DOI PMC

Chakraborty A., Ashraf M. Z., Modlinger R., Synek J., Schlyter F., Roy A. (2020). Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci. Rep. 10 (1), 18572. doi: 10.1038/s41598-020-75203-5 PubMed DOI PMC

Chakraborty A., Purohit A., Khara A., Modlinger R., Roy A. (2023). Life-stage and geographic location determine the microbial assemblage in Eurasian spruce bark beetle, Ips typographus L.(Coleoptera: Curculionidae). Front. Forests Global Change 6, 1176160. doi: 10.3389/ffgc.2023.1176160 DOI

Chen B., Kayukawa T., Jiang H., Monteiro A., Hoshizaki S., Ishikawa Y. (2005). DaTrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, Delia antiqua. Gene 347 (1), 115–123. doi: 10.1016/j.gene.2004.12.026 PubMed DOI

Choi J., Rose R. L., Hodgson E. (2002). In vitro human metabolism of permethrin: the role of human alcohol and aldehyde dehydrogenases. Pesticide Biochem. Physiol. 74 (3), 117–128. doi: 10.1016/S0048-3575(02)00154-2 DOI

Christiansen E., Bakke A. (1988). “"The spruce bark beetle of Eurasia,",” in Dynamics of forest insect populations (Boston, MA: Springer US; ), 479–503. doi: 10.1007/978-1-4899-0789-9_23 DOI

Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21 (18), 3674–3676. doi: 10.1093/bioinformatics/bti610 PubMed DOI

Cooley L., Theurkauf W. E. (1994). Cytoskeletal functions during Drosophila oogenesis. Science 266 (5185), 590–596. doi: 10.1126/science.7939713 PubMed DOI

Crava C. M., Bel Y., Jakubowska A. K., Ferré J., Escriche B. (2013). Midgut aminopeptidase N isoforms from Ostrinia nubilalis: activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 43 (10), 924–935. doi: 10.1016/j.ibmb.2013.07.009 PubMed DOI

Dai L., Gao H., Chen H. (2021). Expression levels of detoxification enzyme genes from Dendroctonus armandi (Coleoptera: Curculionidae) fed on a solid diet containing pine phloem and terpenoids. Insects 12 (10), 926. doi: 10.3390/insects12100926 PubMed DOI PMC

Dai L., Gao H., Ye J., Fu D., Sun Y., Chen H. (2019). Isolation of CarE genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defense. Pest Manage. Sci. 75 (4), 986–997. doi: 10.1002/ps.5205 PubMed DOI

Dai L., Ma J., Ma M., Zhang H., Shi Q., Zhang R., et al. . (2016). Characterisation of GST genes from the Chinese white pine beetle Dendroctonus armandi (Curculionidae: Scolytinae) and their response to host chemical defence. Pest Manage. Sci. 72 (4), 816–827. doi: 10.1002/ps.4059 PubMed DOI

de Couet H. G., Fong K., Weeds A., McLaughlin P., Miklos G. (1995). Molecular and mutational analysis of a gelsolin-family member encoded by the flightless I gene of Drosophila melanogaster. Genetics 141 (3), 1049–1059. doi: 10.1093/genetics/141.3.1049 PubMed DOI PMC

Dettner K. (2023). “Chemical ecology and biochemistry of Dytiscidae,” in Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (Cham: Springer; ), 253–341. doi: 10.1007/978-3-031-01245-7_6 DOI

Dorn R., Morawietz H., Reuters G., Saumweber H. (1993). Identification of an essential Drosophila gene that is homologous to the translation initiation factor eIF-4A of yeast and mouse. Mol. Gen. Genet. MGG 237 (1), 233–240. doi: 10.1007/BF00282805 PubMed DOI

Eberl D. F., Lorenz L. J., Melnick M. B., Sood V., Lasko P., Perrimon N. (1997). A new enhancer of position-effect variegation in Drosophila melanogaster encodes a putative RNA helicase that binds chromosomes and is regulated by the cell cycle. Genetics 146 (3), 951–963. doi: 10.1093/genetics/146.3.951 PubMed DOI PMC

Eigenheer A. L., Keeling C. I., Young S., Tittiger C. (2003). Comparison of gene representation in midguts from two phytophagous insects, Bombyx mori and Ips pini, using expressed sequence tags. Gene 316, 127–136. doi: 10.1016/S0378-1119(03)00749-2 PubMed DOI

Eisen M. B., Spellman P. T., Brown P. O., Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95 (25), 14863–14868. doi: 10.1073/pnas.95.25.14863 PubMed DOI PMC

Erbilgin N., Krokene P., Kvamme T., Christiansen E. (2007). A host monoterpene influences Ips typographus (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone. Agric. For. Entomology 9 (2), 135–140. doi: 10.1111/j.1461-9563.2007.00329.x DOI

Erbilgin N., Powell J. S., Raffa K. F. (2003). Effect of varying monoterpene concentrations on the response of Ips pini (Coleoptera: Scolytidae) to its aggregation pheromone: implications for pest management and ecology of bark beetles. Agric. For. Entomology 5 (4), 269–274. doi: 10.1046/j.1461-9563.2003.00186.x DOI

Esther E., Human H., Smit S., Beukes M., Apostolides Z., Nicolson S. W., et al. . (2017). Proteomic and metabolomic analysis reveals rapid and extensive nicotine detoxification ability in honey bee larvae. Insect Biochem. Mol. Biol. 82, 41–51. doi: 10.1016/j.ibmb.2017.01.011 PubMed DOI

Fernanda López M., Cano-Ramírez C., Shibayama M., Zúñiga G. (2011). α-Pinene and myrcene induce ultrastructural changes in the midgut of Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae). Ann. Entomological Soc. America 104 (3), 553–561. doi: 10.1603/AN10023 DOI

Ferreira A. H. P., Cristofoletti P. T., Lorenzini D. M., Guerra L. O., Paiva P. B., Briones M. R. D. S., et al. . (2007). Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. J. Insect Physiol. 53 (11), 1112–1124. doi: 10.1016/j.jinsphys.2007.06.007 PubMed DOI

Figueroa-Teran R., Pak H., Blomquist G. J., Tittiger C. (2016). High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles. J. Biochem. 160 (3), 141–151. doi: 10.1093/jb/mvw019 PubMed DOI PMC

Figueroa-Teran R., Welch W. H., Blomquist G. J., Tittiger C. (2012). Ipsdienol dehydrogenase (IDOLDH): a novel oxidoreductase important for Ips pini pheromone production. Insect Biochem. Mol. Biol. 42 (2), 81–90. doi: 10.1016/j.ibmb.2011.10.009 PubMed DOI

Freeman M. R., Dobritsa A., Gaines P., Segraves W. A., Carlson J. R. (1999). The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development 126 (20), 4591–4602. doi: 10.1242/dev.126.20.4591 PubMed DOI

Friedländer M., Jeshtadi A., Reynolds S. E. (2001). The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro . J. Insect Physiol. 47 (3), 245–255. doi: 10.1016/S0022-1910(00)00109-8 PubMed DOI

Gao H., Dai L., Fu D., Sun Y., Chen H. (2020). Isolation, Expression Profiling, and Regulation via Host Allelochemicals of 16 Glutathione S-Transferases in the Chinese White Pine Beetle, Dendroctonus armandi. Front. Physiol. 11, 546592. doi: 10.3389/fphys.2020.546592 PubMed DOI PMC

García‐Fraile P. (2018). Roles of bacteria in the bark beetle holobiont–how do they shape this forest pest? Ann. Appl. Biol. 172 (2), 111–125. doi: 10.1111/aab.12406 DOI

Gatehouse J. A. (2013). Insect Carboxypeptidases. In Rawlings N., Salvesen G. (Eds.), Handbook of proteolytic enzymes (1366-1370). 3rd ed. (Elsevier; ), 1366–1370. doi: 10.1016/b978-0-12-382219-2.00306-9 DOI

Grégoire J.-C., Raffa K. F., Lindgren B. S. (2015). “ Economics and politics of bark beetles,” in Vega F. E., Hofstetter R. W. (Eds.), Bark beetles: Biology and ecology of native and invasive species (Amsterdam, The Netherlands: Elsevier; ), pp. 585–613. doi: 10.1016/B978-0-12-417156-5.00015-0 DOI

Guo Y., Carballar-Lejarazú R., Sheng L., Fang Y., Wang S., Liang G., et al. . (2020). Identification and characterization of aminopeptidase-N as a binding protein for Cry3Aa in the midgut of Monochamus alternatus (Coleoptera: Cerambycidae). J. Economic Entomology 113 (5), 2259–2268. doi: 10.1093/jee/toaa130 PubMed DOI

Guo L., Li C., Coupland G., Liang P., Chu D. (2021). Up-regulation of calmodulin involved in the stress response to cyantraniliprole in the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Sci. 28 (6), 1745–1755. doi: 10.1111/1744-7917.12887 PubMed DOI

Gupta S., Chakraborty A., Roy A. (2023). Prospects for deploying microbes against tree-killing beetles (Coleoptera) in Anthropocene. Front. Forests Global Change 6, 1182834. doi: 10.3389/ffgc.2023.1182834 DOI

Habig W. H., Jakoby W. B. (1981). Assays for differentiation of glutathione S-transferase. Methods Enzymol 77, 398–405. doi: 10.1016/S0076-6879(81)77053-8 PubMed DOI

Halliwell B., Gutteridge J.M. (2015). Free Radicals in Biology and Medicine. Oxford University Press, Oxford.

Hammock B. D., Bonning B. C., Possee R. D., Hanzlik T. N., Maeda S. (1990). Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature 344 (6265), 458–461. doi: 10.1038/344458a0 DOI

Hegedus D., Erlandson M., Gillott C., Toprak U. (2009). New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. entomology 54 (1), 285–302. doi: 10.1146/annurev.ento.54.110807.090559 PubMed DOI

Hlásny T., König L., Krokene P., Lindner M., Montagné-Huck C., Müller J., et al. . (2021. a). Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Curr. Forestry Rep. 7 (3), 138–165. doi: 10.1007/s40725-021-00142-x DOI

Hlásny T., Krokene P., Liebhold A., Montagné-Huck C., Müller J., Qin H., et al. . (2019). Living with bark beetles: impacts, outlook and management options. From Science to Policy 8. European Forest Institute.

Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. (2021. b). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manage. 490, 119075. doi: 10.1016/j.foreco.2021.119075 DOI

Huang Y., Liao M., Yang Q., Xiao J., Hu Z., Cao H. (2019). iTRAQ-based quantitative proteome revealed metabolic changes of Sitophilus zeamais in response to terpinen-4-ol fumigation. Pest Manage. Sci. 75 (2), 444–451. doi: 10.1002/ps.5135 PubMed DOI

Huang Z., Tian Z., Zhao Y., Zhu F., Liu W., Wang X. (2022). MAPK signaling pathway is essential for female reproductive regulation in the cabbage beetle, colaphellus bowringi. Cells 11 (10), 1602. doi: 10.3390/cells11101602 PubMed DOI PMC

Huber L. A. (2003). Is proteomics heading in the wrong direction? Nat. Rev. Mol. Cell Biol. 4 (1), 74–80. doi: 10.1038/nrm1007 PubMed DOI

Huber D., Robert J. (2016). The proteomics and transcriptomics of early host colonization and overwintering physiology in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Adv. Insect Physiol. 50, 101–128.

Jandl R. (2020). Climate-induced challenges of Norway spruce in Northern Austria. Trees forests People 1, 100008. doi: 10.1016/j.tfp.2020.100008 DOI

Ji J.-L., Han S.-J., Zhang R.-J., Yu J.-B., Li Y.-B., Yu X.-P., et al. . (2022). Inter-alpha-trypsin inhibitor heavy chain 4 plays an important role in the development and reproduction of nilaparvata lugens. Insects 13 (3), 303. doi: 10.3390/insects13030303 PubMed DOI PMC

Jing Y.-P., An H., Zhang S., Wang N., Zhou S. (2018). Protein kinase C mediates juvenile hormone–dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. J. Biol. Chem. 293 (52), 20112–20122. doi: 10.1074/jbc.RA118.005692 PubMed DOI PMC

Joga M. R., Mogilicherla K., Smagghe G., Roy A. (2021). RNA interference-based forest protection products (FPPs) against wood-boring coleopterans: Hope or hype? Front. Plant Sci. 1943. doi: 10.3389/fpls.2021.733608 PubMed DOI PMC

Johnson M. T. (2011). Evolutionary ecology of plant defences against herbivores. Funct. Ecol. 25, 305–311.

Kamita S. G., Hinton A. C., Wheelock C. E., Wogulis M. D., Wilson D. K., Wolf N. M., et al. . (2003). Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochem. Mol. Biol. 33 (12), 1261–1273. doi: 10.1016/j.ibmb.2003.08.004 PubMed DOI

Kandasamy D., Zaman R., Nakamura Y., Zhao T., Hartmann H., Andersson M. N., et al. . (2023). Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PloS Biol. 21 (2), e3001887. doi: 10.1371/journal.pbio.3001887 PubMed DOI PMC

Kang Z. W., Liu F. H., Xu Y. Y., Cheng J. H., Lin X. L., Jing X. F., et al. . (2021). Identification of candidate odorant-degrading enzyme genes in the antennal transcriptome of Aphidius gifuensis. Entomological Res. 51 (1), 36–54. doi: 10.1111/1748-5967.12489 DOI

Kanost M. R., Jiang H., Yu X. Q. (2004). Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198 (1), 97–105. doi: 10.1111/j.0105-2896.2004.0121.x PubMed DOI

Keeling C. I., Li M., Sandhu H. K., Henderson H., Saint Yuen M. M., Bohlmann J. (2016). Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. Insect Biochem. Mol. Biol. 70, 170–183. doi: 10.1016/j.ibmb.2016.01.002 PubMed DOI

Kelsey R. G., Gallego D., Sánchez-García F., Pajares J. (2014). Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Can. J. For. Res. 44 (6), 554–561. doi: 10.1139/cjfr-2013-0428 DOI

Krokene P. (2015). “Conifer defense and resistance to bark beetles,” in Bark beetles (Elsevier; ), 177–207.

Kuroda M. I., Kernan M. J., Kreber R., Ganetzky B., Baker B. S. (1991). The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66 (5), 935–947. doi: 10.1016/0092-8674(91)90439-6 PubMed DOI

Lasko P. F., Ashburner M. (1988). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335 (6191), 611–617. doi: 10.1038/335611a0 PubMed DOI

Lehenberger M., Benkert M., Biedermann P. H. (2021). Ethanol-enriched substrate facilitates ambrosia beetle fungi, but inhibits their pathogens and fungal symbionts of bark beetles. Front. Microbiol. 11, 3487. doi: 10.3389/fmicb.2020.590111 PubMed DOI PMC

Lehninger A. (1950). Role of metal ions in enzyme systems. Physiol. Rev. 30 (3), 393–429. doi: 10.1152/physrev.1950.30.3.393 PubMed DOI

Li G., Xu L., Zhang H., Liu J., Yan J., Yan Y. (2020). A de novo designed esterase with p-nitrophenyl acetate hydrolysis activity. Molecules 25 (20), 4658. doi: 10.3390/molecules25204658 PubMed DOI PMC

Liu Y., Moural T., Koirala BK S., Hernandez J., Shen Z., Alyokhin A., et al. . (2021). Structural and functional characterization of one unclassified glutathione S-transferase in xenobiotic adaptation of Leptinotarsa decemlineata. Int. J. Mol. Sci. 22 (21), 11921. doi: 10.3390/ijms222111921 PubMed DOI PMC

Liu Y., Sui Y. P., Wang J. X., Zhao X. F. (2009). Characterization of the trypsin-like protease (Ha-TLP2) constitutively expressed in the integument of the cotton bollworm, Helicoverpa armigera. Arch. Insect Biochem. Physiology: Published Collaboration Entomological Soc. America 72 (2), 74–87. doi: 10.1002/arch.20324 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method. methods 25 (4), 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI

Lü F.-G., Fu K.-Y., Li Q., Guo W.-C., Ahmat T., Li G.-Q. (2015). Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. Pesticide Biochem. Physiol. 122, 86–95. doi: 10.1016/j.pestbp.2014.12.015 PubMed DOI

Margoliash E., Frohwirt N. (1959). Spectrum of horse-heart cytochrome c. Biochem. J. 71 (3), 570. doi: 10.1042/bj0710570 PubMed DOI PMC

Mogilicherla K., Roy A. (2023). RNAi-chitosan biopesticides for managing forest insect pests: an outlook. Front. Forests Global Change 6, 1219685. doi: 10.3389/ffgc.2023.1219685 DOI

Montagné-Huck C., Brunette M. (2018). Economic analysis of natural forest disturbances: A century of research. J. For. Economics 32, 42–71. doi: 10.1016/j.jfe.2018.03.002 PubMed DOI PMC

Morris J. L., Cottrell S., Fettig C. J., Hansen W. D., Sherriff R. L., Carter V. A., et al. . (2017). Managing bark beetle impacts on ecosystems and society: priority questions to motivate future research. J. Appl. Ecol. 54 (3), 750–760. doi: 10.1111/1365-2664.12782 DOI

Mouches C., Pauplin Y., Agarwal M., Lemieux L., Herzog M., Abadon M., et al. . (1990). Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. 87 (7), 2574–2578. doi: 10.1073/pnas.87.7.2574 PubMed DOI PMC

Napoleão T. H., Albuquerque L. P., Santos N. D., Nova I. C., Lima T. A., Paiva P. M., et al. . (2019). Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. Pest Manage. Sci. 75 (5), 1212–1222. doi: 10.1002/ps.5233 PubMed DOI

Naseer A., Mogilicherla K., Sellamuthu G., Roy A. (2023). Age matters: Life-stage, tissue, and sex-specific gene expression dynamics in Ips typographus (Coleoptera: Curculionidae: Scolytinae). Front. Forests Global Change 6. doi: 10.3389/ffgc.2023.1124754 DOI

Ortego F., López-Olguín J., Ruız M., Castañera P. (1999). Effects of toxic and deterrent terpenoids on digestive protease and detoxication enzyme activities of Colorado potato beetle larvae. Pesticide Biochem. Physiol. 63 (2), 76–84. doi: 10.1006/pest.1998.2386 DOI

Parde V. D., Sharma H. C., Kachole M. S. (2012). Inhibition of Helicoverpa armigera gut pro-proteinase activation in response to synthetic protease inhibitors. Entomologia experimentalis applicata 142 (2), 104–113. doi: 10.1111/j.1570-7458.2011.01209.x DOI

Peng J., Chen S., Büsser S., Liu H., Honegger T., Kubli E. (2005). Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 15 (3), 207–213. doi: 10.1016/j.cub.2005.01.034 PubMed DOI

Peral-Aranega E., Saati-Santamaría Z., Ayuso-Calles M., Kostovčík M., Veselská T., Švec K., et al. . (2023). New insight into the bark beetle ips typographus bacteriome reveals unexplored diversity potentially beneficial to the host. Environ. microbiome 18 (1), 53. doi: 10.1186/s40793-023-00510-z PubMed DOI PMC

Pitt C., Robert J. A., Bonnett T. R., Keeling C. I., Bohlmann J., Huber D. P. (2014). Proteomics indicators of the rapidly shifting physiology from whole mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), adults during early host colonization. PloS One 9 (10), e110673. doi: 10.1371/journal.pone.0110673 PubMed DOI PMC

Powell D., Groβe-Wilde E., Krokene P., Roy A., Chakraborty A., Löfstedt C., et al. . (2021). A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Commun. Biol. 4 (1), 1–9. doi: 10.1038/s42003-021-02602-3 PubMed DOI PMC

Robert J. A., Pitt C., Bonnett T. R., Yuen M. M., Keeling C. I., Bohlmann J., et al. . (2013). Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms. PloS One 8 (11), e77777. doi: 10.1371/journal.pone.0077777 PubMed DOI PMC

Roy A., Das S. (2015). Molecular mechanism underlying the entomotoxic effect of Colocasia esculenta tuber agglutinin against Dysdercus cingulatus. Insects 6 (4), 827–846. doi: 10.3390/insects6040827 DOI

Roy A., Gupta S., Hess D., Das K. P., Das S. (2014). Binding of insecticidal lectin C olocasia esculenta tuber agglutinin (CEA) to midgut receptors of B emisia tabaci and L ipaphis erysimi provides clues to its insecticidal potential. Proteomics 14 (13-14), 1646–1659. doi: 10.1002/pmic.201300408 PubMed DOI

Roy A., Walker W., III, Vogel H., Chattington S., Larsson M., Anderson P., et al. . (2016). Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem. Mol. Biol. 71, 91–105. doi: 10.1016/j.ibmb.2016.02.006 PubMed DOI

Royer V., Fraichard S., Bouhin H. (2002). A novel putative insect chitinase with multiple catalytic domains: hormonal regulation during metamorphosis. Biochem. J. 366 (3), 921–928. doi: 10.1042/bj20011764 PubMed DOI PMC

Sandal S., Singh S., Bansal G., Kaur R., Mogilicherla K., Pandher S., et al. . (2023). Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int. J. Mol. Sci. 24 (11), 9161. doi: 10.3390/ijms24119161 PubMed DOI PMC

Saxena H., Negi H., Keshan R., Chitkara P., Kumar S., Chakraborty A., et al. . (2023). A comprehensive investigation of lipid-transfer proteins from Cicer arietinum disentangles their role in plant defense against Helicoverpa armigera-infestation. Front. Genet. 14. doi: 10.3389/fgene.2023.1195554 PubMed DOI PMC

Schlyter F., Cederholm I. (1981). Separation of the sexes of living spruce bark beetles, Ips typographus (L.),(Coleoptera: Scolytidae) 1. Z. für angewandte Entomologie 92 (1-5), 42–47. doi: 10.1111/j.1439-0418.1981.tb01650.x DOI

Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., et al. . (2020). A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103. doi: 10.1016/j.baae.2020.04.003 DOI

Schweizer F., Heidel-Fischer H., Vogel H., Reymond P. (2017). Arabidopsis glucosinolates trigger a contrasting transcriptomic response in a generalist and a specialist herbivore. Insect Biochem. Mol. Biol. 85, 21–31. doi: 10.1016/j.ibmb.2017.04.004 PubMed DOI

Seidl R., Schelhaas M.-J., Rammer W., Verkerk P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Climate Change 4 (9), 806–810. doi: 10.1038/nclimate2318 PubMed DOI PMC

Sellamuthu G., Bílý J., Joga M. R., Synek J., Roy A. (2022). Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae). Sci. Rep. 12 (1), 1–17. doi: 10.1038/s41598-022-08434-3 PubMed DOI PMC

Senf C., Buras A., Zang C. S., Rammig A., Seidl R. (2020). Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11 (1), 1–8. doi: 10.1038/s41467-020-19924-1 PubMed DOI PMC

Senf C., Seidl R. (2021). Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 18 (18), 5223–5230. doi: 10.5194/bg-18-5223-2021 DOI

Shevchenko A., Tomas H., Havli J., Olsen J. V., Mann M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1 (6), 2856–2860. doi: 10.1038/nprot.2006.468 PubMed DOI

Silva W., Cardoso C., Ribeiro A. F., Terra W. R., Ferreira C. (2013). Midgut proteins released by microapocrine secretion in Spodoptera frugiperda. J. Insect Physiol. 59 (1), 70–80. doi: 10.1016/j.jinsphys.2012.10.015 PubMed DOI

Smagghe G., Tirry L. (2001). “Insect midgut as a site for insecticide detoxification and resistance,” in Biochemical sites of insecticide action and resistance (Berlin, Heidelberg: Springer; ), 293–321. doi: 10.1007/978-3-642-59549-3_14 DOI

Smith H. W. (1965). The development of the flora of the alimentary tract in young animals. J. Pathol. Bacteriology 90, 495–513. doi: 10.1002/path.1700900218 PubMed DOI

Sommerfeld A., Rammer W., Heurich M., Hilmers T., Müller J., Seidl R. (2021). Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? J. Ecol. 109 (2), 737–749. doi: 10.1111/1365-2745.13502 PubMed DOI PMC

Sood S., Sharma A., Sharma N., Kanwar S. (2016). Carboxylesterases: sources, characterization and broader applications. Insight Enzym Res. 1 (1), 1–11. doi: 10.21767/2573-4466.100002 DOI

Stermitz F. R., Kamm C. D., Tawara J. N. (2000). Piperidine alkaloids of spruce (Picea) and fir (Abies) species. Biochem. Systematics Ecol. 28 (2), 177–181. doi: 10.1016/S0305-1978(99)00054-X DOI

Sutherland T. D., Peng Y. Y., Trueman H. E., Weisman S., Okada S., Walker A. A., et al. . (2013). A new class of animal collagen masquerading as an insect silk. Sci. Rep. 3 (1), 1–6. doi: 10.1038/srep02864 PubMed DOI PMC

Tawara J. N., Blokhin A., Foderaro T. A., Stermitz F. R., Hope H. (1993). Toxic piperidine alkaloids from pine (Pinus) and spruce (Picea) trees. New structures and a biosynthetic hypothesis. J. Organic Chem. 58 (18), 4813–4818. doi: 10.1021/jo00070a014 DOI

Tian C. B., Li Y. Y., Huang J., Chu W. Q., Wang Z. Y., Liu H. (2020). Comparative transcriptome and proteome analysis of heat acclimation in predatory mite Neoseiulus barkeri. Front. Physiol. 11, 426. doi: 10.3389/fphys.2020.00426 PubMed DOI PMC

Torres-Banda V., Obregón-Molina G., Soto-Robles L. V., Albores-Medina A., López M. F., Zúñiga G. (2022). Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput. Struct. Biotechnol. J. 20, 3080–3095. doi: 10.1016/j.csbj.2022.06.029 PubMed DOI PMC

Toth D., Maitah M., Maitah K., Jarolínová V. (2020). The impacts of calamity logging on the development of spruce wood prices in Czech forestry. Forests 11 (3), 283. doi: 10.3390/f11030283 DOI

Vindstad O. P. L., Birkemoe T., Ims R. A., Sverdrup-Thygeson A. (2020). Environmental conditions alter successional trajectories on an ephemeral resource: a field experiment with beetles in dead wood. Oecologia 194 (1), 205–219. doi: 10.1007/s00442-020-04750-5 PubMed DOI PMC

Vindstad O. P. L., Jepsen J. U., Ek M., Pepi A., Ims R. A. (2019). Can novel pest outbreaks drive ecosystem transitions in northern-boreal birch forest? J. Ecol. 107 (3), 1141–1153. doi: 10.1111/1365-2745.13093 DOI

Wagner W., Möhrlen F., Schnetter W. (2002). Characterization of the proteolytic enzymes in the midgut of the European Cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Insect Biochem. Mol. Biol. 32 (7), 803–814. doi: 10.1016/S0965-1748(01)00167-9 PubMed DOI

Wang H.-L., Rao Q., Chen Z.-Z. (2023). Identifying potential insecticide resistance markers through genomic‐level comparison of Bemisia tabaci (Gennadius) lines. Arch. Insect Biochem. Physiol. 114 (1), e22034. doi: 10.1002/arch.22034 PubMed DOI

Wei Z., Yin Y., Zhang B., Wang Z., Peng G., Cao Y., et al. . (2007). Cloning of a novel protease required for the molting of Locusta migratoria manilensis. Development Growth Differentiation 49 (7), 611–621. doi: 10.1111/j.1440-169X.2007.00957.x PubMed DOI

Willforss J., Chawade A., Levander F. (2018). NormalyzerDE: online tool for improved normalization of omics expression data and high-sensitivity differential expression analysis. J. Proteome Res. 18 (2), 732–740. doi: 10.1021/acs.jproteome.8b00523 PubMed DOI

Yadav M., Panwar R., Rustagi A., Chakraborty A., Roy A., Singh I. K., et al. . (2023). Comprehensive and evolutionary analysis of Spodoptera litura-inducible Cytochrome P450 monooxygenase gene family in Glycine max elucidate their role in defense. Front. Plant Sci. 14, 1221526. doi: 10.3389/fpls.2023.1221526 PubMed DOI PMC

Yamamoto K., Shigeoka Y., Aso Y., Banno Y., Kimura M., Nakashima T. (2009). Molecular and biochemical characterization of a Zeta-class glutathione S-transferase of the silkmoth. Pesticide Biochem. Physiol. 94 (1), 30–35. doi: 10.1016/j.pestbp.2009.02.008 DOI

Yan J., Cheng Q., Li C. B., Aksoy S. (2002). Molecular characterization of three gut genes from Glossina morsitans morsitans: cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. Insect Mol. Biol. 11 (1), 57–65. doi: 10.1046/j.0962-1075.2001.00308.x PubMed DOI

Yuan L.-y., Hao Y.-h., Chen Q.-k., Pang R., Zhang W.-q. (2020). Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants. J. Integr. Agric. 19 (11), 2758–2766. doi: 10.1016/S2095-3119(20)63188-4 DOI

Zhang Y., Yan H., Lu W., Li Y., Guo X., Xu B. (2013). A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperones 18, 503–516. doi: 10.1007/s12192-013-0406-2 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...