Porcine mononuclear phagocyte subpopulations in the lung, blood and bone marrow: dynamics during inflammation induced by Actinobacillus pleuropneumoniae
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20519113
PubMed Central
PMC2898061
DOI
10.1051/vetres/2010035
PII: v09537
Knihovny.cz E-zdroje
- MeSH
- Actinobacillus pleuropneumoniae * MeSH
- buňky kostní dřeně fyziologie MeSH
- CD antigeny genetika metabolismus MeSH
- fagocyty cytologie fyziologie MeSH
- geny MHC třídy II genetika fyziologie MeSH
- infekce bakteriemi rodu Actinobacillus krev mikrobiologie patologie veterinární MeSH
- nemoci prasat mikrobiologie patologie MeSH
- plíce cytologie MeSH
- prasata MeSH
- regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
Mononuclear phagocytes (MP) are cells of nonspecific immunity, playing an essential role in defense against bacterial pathogens. Although various MP subpopulations have been described in the pig, relations among these populations in vivo are unknown to date. The present study was aimed at describing porcine MP subpopulations infiltrating inflamed tissue of pigs under in vivo conditions. Actinobacillus pleuropneumoniae (APP) infection was used to induce an inflammatory response. CD172alpha, CD14, CD163, MHCII and CD203alpha cell surface molecules were used to identify MP by flow cytometry. Changes in MP subpopulations in the peripheral blood (PB) and bone marrow (BM) compartments along with the analysis of MP appearing in the inflamed lungs were assessed to elucidate the possible origin and maturation stages of the infiltrating MP. The MP population migrating to the inflamed lungs was phenotype CD14+ CD163+ CD203alpha+/- MHCII+/-. Concomitantly, after APP infection there was an increase in the PB MP CD14+ CD163+ CD203alpha- MHC II- population, suggesting that these cells give rise to inflammatory monocytes/macrophages. The CD203alpha and MHCII molecules appear on these cells after leaving the PB. In healthy animals, the BM MP precursors were represented by CD14- CD163- cells maturing directly into CD14+ CD163- that were then released into the PB. After infection, an altered maturation pathway of MP precursors appeared, represented by CD14- CD163- CD203alpha- MHCII- MP directly switching into CD14+ CD163+ CD203alpha- MHCII- MP. In conclusion, two different MP maturation pathways were suggested in pigs. The use of these pathways differs under inflammatory and noninflammatory conditions.
Zobrazit více v PubMed
Baarsch M.J., Foss D.L., Murtaugh M.P., Pathophysiologic correlates of acute porcine pleuropneumonia, Am. J. Vet. Res. (2000) 61:684–690 PubMed
Bosse J.T., Janson H., Sheehan B.J., Beddek A.J., Rycroft A.N., Kroll J.S., Langford P.R., Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection, Microbes Infect. (2002) 4:225–235 PubMed
Chamorro S., Revilla C., Alvarez B., Lopez-Fuertes L., Ezquerra A., Dominguez J., Phenotypic characterization of monocyte subpopulations in the pig, Immunobiology (2000) 202:82–93 PubMed
Chamorro S., Revilla C., Gomez N., Alvarez B., Alonso F., Ezquerra A., Dominguez J., In vitro differentiation of porcine blood CD163− and CD163+ monocytes into functional dendritic cells, Immunobiology (2004) 209:57–65 PubMed
Chamorro S., Revilla C., Alvarez B., Alonso F., Ezquerra A., Dominguez J., Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation, Immunology (2005) 114:63–71 PubMed PMC
Cho W.S., Chae C., Expression of nitric oxide synthase 2 and tumor necrosis factor α in swine naturally infected with Actinobacillus pleuropneumoniae, Vet. Pathol. (2002) 39:27–32 PubMed
Delventhal S., Hensel A., Petzoldt K., Pabst R., Cellular changes in the bronchoalveolar lavage (BAL) of pigs, following immunization by the enteral or respiratory route, Clin. Exp. Immunol. (1992) 90:223–227 PubMed PMC
Faldyna M., Nechvatalova K., Sinkora J., Knotigova P., Leva L., Krejci J., Toman M., Experimental Actinobacillus pleuropmeumoniae infection in piglets with different types and levels of specific protection: Immunophenotypic analysis of lymphocyte subsets in the circulation and respiratory mucosal lymphoid tissue, Vet. Immunol. Immunopathol. (2005) 107:143–152 PubMed
Fogg D.K., Sibon C., Miled C., Jung S., Aucouturier P., Littman D.R., et al., A clonogenic bone marrow progenitor specific for macrophages and dendritic cells, Science (2006) 311:83–87 PubMed
Geissmann F., Jung S., Littman D.R., Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity (2003) 19:71–82 PubMed
Gordon S., Taylor P.R., Monocyte and macrophage heterogeneity, Nat. Rev. Immunol. (2005) 5:953–964 PubMed
Haverson K., Bailey M., Higgins V.R., Bland P.W., Stokes C.R., Characterization of monoclonal antibodies specific for monocytes, macrophages and granulocytes from porcine peripheral blood and mucosal tissues, J. Immunol. Methods (1994) 170:233–245 PubMed
Landsman L., Jung S., Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages, J. Immunol. (2007) 179:3488–3494 PubMed
McCullough K.C., Schaffner R., Natale V., Kim Y.B., Summerfield A., Phenotype of porcine monocytic cells: modulation of surface molecule expression upon monocyte differentiation into macrophages, Vet. Immunol. Immunopathol. (1997) 58:265–275 PubMed
Sanchez C., Domenech N., Vazquez J., Alonso F., Ezquerra A., Dominguez J., The Porcine 2A10 antigen is homologous to human CD163 and related to macrophage differentiation, J. Immunol. (1999) 162:5230–5237 PubMed
Serbina N.V., Pamer E.G., Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nat. Immunol. (2006) 7:311–317 PubMed
Strauss-Ayali D., Conrad S.M., Mosser D.M., Monocyte subpopulations and their differentiation patterns during infection, J. Leukoc. Biol. (2007) 82:244–252 PubMed
Summerfield A., McCullough K., Porcine bone marrow myeloid cells: phenotype and adhesion molecule expression, J. Leukoc. Biol. (1997) 62:176–185 PubMed
Summerfield A., Haverson K., Thacker E., McCullough K.C., Differentiation of porcine myeloid bone marrow haematopoietic cell populations, Vet. Immunol. Immunopathol. (2001) 80:121–129 PubMed
Summerfield A., Guzylack-Piriou L., Schaub A., Carrasco C.P., Tache V., Charley B., McCullough K.C., Porcine peripheral blood dendritic cells and natural interferon-producing cells, Immunology (2003) 110:440–449 PubMed PMC
Summerfield A., McCullough K.C., The porcine dendritic cell family, Dev. Comp. Immunol. (2009) 33:299–309 PubMed PMC
Sunderkotter C., Nikolic T., Dillon M.J., Van Rooijen N., Stehling M., Drevets D.A., Leenen P.J., Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response, J. Immunol. (2004) 172:4410–4417 PubMed
Xu H., Manivannan A., Dawson R., Crane I.J., Mack M., Sharp P., Liversidge J., Differentiation to the CCR2+ inflammatory phenotype in vivo as a constitutive, time-limited property of blood monocytes and is independent of local inflammatory mediators, J. Immunol. (2005) 175:6915–6923 PubMed PMC
Zelnickova P., Faldyna M., Stepanova H., Ondracek J., Kovaru F., Intracellular cytokine detection by flow cytometry in pigs: fixation, permeabilization and cell surface staining, J. Immunol. Methods (2007) 327:18–29 PubMed
Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)