The effect of diabetes-associated autoantigens on cell processes in human PBMCs and their relevance to autoimmune diabetes development
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
23841104
PubMed Central
PMC3694381
DOI
10.1155/2013/589451
Knihovny.cz E-zdroje
- MeSH
- autoantigeny imunologie metabolismus MeSH
- autoprotilátky imunologie metabolismus MeSH
- diabetes mellitus 1. typu genetika imunologie metabolismus MeSH
- dítě MeSH
- dospělí MeSH
- exprese genu MeSH
- leukocyty mononukleární imunologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- prediabetes genetika imunologie metabolismus MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- autoantigeny MeSH
- autoprotilátky MeSH
Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease; however, T1D pathogenesis likely involves many factors, and sufficient tools for autoreactive T cell detection for the study of this disease are currently lacking. In this study, using gene expression microarrays, we analysed the effect of diabetes-associated autoantigens on peripheral blood mononuclear cells (PBMCs) with the purpose of identifying (pre)diabetes-associated cell processes. Twelve patients with recent onset T1D, 18 first-degree relatives of the TD1 patients (DRL; 9/18 autoantibody positive), and 13 healthy controls (DV) were tested. PBMCs from these individuals were stimulated with a cocktail of diabetes-associated autoantigens (proinsulin, IA-2, and GAD65-derived peptides). After 72 hours, gene expression was evaluated by high-density gene microarray. The greatest number of functional differences was observed between relatives and controls (69 pathways), from which 15% of the pathways belonged to "immune response-related" processes. In the T1D versus controls comparison, more pathways (24%) were classified as "immune response-related." Important pathways that were identified using data from the T1D versus controls comparison were pathways involving antigen presentation by MHCII, the activation of Th17 and Th22 responses, and cytoskeleton rearrangement-related processes. Genes involved in Th17 and TGF-beta cascades may represent novel, promising (pre)diabetes biomarkers.
Zobrazit více v PubMed
Castano L, Eisenbarth GS. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annual Review of Immunology. 1990;8:647–679. PubMed
Foulis AK, Farquharson MA, Meager A. Immunoreactive α-interferon in insulin-secreting β cells in type 1 diabetes mellitus. The Lancet. 1987;2(8573):1423–1427. PubMed
Atkinson MA, Kaufman DL, Campbell L, et al. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. The Lancet. 1992;339(8791):458–459. PubMed
Staeva-Vieira T, Peakman M, von Herrath M. Translational mini-review series on type 1 diabetes: immune-based therapeutic approaches for type 1 diabetes. Clinical and Experimental Immunology. 2007;148(1):17–31. PubMed PMC
Ludvigsson J, Faresjö M, Hjorth M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. New England Journal of Medicine. 2008;359(18):1909–1920. PubMed
Ludvigsson J. Therapy with GAD in diabetes. Diabetes/Metabolism Research and Reviews. 2009;25(4):307–315. PubMed
Bingley PJ, Williams AJK, Gale EAM. Optimized autoantibody-based risk assessment in family members: implications for future intervention trials. Diabetes Care. 1999;22(11):1796–1801. PubMed
Achenbach P, Bonifacio E, Ziegler A. Predicting type 1 diabetes. Current Diabetes Reports. 2005;5(2):98–103. PubMed
Wenzlau JM, Frisch LM, Gardner TJ, Sarkar S, Hutton JC, Davidson HW. Novel antigens in type 1 diabetes: the importance of ZnT8. Current Diabetes Reports. 2009;9(2):105–112. PubMed
Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. The Lancet. 2001;358(9277):221–229. PubMed
Saudková L, Saudek F. Possibilities of preclinical type-1 diabetes diagnostics and methods of detection of autoreactive T cells. Diabetologie Metabolismus Endokrinologie Vyziva. 2003;6(2):70–78.
Roep BO. The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure. Diabetologia. 2003;46(3):305–321. PubMed
Tree TIM, Peakman M. Autoreactive T cells in human type 1 diabetes. Endocrinology and Metabolism Clinics of North America. 2004;33(1):113–133. PubMed
Bottazzo GF, Dean BM, McNally JM. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. New England Journal of Medicine. 1985;313(6):353–360. PubMed
Lindley S, Dayan CM, Bishop A, Roep BO, Peatman M, Tree TIM. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–99. PubMed
Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC. Gene expression in peripheral blood mononuclear cells from children with diabetes. Journal of Clinical Endocrinology and Metabolism. 2007;92(9):3705–3711. PubMed
Vrabelova Z, Kolouskova S, Böhmova K, et al. Protein microarray analysis as a tool for monitoring cellular autoreactivity in type 1 diabetes patients and their relatives. Pediatric Diabetes. 2007;8(5):252–260. PubMed
Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419(6909):845–849. PubMed
Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annual Review of Immunology. 2009;27:485–517. PubMed
Costa VS, Mattana TCC, da Silva MER. Unregulated IL-23/IL-17 immune response in autoimmune diseases. Diabetes Research and Clinical Practice. 2010;88(3):222–226. PubMed
Stechova K, Bohmova K, Vrabelova Z, et al. High T-helper-1 cytokines but low T-helper-3 cytokines, inflammatory cytokines and chemokines in children with high risk of developing type 1 diabetes. Diabetes/Metabolism Research and Reviews. 2007;23(6):462–471. PubMed
Ryden A, Stechova K, Durilova M, Faresjö M. Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes. Diabetes/Metabolism Research and Reviews. 2009;25(4):335–343. PubMed
Martin-Orozco N, Chung Y, Chang SH, Wang Y, Dong C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. European Journal of Immunology. 2009;39(1):216–224. PubMed PMC
Bending D, De La Peña H, Veldhoen M, et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. Journal of Clinical Investigation. 2009;119(3):565–572. PubMed PMC
Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-β are required for differentiation of human T H17 cells. Nature. 2008;454(7202):350–352. PubMed PMC
Manel N, Unutmaz D, Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunology. 2008;9(6):641–649. PubMed PMC
Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunology. 2008;9(6):650–657. PubMed
Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunology. 2007;8(9):942–949. PubMed
Bradshaw EM, Raddassi K, Elyaman W, et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. Journal of Immunology. 2009;183(7):4432–4439. PubMed PMC
Beriou G, Bradshaw EM, Lozano E, et al. TGF-β induces IL-9 production from human Th17 cells. Journal of Immunology. 2010;185(1):46–54. PubMed PMC
Sinha S, Yang W. Cellular signaling for activation of Rho GTPase Cdc42. Cellular Signalling. 2008;20(11):1927–1934. PubMed
Kowluru A. Small G proteins in islet β-cell function. Endocrine Reviews. 2010;31(1):52–78. PubMed PMC
McKnight AJ, Pettigrew KA, Patterson CC, Kilner J, Sadlier DM, Maxwell AP. Investigation of the association of BMP gene variants with nephropathy in Type 1 diabetes mellitus. Diabetic Medicine. 2010;27(6):624–630. PubMed
Westerweel PE, van Velthoven CTJ, Nguyen TQ, et al. Modulation of TGF-β/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. Cardiovascular Diabetology. 2010;9:p. 55. PubMed PMC
Stechova K, Kolar M, Blatny R, et al. Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scandinavian Journal of Immunology. 2012;75(2):210–219. PubMed
Reynier F, Pachot A, Paye M, et al. Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes and Immunity. 2010;11(3):269–278. PubMed
Planas R, Pujol-Borrell R, Vives-Pi M. Global gene expression changes in type 1 diabetes: insights into autoimmune response in the target organ and in the periphery. Immunology Letters. 2010;133(2):55–61. PubMed
Stechova K, Halbhuber Z, Hubackova M, et al. Case report: type 1 diabetes in monozygotic quadruplets. European Journal of Human Genetics. 2012;20(4):457–462. PubMed PMC