MALDI MSI Reveals the Spatial Distribution of Protein Markers in Tracheobronchial Lymph Nodes and Lung of Pigs after Respiratory Infection

. 2020 Dec 03 ; 25 (23) : . [epub] 20201203

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33287430

Grantová podpora
CEITEC 2020 (LQ1601) Ministry of Education, Youth and Sports of the Czech Republic
AF-IGA-2018-tym005 IGA TP MENDELU
RO0518 Ministry of Agriculture of the Czech Republic

Respiratory infections are a real threat for humans, and therefore the pig model is of interest for studies. As one of a case for studies, Actinobacillus pleuropneumoniae (APP) caused infections and still worries many pig breeders around the world. To better understand the influence of pathogenic effect of APP on a respiratory system-lungs and tracheobronchial lymph nodes (TBLN), we aimed to employ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF MSI). In this study, six pigs were intranasally infected by APP and two were used as non-infected control, and 48 cryosections have been obtained. MALDI-TOF MSI and immunohistochemistry (IHC) were used to study spatial distribution of infectious markers, especially interleukins, in cryosections of porcine tissues of lungs (necrotic area, marginal zone) and tracheobronchial lymph nodes (TBLN) from pigs infected by APP. CD163, interleukin 1β (IL‑1β) and a protegrin-4 precursor were successfully detected based on their tryptic fragments. CD163 and IL‑1β were confirmed also by IHC. The protegrin-4 precursor was identified by MALDI-TOF/TOF directly on the tissue cryosections. CD163, IL‑1β and protegrin‑4 precursor were all significantly (p < 0.001) more expressed in necrotic areas of lungs infected by APP than in marginal zone, TBLN and in control lungs.

Zobrazit více v PubMed

Li R.W., Wang J.F., Liu L.B., Zhang R.X., Hao X.P., Han Q.G., Wang J.C., Yuan W.Z. Direct detection of Actinobacillus pleuropneumoniae in swine lungs and tonsils by real-time recombinase polymerase amplification assay. Mol. Cell. Probes. 2019;45:14–18. doi: 10.1016/j.mcp.2019.03.007. PubMed DOI

Pereira M.F., Rossi C.C., Seide L.E., Martins S., Dolinski C.D., Bazzolli D.M.S. Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity. Res. Vet. Sci. 2018;118:498–501. doi: 10.1016/j.rvsc.2018.05.003. PubMed DOI

Aper D., Frombling J., Bagcioglu M., Ehling-Schulz M., Hennig-Pauka I. Comparison of metabolic adaptation and biofilm formation of Actinobacillus pleuropneumoniae field isolates from the upper and lower respiratory tract of swine with respiratory disease. Vet. Microbiol. 2020;240 doi: 10.1016/j.vetmic.2019.108532. PubMed DOI

Loera-Muro A., Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet. Microbiol. 2018;217:66–75. doi: 10.1016/j.vetmic.2018.02.028. PubMed DOI

Ondrackova P., Leva L., Kucerova Z., Vicenova M., Mensikova M., Faldyna M. Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental Actinobacillus pleuropneumoniae infection and the role of chemokines. Vet. Res. 2013;44:98. doi: 10.1186/1297-9716-44-98. PubMed DOI PMC

Kowal K., Silver R., Sławińska E., Bielecki M., Chyczewski L., Kowal-Bielecka O. CD163 and its role in inflammation. Folia Histochem. Cytobiol. 2011;49:365–374. doi: 10.5603/FHC.2011.0052. PubMed DOI

Faldyna M., Nechvatalova K., Sinkora J., Knotigova P., Leva L., Krejci J., Toman M. Experimental Actinobacillus pleuropneumoniae infection in piglets with different types and levels of specific protection: Immunophenotypic analysis of lymphocyte subsets in the circulation and respiratory mucosal lymphoid tissue. Vet. Immunol. Immunopathol. 2005;107:143–152. doi: 10.1016/j.vetimm.2005.04.007. PubMed DOI

Sassu E.L., Ladinig A., Talker S.C., Stadler M., Knecht C., Stein H., Frömbling J., Richter B., Spergser J., Ehling-Schulz M., et al. Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae. Vet. Res. 2017;48:4. doi: 10.1186/s13567-017-0411-z. PubMed DOI PMC

Auger E., Deslandes V., Ramjeet M., Contreras I., Nash J.H.E., Harel J., Gottschalk M., Olivier M., Jacques M. Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect. Immun. 2009;77:1426–1441. doi: 10.1128/IAI.00297-08. PubMed DOI PMC

Konze S.A., Abraham W.R., Goethe E., Surges E., Kuypers M.M.M., Hoeltig D., Meens J., Vogel C., Stiesch M., Valentin-Weigand P., et al. Link between heterotrophic carbon fixation and virulence in the porcine lung pathogen Actinobacillus pleuropneumoniae. Infect. Immun. 2019;87 doi: 10.1128/IAI.00768-18. PubMed DOI PMC

Xie F., Li G., Zhou L., Zhang Y., Cui N., Liu S., Wang C. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge. BMC Vet. Res. 2017;13:14. doi: 10.1186/s12917-016-0928-9. PubMed DOI PMC

Hedegaard J., Skovgaard K., Mortensen S., Sorensen P., Jensen T.K., Hornshoj H., Bendixen C., Heegaard P.M.H. Molecular characterisation of the early response in pigs to experimental infection with Actinobacillus pleuropneumoniae using cDNA microarrays. Acta Vet. Scand. 2007;49 doi: 10.1186/1751-0147-49-11. PubMed DOI PMC

Ondrackova P., Nechvatalova K., Kucerova Z., Leva L., Dominguez J., Faldyna M. Porcine mononuclear phagocyte subpopulations in the lung, blood and bone marrow: Dynamics during inflammation induced by Actinobacillus pleuropneumoniae. Vet. Res. 2010;41 doi: 10.1051/vetres/2010035. PubMed DOI PMC

Baraldi T.G., Cruz N.R.N., Pereira D.A., Galdeano J.V.B., Gatto I.R.H., Silva A.F.D., Panzardi A., Linhares D.C.L., Mathias L.A., de Oliveira L.G. Antibodies against Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and influenza virus and their relationships with risk factors, clinical signs and lung lesions in pig farms with one-site production systems in Brazil. Prev. Vet. Med. 2019;171 doi: 10.1016/j.prevetmed.2019.104748. PubMed DOI

Czyzewska-Dors E., Dors A., Kwit K., Stasiak E., Pomorska-Mol M. Pig lung immune cytokine response to the swine influenza virus and the Actinobacillus pleuropneumoniae infection. J. Vet. Res. 2017;61:259–265. doi: 10.1515/jvetres-2017-0036. PubMed DOI PMC

Lassen B., Geldhof P., Halli O., Vlaminck J., Oliviero C., Orro T., Heinonen M. Anti-Ascaris suum IgG antibodies in fattening pigs with different respiratory conditions. Vet. Parasitol. 2019;265:85–90. doi: 10.1016/j.vetpar.2018.12.005. PubMed DOI

Hoeltig D., Rohde J., Frase R., Nietfeld F., Waldmann K.H., Valentin-Weigand P., Meens J. Multi-organ spreading of Actinobacillus pleuropneumoniae serovar 7 in weaned pigs during the first week after experimental infection. Vet. Res. 2018;49 doi: 10.1186/s13567-018-0592-0. PubMed DOI PMC

Do T., Jarosova R., Smidova L., Guran R., Ondrackova P., Faldyna M., Sladek Z., Zitka O. MALDI-TOF MSI method for determining spatial distribution of infection markers in pulmonary tissues of pigs; Proceedings of the MendelNet 2018—Proceedings of 25th International PhD Students Conference; Brno, Czech Republic. 7–8 November 2018; pp. 495–500.

Jarosova R., Do T., Tesarova B., Smidova V., Guran R., Ondrackova P., Faldyna M., Sladek Z., Zitka O. Determining spatial distribution of interleukin-1β as an infection marker in pulmonary porcine tissues; Proceedings of the MendelNet 2019—Proceedings of 26th International PhD Students Conference; Brno, Czech Republic. 6–7 November 2019; pp. 459–464.

Angel P.M., Caprioli R.M. Matrix-assisted laser desorption ionization imaging mass spectrometry: In situ molecular mapping. Biochemistry. 2013;52:3818–3828. doi: 10.1021/bi301519p. PubMed DOI PMC

Sun C.L., Liu W., Mu Y., Wang X. 1,1′-binaphthyl-2,2′-diamine as a novel MALDI matrix to enhance the in situ imaging of metabolic heterogeneity in lung cancer. Talanta. 2020;209 doi: 10.1016/j.talanta.2019.120557. PubMed DOI

Aichler M., Walch A. MALDI Imaging mass spectrometry: Current frontiers and perspectives in pathology research and practice. Lab. Investig. 2015;95:422–431. doi: 10.1038/labinvest.2014.156. PubMed DOI

Cazares L.H., Troyer D.A., Wang B., Drake R.R., Semmes O.J. MALDI tissue imaging: From biomarker discovery to clinical applications. Anal. Bioanal. Chem. 2011;401:17–27. doi: 10.1007/s00216-011-5003-6. PubMed DOI PMC

Lin L.E., Chen C.L., Huang Y.C., Chung H.H., Lin C.W., Chen K.C., Peng Y.J., Ding S.T., Wang M.Y., Shen T.L., et al. Precision biomarker discovery powered by microscopy image fusion-assisted high spatial resolution ambient ionization mass spectrometry imaging. Anal. Chim. Acta. 2020;1100:75–87. doi: 10.1016/j.aca.2019.11.014. PubMed DOI

Boskamp T., Lachmund D., Casadonte R., Hauberg-Lotte L., Kobarg J.H., Kriegsmann J., Maass P. Using the chemical noise background in MALDI mass spectrometry imaging for mass alignment and calibration. Anal. Chem. 2020;92:1301–1308. doi: 10.1021/acs.analchem.9b04473. PubMed DOI

Maslov D.R., Svirkova A., Allmaier G., Marchetti-Deschamann M., Pavelic S.K. Optimization of MALDI-TOF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem. 2019;283:275–286. doi: 10.1016/j.foodchem.2018.12.126. PubMed DOI

Dufresne M., Patterson N.H., Norris J.L., Caprioli R.M. Combining salt doping and matrix sublimation for high spatial resolution MALDI imaging mass spectrometry of neutral lipids. Anal. Chem. 2019;91:12928–12934. doi: 10.1021/acs.analchem.9b02974. PubMed DOI

Shi R., Dai X., Li W.F., Lu F., Liu Y., Qu H.H., Li H., Chen Q.Y., Tian H., Wu E.H., et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano. 2017;11:9500–9513. doi: 10.1021/acsnano.7b05328. PubMed DOI

Norris J.L., Caprioli R.M. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 2013;113:2309–2342. doi: 10.1021/cr3004295. PubMed DOI PMC

Jung J. Recent advances of MALDI-mass spectrometry imaging in cancer research. Mass Spectrom. Lett. 2019;10:71–78. doi: 10.5478/msl.2019.10.3.71. DOI

Vanickova L., Guran R., Kollár S., Emri G., Krizkova S., Do T., Heger Z., Zitka O., Adam V. Mass spectrometric imaging of cysteine rich proteins in human skin. Int. J. Biol. Macromol. 2019;125:270–277. doi: 10.1016/j.ijbiomac.2018.11.272. PubMed DOI

Guran R., Vanickova L., Horak V., Krizkova S., Michalek P., Heger Z., Zitka O., Adam V. MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles. PLoS ONE. 2017;12:e0189305. doi: 10.1371/journal.pone.0189305. PubMed DOI PMC

Holzlechner M., Strasser K., Zareva E., Steinhäuser L., Birnleitner H., Beer A., Bergmann M., Oehler R., Marchetti-Deschmann M. In situ characterization of tissue-resident immune cells by MALDI mass spectrometry imaging. J. Proteome Res. 2017;16:65–76. doi: 10.1021/acs.jproteome.6b00610. PubMed DOI

Skytthe M.K., Graversen J.H., Moestrup S.K. Targeting of CD163(+) macrophages in inflammatory and malignant diseases. Int. J. Mol. Sci. 2020;21:5497. doi: 10.3390/ijms21155497. PubMed DOI PMC

De Macedo C.S., Anderson D.M., Schey K.L. MALDI (matrix assisted laser desorption ionization) imaging mass spectrometry (IMS) of skin: Aspects of sample preparation. Talanta. 2017;174:325–335. doi: 10.1016/j.talanta.2017.06.018. PubMed DOI

Mutuku S.M., Trim P.J., Prabhala B.K., Irani S., Bremert K.L., Logan J.M., Brooks D.A., Stahl J., Centenera M.M., Snel M.F., et al. Evaluation of small molecule drug uptake in patient-derived prostate cancer explants by mass spectrometry. Sci. Rep. 2019;9:15008. doi: 10.1038/s41598-019-51549-3. PubMed DOI PMC

Hoffmann F., Umbreit C., Krüger T., Pelzel D., Ernst G., Kniemeyer O., Guntinas-Lichius O., Berndt A., von Eggeling F. Identification of proteomic markers in head and neck cancer using MALDI–MS imaging, LC–MS/MS, and immunohistochemistry. Proteom. Clin. Appl. 2019;13:1700173. doi: 10.1002/prca.201700173. PubMed DOI

Kriegsmann M., Zgorzelski C., Casadonte R., Schwamborn K., Muley T., Winter H., Eichhorn M., Eichhorn F., Warth A., Deininger S.O., et al. Mass spectrometry imaging for reliable and fast classification of non-small cell lung cancer subtypes. Cancers. 2020;12:2704. doi: 10.3390/cancers12092704. PubMed DOI PMC

Gour S., Kumar V., Singh A., Gadhave K., Goyal P., Pandey J., Giri R., Yadav J.K. Mammalian antimicrobial peptide protegrin-4 self assembles and forms amyloid-like aggregates: Assessment of its functional relevance. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2019;25:e3151. doi: 10.1002/psc.3151. PubMed DOI

Myers M.J., Baarsch M.J., Murtaugh M.P. Effects of pentoxifylline on inflammatory cytokine expression and acute pleuropneumonia in swine. Immunobiology. 2002;205:17–34. doi: 10.1078/0171-2985-00108. PubMed DOI

Balaji R., Wright K.J., Turner J.L., Hill C.M., Dritz S.S., Fenwick B., Carroll J.A., Zannelli M.E., Beausang L.A., Minton J.E. Circulating cortisol, tumor necrosis factor-alpha interleukin-1β, and interferon-gamma in pigs infected with Actinobacillus pleuropneumoniae. J. Anim. Sci. 2002;80:202–207. doi: 10.2527/2002.801202x. PubMed DOI

Zeng F., Dong R., Zhao C.C., Liu D.W., Zheng E.Q., Song C.X., Wu Z.F., Li Z.C. Constitutive expression of antimicrobial peptide PR-39 in transgenic mice significantly enhances resistance to bacterial infection and promotes growth. Transgenic Res. 2018;27:409–422. doi: 10.1007/s11248-018-0084-z. PubMed DOI

Perregaux D.G., Bhavsar K., Contillo L., Shi J.S., Gabel C.A. Antimicrobial peptides initiate IL-1 beta posttranslational processing: A novel role beyond innate immunity. J. Immunol. 2002;168:3024–3032. doi: 10.4049/jimmunol.168.6.3024. PubMed DOI

Dayao D.A.E., Gibson J.S., Blackall P.J., Turni C. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust. Vet. J. 2016;94:227–231. doi: 10.1111/avj.12458. PubMed DOI

Ranade S.S., Ramalingam R. A review on bioactive porcine peptide, protegrin-1. Int. J. Pept. Res. 2020;26:1493–1501. doi: 10.1007/s10989-019-09955-8. DOI

Burkard C., Opriessnig T., Mileham A.J., Stadejek T., Ait-Ali T., Lillico S.G., Whitelaw C.B.A., Archibald A.L. Pigs Lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J. Virol. 2018;92:e00415–e00418. doi: 10.1128/JVI.00415-18. PubMed DOI PMC

Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The immunology of macrophage activation syndrome. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.00119. PubMed DOI PMC

Chen C., Perry T.L., Chitko-McKown C.G., Smith A.D., Cheung L.M., Beshah E., Urban J.F., Dawson H.D. The regulatory actions of retinoic acid on M2 polarization of porcine macrophages. Dev. Comp. Immunol. 2019;98:20–33. doi: 10.1016/j.dci.2019.03.020. PubMed DOI

McGonagle D., Sharif K., O’Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020;19 doi: 10.1016/j.autrev.2020.102537. PubMed DOI PMC

Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020;20:355–362. doi: 10.1038/s41577-020-0331-4. PubMed DOI PMC

Xu X.L., Han M.F., Li T.T., Sun W., Wang D.S., Fu B.Q., Zhou Y.G., Zheng X.H., Yang Y., Li X.Y., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA. 2020;117:10970–10975. doi: 10.1073/pnas.2005615117. PubMed DOI PMC

Tang Y.J., Liu J.J., Zhang D.Y., Xu Z.H., Ji J.J., Wen C.P. Cytokine Storm in COVID-19: The Current evidence and treatment strategies. Front. Immunol. 2020;11:13. doi: 10.3389/fimmu.2020.01708. PubMed DOI PMC

Suckau D., Resemann A., Schuerenberg M., Hufnagel P., Franzen J., Holle A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003;376:952–965. doi: 10.1007/s00216-003-2057-0. PubMed DOI

Kaya I., Michno W., Brinet D., Iacone Y., Zanni G., Blennow K., Zetterberg H., Hanrieder J. Histology-compatible MALDI mass spectrometry based imaging of neuronal lipids for subsequent immunofluorescent staining. Anal. Chem. 2017;89:4685–4694. doi: 10.1021/acs.analchem.7b00313. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace