Not Only Glycaemic But Also Other Metabolic Factors Affect T Regulatory Cell Counts and Proinflammatory Cytokine Levels in Women with Type 1 Diabetes

. 2017 ; 2017 () : 5463273. [epub] 20170503

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28553653

Type 1 diabetic (T1D) patients suffer from insulinopenia and hyperglycaemia. Studies have shown that if a patient's hyperglycaemic environment is not compensated, it leads to complex immune dysfunctions. Similarly, T1D mothers with poor glycaemic control exert a negative impact on the immune responses of their newborns. However, questions concerning the impact of other metabolic disturbances on the immune system of T1D mothers (and their newborns) have been raised. To address these questions, we examined 28 T1D women in reproductive age for the relationship between various metabolic, clinical, and immune parameters. Our study revealed several unexpected correlations which are indicative of a much more complex relationship between glucose and lipid factors (namely, glycosylated haemoglobin Hb1Ac, the presence of one but not multiple chronic diabetic complications, and atherogenic indexes) and proinflammatory cytokines (IL-1alpha and TNF-alpha). Regulatory T cell counts correlated with HbA1c, diabetic neuropathy, lipid spectra parameters, and IL-6 levels. Total T-helper cell count was interconnected with BMI and glycaemia variability correlated with lipid spectra parameters, insulin dose, and vitamin D levels. These and other correlations revealed in this study provide broader insight into the association of various metabolic abnormalities with immune parameters that may impact T1D mothers or their developing child.

Zobrazit více v PubMed

Atkinson M. A., Kaufman D. L., Campbell L., et al. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet. 1992;339(8791):458–459. doi: 10.1016/0140-6736(92)91061-C. PubMed DOI

McDaniel C. F. Diabetes: a model of oxidative accelerated aging. Age (Omaha) 1999;22(4):145–148. doi: 10.1007/s11357-999-0016-1. PubMed DOI PMC

Polsky S., Ellis S. L. Obesity, insulin resistance, and type 1 diabetes mellitus. Current Opinion in Endocrinology, Diabetes, and Obesity. 2015;22(4):277–282. doi: 10.1097/MED.0000000000000170. PubMed DOI

Kurien M., Mollazadegan K., Sanders D. S., Ludvigsson J. F. Celiac disease increases risk of thyroid disease in patients with type 1 diabetes: a nationwide cohort study. Diabetes Care. 2016;39(3):371–375. doi: 10.2337/dc15-2117. PubMed DOI

Stechova K., Spalova I., Durilova M., et al. Influence of maternal hyperglycaemia on cord blood mononuclear cells in response to diabetes-associated autoantigens. Scandinavian Journal of Immunology. 2009;70(2):149–158. doi: 10.1111/j.1365-3083.2009.02282.x. PubMed DOI

Langley-Evans S. C. Nutrition in early life and the programming of adult disease: a review. Journal of Human Nutrition and Dietetics. 2015;28(Supplement 1):1–14. doi: 10.1111/jhn.12212. PubMed DOI

Santegoets S. J., Dijkgraaf E. M., Battaglia A., et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunology, Immunotherapy. 2015;64(10):1271–1286. doi: 10.1007/s00262-015-1729-x. PubMed DOI PMC

Girgis C. M., Scalley B. D., Park K. E. Utility of the estimated glucose disposal rate as a marker of microvascular complications in young adults with type 1 diabetes. Diabetes Research and Clinical Practice. 2012;96(3):e70–e72. doi: 10.1016/j.diabres.2012.02.004. PubMed DOI

Varbo A., Benn M., Smith G. D., Timpson N. J., Tybjaerg-Hansen A., Nordestgaard B. G. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease. Circulation Research. 2015;116(4):665–673. doi: 10.1161/CIRCRESAHA.116.304846. PubMed DOI

Casqueiro J., Casqueiro J., Alves C. Infections in patients with diabetes mellitus: a review of pathogenesis. Indian Journal of Endocrinology and Metabolism. 2012;16(Supplement 1):S27–S36. doi: 10.4103/2230-8210.94253. PubMed DOI PMC

Newton R., Priyadharshini B., Turka L. A. Immunometabolism of regulatory T cells. Nature Immunology. 2016;17(6):618–625. doi: 10.1038/ni.3466. PubMed DOI PMC

Juarez D. T., Demaris K. M., Goo R., Mnatzaganian C. L., Wong Smith H. Significance of HbA1c and its measurement in the diagnosis of diabetes mellitus: US experience. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014;7:487–494. doi: 10.2147/DMSO.S39092. PubMed DOI PMC

El-Samahy M. H., Adly A. A., Ismail E. A., Salah N. Y. Regulatory T cells with CD62L or TNFR2 expression in young type 1 diabetic patients: relation to inflammation, glycemic control and micro-vascular complications. Journal of Diabetes and Its Complications. 2015;29(1):120–126. doi: 10.1016/j.jdiacomp.2014.07.004. PubMed DOI

Inchiostro S., Candido R., Cavalot F. How can we monitor glycaemic variability in the clinical setting? Diabetes, Obesity & Metabolism. 2013;15(Supplement 2):13–16. doi: 10.1111/dom.12142. PubMed DOI

Hayes C. E., Hubler S. L., Moore J. R., Barta L. E., Praska C. E., Nashold F. E. Vitamin D actions on CD4(+) T cells in autoimmune disease. Frontiers in Immunology. 2015;6:p. 100. doi: 10.3389/fimmu.2015.00100. PubMed DOI PMC

Al-Zubeidi H., Leon-Chi L., Newfield R. S. Low vitamin D level in pediatric patients with new onset type 1 diabetes is common, especially if in ketoacidosis. Pediatric Diabetes. 2016;17(8):592–598. doi: 10.1111/pedi.12342. PubMed DOI

Strange R. C., Shipman K. E., Ramachandran S. Metabolic syndrome: a review of the role of vitamin D in mediating susceptibility and outcome. World Journal of Diabetes. 2015;6(7):896–911. doi: 10.4239/wjd.v6.i7.896. PubMed DOI PMC

Thomas G. N., Scragg R., Jiang C. Q., et al. Hyperglycaemia and vitamin D: a systematic overview. Current Diabetes Reviews. 2012;8(1):18–31. doi: 10.2174/157339912798829223. PubMed DOI

Dinarello C. A. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612. PubMed DOI

Nazir N., Siddiqui K., Al-Qasim S., Al-Naqeb D. Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways. BMC Medical Genetics. 2014;15(1):p. 103. doi: 10.1186/s12881-014-0103-8. PubMed DOI PMC

Bour-Jordan H., Thompson H. L., Giampaolo J. R., Davini D., Rosenthal W., Bluestone J. A. Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background. Journal of Autoimmunity. 2013;45:58–67. doi: 10.1016/j.jaut.2013.06.005. PubMed DOI PMC

Ziegler S. F., Buckner J. H. FOXP3 and the regulation of Treg/Th17 differentiation. Microbes and Infection. 2009;11(5):594–598. doi: 10.1016/j.micinf.2009.04.002. PubMed DOI PMC

Vcelakova J., Blatny R., Halbhuber Z., et al. The effect of diabetes-associated autoantigens on cell processes in human PBMCs and their relevance to autoimmune diabetes development. Journal of Diabetes Research. 2013;2013:p. 10. doi: 10.1155/2013/589451.589451 PubMed DOI PMC

Reinert-Hartwall L., Honkanen J., Salo H. M., et al. Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans. Journal of Immunology. 2015;194(1):68–75. doi: 10.4049/jimmunol.1401653. PubMed DOI PMC

Cucak H., Vistisen D., Witte D., Philipsen A., Rosendahl A. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes. PLoS One. 2014;9(9, article e107140) doi: 10.1371/journal.pone.0107140. PubMed DOI PMC

Zeng C., Shi X., Zhang B., et al. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. Journal of Molecular Medicine (Berlin, Germany) 2012;90(2):175–186. doi: 10.1007/s00109-011-0816-5. PubMed DOI

Wilhelm A. J., Zabalawi M., Owen J. S., et al. Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr−/−, ApoA-I−/− mice. The Journal of Biological Chemistry. 2010;285(46):36158–36169. doi: 10.1074/jbc.M110.134130. PubMed DOI PMC

Katoh H., Zheng P., Liu Y. FOXP3: genetic and epigenetic implications for autoimmunity. Journal of Autoimmunity. 2013;41:72–78. doi: 10.1016/j.jaut.2012.12.004. PubMed DOI PMC

Otsubo K., Kanegane H., Kamachi Y., et al. Identification of FOXP3-negative regulatory T-like (CD4(+)CD25(+)CD127(low)) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clinical Immunology. 2011;141(1):111–120. doi: 10.1016/j.clim.2011.06.006. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account?

. 2019 ; 10 () : 79. [epub] 20190205

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...