Inactivation of Dermatophytes Causing Onychomycosis Using Non-Thermal Plasma as a Prerequisite for Therapy

. 2021 Aug 31 ; 7 (9) : . [epub] 20210831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34575753

Grantová podpora
Q25 Univerzita Karlova v Praze

Following our previous study of the therapy of onychomycosis by non-thermal plasma (NTP) and nail hygiene and to obtain some prerequisite data of dermatophytes sensitivity, the dynamics of those inactivation by NTP plasma was monitored for various strains of Trichophyton iterdigitale, Trichophyton benhamiae, Trichophyton rubrum, and Microsporum canis. Three strains of each species on agar plates were exposed with plasma produced by a DC corona discharge in the point-to-ring arrangement in various time intervals. Although all strains were sufficiently sensitive to plasma action, significant differences were observed in their sensitivity and inactivation dynamics. These differences did not correlate with the species classification of individual strains, but could be assigned to four arbitrarily created types of strain response to NTP according to their sensitivity. These results indicate that the sensitivity to plasma is not an inherent property of the fungal species, but varies from strain to strain.

Zobrazit více v PubMed

Yousfi M., Merbahi N., Sarrette J.P., Eichwald O., Ricard A., Gardou J.-P., Ducasse O., Benhenni M. Biomedical Engineering—Frontiers and Challenges. InTech; London, UK: 2011. Non thermal plasma sources of production of active species for biomedical uses: Analyses, optimization and prospect. DOI

Khun J., Scholtz V., Hozák P., Fitl P.E., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI

Setsuhara Y. Low-temperature atmospheric-pressure plasma sources for plasma medicine. Arch. Biochem. Biophys. 2016;605:3–10. doi: 10.1016/j.abb.2016.04.009. PubMed DOI

Scholtz V., Julák J. The “cometary” discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. J. Phys. Conf. Ser. 2010;223:012005. doi: 10.1088/1742-6596/223/1/012005. DOI

Scholtz V., Julák J. Plasma Jetlike point-to-point electrical discharge in air and its bactericidal properties. Plasma Sci. IEEE Trans. 2010;38:1978–1980. doi: 10.1109/TPS.2010.2051461. DOI

Wong K.S., Lim W.T.H., Ooi C.W., Yeo L.Y., Tan M.K. In situ generation of plasma-activated aerosols via surface acoustic wave nebulization for portable spray-based surface bacterial inactivation. Lab A Chip. 2020;20:1856–1868. doi: 10.1039/D0LC00001A. PubMed DOI

Lux J., Dobiáš R., Kuklová I., Litvik R., Scholtz V., Soušková H., Khun J., Mrázek J., Kantorová M., Jaworská P., et al. Inactivation of dermatophytes causing onychomycosis and Its therapy using non-thermal plasma. J. Fungi. 2020;6:214. doi: 10.3390/jof6040214. PubMed DOI PMC

Moisan M., Barbeau J., Moreau S., Pelletier J., Tabrizian M., Yahia L.H. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 2001;226:1–21. doi: 10.1016/S0378-5173(01)00752-9. PubMed DOI

Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI

Kelly S., Turner M.M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI

Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI

Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC

Cheng J.-H., Lv X., Pan Y., Sun D.-W. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci. Technol. 2020;103:239–247. doi: 10.1016/j.tifs.2020.07.022. DOI

Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., Dejneka A., Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials. 2016;82:71–83. doi: 10.1016/j.biomaterials.2015.12.027. PubMed DOI

Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Mat’átková O., Masák J. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Adv. 2019;9:055117. doi: 10.1063/1.5090451. DOI

Čtvrtečková L., Pichová A., Scholtz V., Khun J., Julák J. Non-thermal plasma-induced apoptosis in yeast Saccharomyces cerevisiae. Contrib. Plasma Phys. 2019;59:e201800064. doi: 10.1002/ctpp.201800064. DOI

Ito M., Hashizume H., Oh J.-S., Ishikawa K., Ohta T., Hori M. Inactivation mechanism of fungal spores through oxygen radicals in atmospheric-pressure plasma. Jpn. J. Appl. Phys. 2020;60:010503. doi: 10.35848/1347-4065/abcbd1. DOI

Ali A., Hong Y.J., Park J., Lee S., Choi E.H., Kwon G.C., Park B.J. A novel approach to inactivate the clinical isolates of Trichophyton mentagrophytes and Trichophyton rubrum by using non-thermal plasma. J. Microb. Biochem. Technol. 2014;6:314–319. doi: 10.4172/1948-5948.1000161. DOI

Borges A.C., Nishime T.M.C., de Moura Rovetta S., Lima G.d.M.G., Kostov K.G., Thim G.P., de Menezes B.R.C., Machado J.P.B., Koga-Ito C.Y. Cold atmospheric pressure plasma jet reduces Trichophyton rubrum adherence and infection capacity. Mycopathologia. 2019;184:585–595. doi: 10.1007/s11046-019-00375-2. PubMed DOI

Bulson J.M., Liveris D., Derkatch I., Friedman G., Geliebter J., Park S., Singh S., Zemel M., Tiwari R.K. Non-thermal atmospheric plasma treatment of onychomycosis in an in vitro human nail model. Mycoses. 2020;63:225–232. doi: 10.1111/myc.13030. PubMed DOI PMC

Švarcová M., Julák J., Hubka V., Soušková H., Scholtz V. Treatment of a superficial mycosis by low-temperature plasma: A case report. Prague Med Rep. 2014;115:73–78. doi: 10.14712/23362936.2014.8. PubMed DOI

Julák J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:178. doi: 10.1007/s11274-018-2560-2. PubMed DOI

Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2018;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI

Soušková H., Scholtz V., Julák J., Kommová L., Savická D., Pazlarová J. The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiol. 2011;56:77–79. doi: 10.1007/s12223-011-0005-5. PubMed DOI

Scholtz V., Soušková H., Hubka V., Švarcová M., Julák J. Inactivation of human pathogenic dermatophytes by non-thermal plasma. J. Microbiol. Methods. 2015;119:53–58. doi: 10.1016/j.mimet.2015.09.017. PubMed DOI

Julák J., Scholtz V., Kvasničková E., Kříha V., Jíra J. Bactericidal properties of cometary discharge with inserted grid. In: Mikikian M., Rabat H., Robert E., Pouvesle J.-M., editors. Proceedings of the 4th International Conference on Plasma Medicine; Orléans, France. 17–21 June 2012; p. 141. Book of Abstracts;

Scholtz V., Kvasničková E., Julák J. Microbial inactivation by electric discharge with metallic grid. Acta Phys. Pol. A. 2013;124:62–65. doi: 10.12693/APhysPolA.124.62. DOI

Hubka V., Vetrovsky T., Dobiášová S., Skořepová M., Lyskova P., Mencl K., Mallátová N., Janouškovcová H., Hanzlíčková J., Dobiáš R., et al. Molecular epidemiology of dermatophytoses in the Czech republic—Two-year-study results. Ceskoslovenská Dermatol. 2014;89:167–174.

Hubka V., Čmoková A., Peano A., Větrovský T., Dobiáš R., Mallátová N., Lysková P., Mencl K., Janouškovcová H., Stará J., et al. Zoonotické dermatofytózy: Klinický obraz, diagnostika, etiologie, léčba, epidemiologická situace u nás. [Zoonose dermatophytoses: Clinics, diagnostic, etiology, treatment and epidemiologic situation in our country] Cesk. Dermatol. 2018;93:205–292.

Nise N.S. Control Systems Engineering. Volume 6. John Wiley & Sons Inc.; Jefferson City, MO, USA: 2010. p. 688.

Franklin G.F., Powell J.D., Emami-Naeini A. Feedback Control of Dynamic Systems. 7th ed. Pearson; New York, NY, USA: 2015. p. 885.

Martins M., Silva L., Rossi A., Sanches P., Souza L., Martinez-Rossi N. Global Analysis of Cell Wall Genes Revealed Putative Virulence Factors in the Dermatophyte Trichophyton rubrum. Front. Microbiol. 2019;10:2168. doi: 10.3389/fmicb.2019.02168. PubMed DOI PMC

Laurita R., Barbieri D., Gherardi M., Colombo V., Lukes P. Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin. Plasma Med. 2015;3:53–61. doi: 10.1016/j.cpme.2015.10.001. DOI

Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. Further contribution to the chemistry of plasma-activated water: Influence on bacteria in planktonic and biofilm forms. Plasma Phys. Rep. 2018;44:799–804. doi: 10.1134/S1063780X18090040. DOI

Thirumdas R., Kothakota A., Annapure U., Siliveru K., Blundell R., Gatt R., Valdramidis V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018;77:21–31. doi: 10.1016/j.tifs.2018.05.007. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...