A comprehensive investigation of lipid-transfer proteins from Cicer arietinum disentangles their role in plant defense against Helicoverpa armigera-infestation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37456660
PubMed Central
PMC10348895
DOI
10.3389/fgene.2023.1195554
PII: 1195554
Knihovny.cz E-zdroje
- Klíčová slova
- Helicoverpa armigera, chickpea, herbivory, lipid transfer proteins (LTPs), phylogenetic analysis, plant defense,
- Publikační typ
- časopisecké články MeSH
Lipid Transfer Proteins (LTPs) play a crucial role in synthesizing lipid barrier polymers and are involved in defense signaling during pest and pathogen attacks. Although LTPs are conserved with multifaceted roles in plants, these are not yet identified and characterized in Cicer arietinum. In this study, a genome-wide analysis of LTPs was executed and their physiochemical properties, biochemical function, gene structure analysis, chromosomal localization, promoter analysis, gene duplication, and evolutionary analysis were performed using in silico tools. Furthermore, tissue-specific expression analysis and gene expression analysis during pest attack was also conducted for the LTPs. A total of 48 LTPs were identified and named as CaLTPs. They were predicted to be small unstable proteins with "Glycolipid transfer protein" and "Alpha-Amylase Inhibitors, Lipid Transfer and Seed Storage" domains, that are translocated to the extracellular region. CaLTPs were predicted to possess 3-4 introns and were located on all the eight chromosomes of chickpea with half of the CaLTPs being localized on chromosomes 4, 5, and 6, and found to be closely related to LTPs of Arabidopsis thaliana and Medicago trancatula. Gene duplication and synteny analysis revealed that most of the CaLTPs have evolved due to tandem or segmental gene duplication and were subjected to purifying selection during evolution. The promoters of CaLTPs had development-related, phytohormone-responsive, and abiotic and biotic stress-related cis-acting elements. A few CaLTP transcripts exhibited differential expression in diverse tissue types, while others showed no/very low expression. Out of 20 jasmonate-regulated CaLTPs, 14 exhibited differential expression patterns during Helicoverpa armigera-infestation, indicating their role in plant defense response. This study identified and characterized CaLTPs from an important legume, C. arietinum, and indicated their involvement in plant defense against H. armigera-infestation, which can be further utilized to explore lipid signaling during plant-pest interaction and pest management.
Bioinformatics Lab National Institute of Plant Genome Research New Delhi India
Department of Biological Sciences University of South Carolina Columbia SC United States
Department of Botany Hansraj College University of Delhi Delhi India
Department of Zoology Deshbandhu College University of Delhi New Delhi India
Institute of Plant Breeding Genetics and Genomics University of Georgia Griffin GA United States
Zobrazit více v PubMed
Adhikari P. B., Han J. Y., Ahn C. H., Choi Y. E. (2019). Lipid transfer proteins (AaLTP3 and AaLTP4) are involved in sesquiterpene lactone secretion from glandular trichomes in Artemisia annua. Plant Cell. Physiology 60, 2826–2836. 10.1093/pcp/pcz171 PubMed DOI
Alhoraibi H., Bigeard J., Rayapuram N., Colcombet J., Hirt H. (2019). Plant immunity: The MTI-ETI model and beyond. Curr. Issues Mol. Biol. 30, 39–58. 10.21775/cimb.030.039 PubMed DOI
Armes N. J., Jadhav D. R., King A. B. S. (1992). Pyrethroid resistance in the pod borer, Helicoverpa armigera. Presented at the proceeding brighton crop protection conference — pests and diseases. Bracknel, UK, 239–244.
Arondel V., Kader J.-C. (1990). Lipid transfer in plants. Experientia 46, 579–585. 10.1007/BF01939696 PubMed DOI
Bailey T. L., Elkan C. (1994). Fitting a mixture model by expectation maximization to discover motifs. Biopolymer 9. PubMed
Bailey T. L., Johnson J., Grant C. E., Noble W. S. (2015). The MEME suite. Nucleic Acids Res. 43, W39–W49. 10.1093/nar/gkv416 PubMed DOI PMC
Barmukh R., Roorkiwal M., Jaba J., Chitikineni A., Mishra S. P., Sagurthi S. R., et al. (2021). Development of a dense genetic map and QTL analysis for pod borer Helicoverpa armigera (Hübner) resistance component traits in chickpea (Cicer arietinum L). Plant Genome 14 (1), e20071. 10.1002/tpg2.20071 PubMed DOI
Bethesda M. (1988). National center for Biotechnology information (NCBI). [WWW Document]. URL: https://www.ncbi.nlm.nih.gov/ .
Boutrot F., Chantret N., Gautier M.-F. (2008). Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9, 86. 10.1186/1471-2164-9-86 PubMed DOI PMC
Bulger M., Groudine M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell. 144, 327–339. 10.1016/j.cell.2011.01.024 PubMed DOI PMC
Carvalho A. de O., Gomes V. M. (2007). Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28, 1144–1153. 10.1016/j.peptides.2007.03.004 PubMed DOI
Choi A. M., Lee S. B., Cho S. H., Hwang I., Hur C.-G., Suh M. C. (2008). Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (Sesamum indicum L) seeds. Plant Physiology Biochem. 46, 127–139. 10.1016/j.plaphy.2007.10.003 PubMed DOI
Chou M.-X., Wei X.-Y., Chen D.-S., Zhou J.-C. (2006). Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization. J. Exp. Bot. 57, 2673–2685. 10.1093/jxb/erl030 PubMed DOI
Conesa A., Götz S. (2008). Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832. 10.1155/2008/619832 PubMed DOI PMC
Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. 10.1093/bioinformatics/bti610 PubMed DOI
Dai X., Zhuang Z., Zhao P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54. 10.1093/nar/gky316 PubMed DOI PMC
del Carmen Ramírez-Medeles M., Aguilar M. B., Miguel R. N., Bolaños-García V. M., García-Hernández E., Soriano-García M. (2003). Amino acid sequence, biochemical characterization, and comparative modeling of a nonspecific lipid transfer protein from Amaranthus hypochondriacus. Arch. Biochem. Biophys. 415, 24–33. 10.1016/s0003-9861(03)00201-7 PubMed DOI
Dhaliwal G. S., Jindal V., Mohindru B. (2015). Crop losses due to insect pests: Global and Indian scenario. Ind. Jour. Entomol. 77, 165. 10.5958/0974-8172.2015.00033.4 DOI
Dinesh K., Anusha S., Singh R. B., Dangi N. L. (2017). Estimation of avoidable yield losses caused by Helicoverpa armigera (Hubner) on chickpea. J. Entomology Zoology Stud. 5 (2), 1476–1478.
Duo J., Xiong H., Wu X., Li Y., Si J., Zhang C., et al. (2021). Genome-wide identification and expression profile under abiotic stress of the barley non-specific lipid transfer protein gene family and its Qingke Orthologues. BMC Genomics 22, 674. 10.1186/s12864-021-07958-8 PubMed DOI PMC
Edqvist J., Blomqvist K., Nieuwland J., Salminen T. A. (2018). Plant lipid transfer proteins: Are we finally closing in on the roles of these enigmatic proteins? J. Lipid Res. 59, 1374–1382. 10.1194/jlr.R083139 PubMed DOI PMC
Finkina E. I., Melnikova D. N., Bogdanov I. V., Ovchinnikova T. V. (2016). Lipid transfer proteins as components of the plant innate immune system: Structure, functions, and applications. Acta Naturae 8, 47–61. 10.32607/20758251-2016-8-2-47-61 PubMed DOI PMC
García-Olmedo F., Molina A., Segura A., Moreno M. (1995). The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 3, 72–74. 10.1016/s0966-842x(00)88879-4 PubMed DOI
Gorlova O., Fedorov A., Logothetis C., Amos C., Gorlov I. (2014). Genes with a large intronic burden show greater evolutionary conservation on the protein level. BMC Evol. Biol. 14, 50. 10.1186/1471-2148-14-50 PubMed DOI PMC
Gowda C. L. L., Ramesh S., Chandra S., Upadhyaya H. D. (2005). Genetic basis of pod borer (Helicoverpa armigera) resistance and grain yield in desi and Kabuli Chickpea (Cicer arietinum L) under unprotected conditions. Euphytica 145, 199–214. 10.1007/s10681-005-1165-7 DOI
Heidari P., Puresmaeli F., Mora-Poblete F. (2022). Genome-wide identification and molecular evolution of the magnesium transporter (MGT) gene family in Citrullus lanatus and Cucumis sativus. Agronomy 12, 2253. 10.3390/agronomy12102253 DOI
Horton P., Park K.-J., Obayashi T., Fujita N., Harada H., Adams-Collier C. J., et al. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 35, W585–W587. 10.1093/nar/gkm259 PubMed DOI PMC
Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. (2015). Gsds 2.0: An upgraded gene feature visualization server. Bioinformatics 31, 1296–1297. 10.1093/bioinformatics/btu817 PubMed DOI PMC
Innan H., Kondrashov F. (2010). The evolution of gene duplications: Classifying and distinguishing between models. Nat. Rev. Genet. 11 (2), 97–108. 10.1038/nrg2689 PubMed DOI
Jaiswal P., Cheruku J. R., Kumar K., Yadav S., Singh A., Kumari P., et al. (2012). Differential transcript accumulation in chickpea during early phases of compatible interaction with a neurotrophic fungus Ascochyta rabiei. Mol. Biol. Rep. 39, 4635–4646. 10.1007/s11033-011-1255-7 PubMed DOI
Kader J. C. (1975). Proteins and the intracellular exchange of lipids: I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochimica Biophysica Acta (BBA) - Lipids Lipid Metabolism 380, 31–44. 10.1016/0005-2760(75)90042-9 PubMed DOI
Kader J. C. (1996). LIPID-TRANSFER proteins in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 47, 627–654. 10.1146/annurev.arplant.47.1.627 PubMed DOI
Kerchev P. I., Fenton B., Foyer C. H., Hancock R. D. (2012). Plant responses to insect herbivory: Interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant, Cell. & Environ. 35, 441–453. 10.1111/j.1365-3040.2011.02399.x PubMed DOI
Keshan R., RaginiSingh I. K., Singh A. (2021). Genome wide investigation of MAPKKKs from Cicer arietinum and their involvement in plant defense against Helicoverpa armigera. Physiological Mol. Plant Pathology 115, 101685. 10.1016/j.pmpp.2021.101685 DOI
Kessler A., Baldwin I. T. (2002). P lant R esponses to I nsect H erbivory: The emerging molecular analysis. Annu. Rev. Plant Biol. 53, 299–328. 10.1146/annurev.arplant.53.100301.135207 PubMed DOI
Khatodia S., Bhatotia K., Behl R. K. (2017). Helicoverpa resistant chickpea plants: From bt toxins to plant-mediated RNAi 9.
Kondrashov F. A., Rogozin I. B., Wolf Y. I., Koonin E. V. (2002). Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008. 10.1186/gb-2002-3-2-research0008 PubMed DOI PMC
Koressaar T., Remm M. (2007). Enhancements and modifications of primer design program Primer3. PubMed
Kõressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. (2018). Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938. 10.1093/bioinformatics/bty036 PubMed DOI
Kristensen A. K., Brunstedt J., Nielsen K. K., Roepstorff P., Mikkelsen J. D. (2000). Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves. Plant Sci. 155, 31–40. 10.1016/S0168-9452(00)00190-4 PubMed DOI
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., et al. (2009). Circos: An information aesthetic for comparative genomics. Genome Res. 19 (9), 1639–1645. 10.1101/gr.092759.109 PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Kumar A., Panwar R., Singh A., Singh I. K. (2020). “Role of calcium signalling during plant–herbivore interaction,” in Plant stress biology. Editors Giri B., Sharma M. P. (Singapore: Springer Singapore; ), 491–510. 10.1007/978-981-15-9380-2_16 DOI
Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Peer Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30–325. 10.1093/NAR/30.1.325 PubMed DOI PMC
Letunic I., Bork P. (2021). Interactive tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC
Li G., Hou M., Liu Y., Pei Y., Ye M., Zhou Y., et al. (2019). Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 20, 375. 10.1186/s12864-019-5698-x PubMed DOI PMC
Marchler-Bauer A., Derbyshire M. K., Gonzales N. R., Lu S., Chitsaz F., Geer L. Y., et al. (2015). Cdd: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226. 10.1093/nar/gku1221 PubMed DOI PMC
McLeay R. C., Bailey T. L. (2010). Motif enrichment analysis: A unified framework and an evaluation on ChIP data. BMC Bioinforma. 11, 165. 10.1186/1471-2105-11-165 PubMed DOI PMC
Pandey S. P., Srivastava S., Goel R., Lakhwani D., Singh P., Asif M. H., et al. (2017). Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci. Rep. 7, 44729. 10.1038/srep44729 PubMed DOI PMC
R Studio T. (2020). RStudio. Boston, MA: Integrated Development.
Rasool S., Latef A. A. H. A., Ahmad P. (2015). “Chickpea: Role and responses under abiotic and biotic stress,” in Legumes under environmental stress. Editors Azooz M. M., Ahmad P. (Chichester, UK: John Wiley & Sons, Ltd; ), 67–79. 10.1002/9781118917091.ch4 DOI
Reyes-Díaz M., Lobos T., Cardemil L., Nunes-Nesi A., Retamales J., Jaakola L., et al. (2016). Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 21, 567. 10.3390/molecules21060567 PubMed DOI PMC
Reymond P., Farmer E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404–411. 10.1016/S1369-5266(98)80264-1 PubMed DOI
Romeis J., Sharma H. C., Sharma K. K., Das S., Sarmah B. K. (2004). The potential of transgenic chickpeas for pest control and possible effects on non-target arthropods. Crop Prot. 23, 923–938. 10.1016/j.cropro.2004.02.004 DOI
Salcedo G., Sánchez-Monge R., Barber D., Díaz-Perales A. (2007). Plant non-specific lipid transfer proteins: An interface between plant defence and human allergy. Biochimica Biophysica Acta (BBA) - Mol. Cell. Biol. Lipids 1771, 781–791. 10.1016/j.bbalip.2007.01.001 PubMed DOI
Salminen T. A., Blomqvist K., Edqvist J. (2016). Lipid transfer proteins: Classification, nomenclature, structure, and function. Planta 244, 971–997. 10.1007/s00425-016-2585-4 PubMed DOI PMC
Sanyal I., Singh A. K., Kaushik M., Amla D. V. (2005). Agrobacterium-mediated transformation of chickpea (Cicer arietinum L) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci. 168 (4), 1135–1146. 10.1007/s12298-010-0030-x DOI
Sarmah B. K., Acharjee S., Sharma H. C. (2012). “Chickpea: Crop improvement under changing environment conditions,” in Improving crop productivity in sustainable agriculture. Editors Tuteja N., Gill S. S., Tuteja R. (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; ), 361–380. 10.1002/9783527665334.ch15 DOI
Sharma S., Kooner R., Arora R. (2017). “Insect pests and crop losses,” in Breeding insect resistant crops for sustainable agriculture. Editors Arora R., Sandhu S. (Singapore: Springer Singapore; ), 45–66. 10.1007/978-981-10-6056-4_2 DOI
Singh A., Singh I. K., Verma P. K. (2008). Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J. Exp. Bot. 59, 2379–2392. 10.1093/jxb/ern111 PubMed DOI
Singh I. K., Kumar S., Singh S., Singh A. (2017). Expression profiling of mitogen-activated protein kinase genes from chickpea (Cicer arietinum L) in response to Helicoverpa armigera, wounding and signaling compounds. J. Asia-Pacific Entomology 20, 942–948. 10.1016/j.aspen.2017.07.003 DOI
Singh A., Jain D., Tyagi C., Singh S., Kumar S., Singh I. K. (2018a). In silico prediction of active site and in vitro DNase and RNase activities of Helicoverpa-inducible pathogenesis related-4 protein from Cicer arietinum. Int. J. Biol. Macromol. 113, 869–880. 10.1016/j.ijbiomac.2018.03.027 PubMed DOI
Singh A., Nath O., Singh S., Kumar S., Singh I. K. (2018b). Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant gene. 13, 25–35. 10.1016/j.plgene.2017.12.001 DOI
Singh A., Tyagi C., Nath O., Singh I. K. (2018c). Helicoverpa-inducible thioredoxin h from cicer arietinum: Structural modeling and potential targets. Int. J. Biol. Macromol. 109, 231–243. 10.1016/j.ijbiomac.2017.12.079 PubMed DOI
Suyama M., Torrents D., Bork P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 1, W609–W612. 10.1093/nar/gkl315 PubMed DOI PMC
Takishima K., Watanabe S., Yamada M., Suga T., Mamiya G. (1988). Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean. Eur. J. Biochem. 177, 241–249. 10.1111/j.1432-1033.1988.tb14368.x PubMed DOI
The UniProt Consortium (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489. 10.1093/nar/gkaa1100 PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B., Remm M., et al. (2012). Primer3 - new capabilities and interfaces. PubMed PMC
Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31, 240–246. 10.1038/nbt.2491 PubMed DOI
Verma M., Kumar V., Patel R. K., Garg R., Jain M. (2015). Ctdb: An integrated chickpea transcriptome database for functional and applied genomics. PLoS ONE 10, e0136880. 10.1371/journal.pone.0136880 PubMed DOI PMC
Voorrips R. E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78. 10.1093/jhered/93.1.77 PubMed DOI
Walker J. M. (Editor) (2005). The proteomics protocols handbook (Totowa, NJ: Humana Press; ). 10.1385/1592598900 DOI
Wang Y., Tang H., Debarry J. D., Tan X., Li J., Wang X., et al. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40 (7), e49. 10.1093/nar/gkr1293 PubMed DOI PMC
Wang X., Li Q., Cheng C., Zhang K., Lou Q., Li J., et al. (2020). Genome-wide analysis of a putative lipid transfer protein LTP_2 gene family reveals CsLTP_2 genes involved in response of cucumber against root-knot nematode (Meloidogyne incognita). Genome 63, 225–238. 10.1139/gen-2019-0157 PubMed DOI
Wang C., Gao H., Chu Z., Ji C., Xu Y., Cao W., et al. (2021). A nonspecific lipid transfer protein, StLTP10, mediates resistance to Phytophthora infestans in potato. Mol. Plant Pathol. 22, 48–63. 10.1111/mpp.13007 PubMed DOI PMC
Wei K., Zhong X. (2014). Non-specific lipid transfer proteins in maize. BMC Plant Biol. 14, 281. 10.1186/s12870-014-0281-8 PubMed DOI PMC
Yeats T. H., Rose J. K. C. (2008). The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci. 17, 191–198. 10.1110/ps.073300108 PubMed DOI PMC
Yu X., Zhang W., Zhang Y., Zhang X., Lang D., Zhang X., et al. (2018). The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 46, 197–212. 10.1071/FP18106 PubMed DOI