Case report: type 1 diabetes in monozygotic quadruplets
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
22108602
PubMed Central
PMC3306859
DOI
10.1038/ejhg.2011.212
PII: ejhg2011212
Knihovny.cz E-zdroje
- MeSH
- autoimunita MeSH
- čtyřčata * MeSH
- diabetes mellitus 1. typu genetika imunologie MeSH
- lidé MeSH
- předškolní dítě MeSH
- regulační T-lymfocyty imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
Type 1 diabetes (T1D) is an autoimmune disease characterized by the lack of insulin due to an autoimmune destruction of pancreatic beta cells. Here, we report a unique case of a family with naturally conceived quadruplets in which T1D was diagnosed in two quadruplets simultaneously. At the same time, the third quadruplet was diagnosed with the pre-diabetic stage. Remarkably, all four quadruplets were positive for anti-islet cell antibodies, GAD65 and IA-A2. Monozygotic status of the quadruplets was confirmed by testing 14 different short tandem repeat polymorphisms. Serological examination confirmed that all quadruplets and their father suffered from a recent enteroviral infection of EV68-71 serotype. To assess the nature of the molecular pathological processes contributing to the development of diabetes, immunocompetent cells isolated from all family members were characterized by gene expression arrays, immune-cell enumerations and cytokine-production assays. The microarray data provided evidence that viral infection, and IL-27 and IL-9 cytokine signalling contributed to the onset of T1D in two of the quadruplets. The propensity of stimulated immunocompetent cells from non-diabetic members of the family to secrete high level of IFN-α further corroborates this conclusion. The number of T regulatory cells as well as plasmacytoid and/or myeloid dendritic cells was found diminished in all family members. Thus, this unique family is a prime example for the support of the so-called 'fertile-field' hypothesis proposing that genetic predisposition to anti-islet autoimmunity is 'fertilized' and precipitated by a viral infection leading to a fully blown T1D.
Zobrazit více v PubMed
Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32:457–467. PubMed
Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet. 2001;358:221–229. PubMed
Tree TI, Peakman M. Autoreactive T cells in human type 1 diabetes. Endocrinol Metab Clin North Am. 2004;33:113–133. PubMed
Skowera A, Ellis RJ, Varela-Calviño R, et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest. 2008;118:3390–3402. PubMed PMC
Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–181. PubMed PMC
Van Belle TL, Taylor P, von Herrath MG. Mouse models for type 1 diabetes. Drug Discov Today Dis Models. 2009;6:41–45. PubMed PMC
Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev. 2006;212:217–237. PubMed
Eizirik DL, Darville MI. Beta-cell apoptosis and defense mechanisms: lessons from type 1 diabetes. Diabetes. 2001;50 (Suppl 1:S64–S69. PubMed
von Herrath M. Diabetes: a virus-gene collaboration. Nature. 2009;459:518–519. PubMed
Kivity S, Agmon-Levin N, Blank M, et al. Infections and autoimmunity – friends or foes. Trends Immunol. 2009;30:409–414. PubMed
Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–920. PubMed
Zinkernagel RM. Maternal antibodies, childhood infections, and autoimmune diseases. N Engl J Med. 2001;345:1331–1335. PubMed
Richardson SJ, Willcox A, Bone AJ, et al. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia. 2009;52:1143–1151. PubMed
Oikarinen S, Martiskainen M, Tauriainen S, et al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes. 2011;60:276–279. PubMed PMC
Stene LC, Oikarinen S, Hyöty H, et al. Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY) Diabetes. 2010;59:3174–3180. PubMed PMC
Staeva-Vieira T, Peakman M, von Herrath M. Translational mini-review series on type 1 diabetes: Immune-based therapeutic approaches for type 1 diabetes. Clin Exp Immunol. 2007;148:17–31. PubMed PMC
Bingley PJ, Williams AJ, Gale EA. Optimized autoantibody-based risk assessment in family members. Implications for future intervention trials. Diabetes Care. 1999;22:1796–1801. PubMed
Achenbach P, Bonifacio E, Ziegler AG. Predicting type 1 diabetes. Curr Diab Rep. 2005;5:98–103. PubMed
Cinek O, Kolousková S, Snajderova M, et al. HLA class II genetic association of type 1 diabetes mellitus in Czech children. Pediatr Diabetes. 2001;2:98–102. PubMed
CODIS (Combined DNA Index System) , http://www.fbi.gov/about-us/lab/codis/codis .
Vrabelova Z, Kolouskova S, Bohmova K, et al. Protein microarray analysis as a tool for monitoring cellular autoreactivity in type 1 diabetes patients and their relatives. Pediatr Diabetes. 2007;8:252–260. PubMed
Horvath R, Budinsky V, Kayserova J, et al. Kinetics of dendritic cells reconstitution and costimulatory molecules expression after myeloablative allogeneic haematopoetic stem cell transplantation: implications for the development of acute graft-versus host disease. Clin Immunol. 2009;131:60–69. PubMed
Parazzini F, Villa A, Moroni S, et al. The epidemiology of multiple pregnancies. Acta Genet Med Gemellol (Roma) 1994;43:17–23. PubMed
Eisenbarth GS. Molecular aspects of the etiology of type I diabetes mellitus. J Diabetes Complications. 1993;7:142–150. PubMed
von Herrath M. Can we learn from viruses how to prevent type 1 diabetes?: the role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies. Diabetes. 2009;58:2–11. PubMed PMC
Notkins AL. On the track of viruses. Nature. 1984;311:209–210. PubMed
Yeung WC, Rawlinson WD, Craig ME.Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies BMJ 2011342d35doi: 10.1136/bmj.d35 PubMed DOI PMC
Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24–32. PubMed
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384. PubMed
Seya T, Oshiumi H, Sasai M, et al. TICAM-1 and TICAM-2: toll-like receptor adapters that participate in induction of type 1 interferons. Int J Biochem Cell Biol. 2005;37:524–529. PubMed
Siren J, Pirhonen J, Julkunen I, et al. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol. 2005;174:1932–1937. PubMed
von Herrath MG, Dockter J, Oldstone MB. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity. 1994;1:231–242. PubMed
Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105. PubMed
Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39–44. PubMed
Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–389. PubMed PMC
Murugaiyan G, Mittal A, Lopez-Diego R, et al. IL-27 is a key regulator of IL-10 and IL-17 production by human CD4+ T cells. J Immunol. 2009;183:2435–2443. PubMed PMC
Nowak EC, Weaver CT, Turner H, et al. IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med. 2009;206:1653–1660. PubMed PMC
Elyaman W, Bradshaw EM, Uyttenhove C, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci USA. 2009;106:12885–12890. PubMed PMC
Vrabelova Z, Hrotekova Z, Hladikova Z, et al. CD 127- and FoxP3+ expression on CD25+CD4+ T regulatory cells upon specific diabetogeneic stimulation in high-risk relatives of type 1 diabetes mellitus patients. Scand J Immunol. 2008;67:404–410. PubMed
Ryden A, Stechova K, Durilova M, et al. Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes. Diabetes Metab Res Rev. 2009;25:335–343. PubMed
Stechova K, Bohmova K, Vrabelova Z, et al. High T-helper-1 cytokines but low T-helper-3 cytokines, inflammatory cytokines and chemokines in children with high risk of developing type 1 diabetes. Diabetes Metab Res Rev. 2007;23:462–471. PubMed
Salminen K, Sadeharju K, Lönnrot M, et al. Enterovirus infections are associated with the induction of beta-cell autoimmunity in a prospective birth cohort study. J Med Virol. 2003;69:91–98. PubMed
HA Guideline on Enteroviral Infection, 2nd revision www.ha.org.hk/clnguide/ev71v2.htm .
Stechova K, Kolar M, Blatny R, et al. Healthy first degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes Scand J Immunol 2011. e-pub ahead of print 16 September 2011; doi: 10.1111/j.1365-3083.2011.02637.x PubMed DOI
Knip M. Pathogenesis of type 1 diabetes: implications for incidence trends. Horm Res Paediatr. 2011;76 (Suppl 1:57–64. PubMed
Redondo MJ, Yu L, Hawa M, et al. Heterogeneity of type 1 diabetes. Analysis of monozygotic twins in Great Britain and the United States. Diabetologia. 2001;44:354–362. PubMed
Oates NA, van Vliet J, Duffy DL, et al. Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet. 2006;79:155–162. PubMed PMC
von Herrath MG, Fujinami RS, Whitton JL. Microorganisms and autoimmunity: making the barren field fertile. Nat Rev Microbiol. 2003;1:151–157. PubMed