Inactivation of Dermatophytes Causing Onychomycosis and Its Therapy Using Non-Thermal Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33050542
PubMed Central
PMC7712512
DOI
10.3390/jof6040214
PII: jof6040214
Knihovny.cz E-zdroje
- Klíčová slova
- Trichophyton, fungal inactivation, non-thermal plasma, onychomycosis therapy,
- Publikační typ
- časopisecké články MeSH
Onychomycosis is one of the most common nail disorders. Its current treatment is not satisfactorily effective and often causes adverse side effects. This study aims to determine the optimal conditions for non-thermal plasma (NTP) inactivation of the most common dermatophytes in vitro and to apply it in patient`s therapy. The in vitro exposure to NTP produced by negative DC corona discharge caused full inactivation of Trichophyton spp. if applied during the early growth phases. This effect decreased to negligible inactivation with the exposure applied six days after inoculation. In a group of 40 patients with onychomycosis, NTP therapy was combined with nail plate abrasion and refreshment (NPAR) or treatment with antimycotics. The cohort included 17 patients treated with NPAR combined with NTP, 11 patients treated with antimycotics and NTP, and 12 patients treated with NPAR alone. The combination of NPAR and NTP resulted in clinical cure in more than 70% of patients. The synergistic effect of NPAR and NTP caused 85.7% improvement of mycological cure confirmed by negative microscopy and culture of the affected nail plate. We conclude that NTP can significantly improve the treatment of onychomycosis.
Department of Microbiology University Hospital Olomouc Hněvotínská 3 775 15 Olomouc Czech Republic
Podiatric Center Medicia Daliborova 421 15 709 00 Ostrava Czech Republic
Zobrazit více v PubMed
Elewski B.E. Onychomycosis: Pathogenesis, diagnosis, and management. Clin. Microbiol. Rev. 1998;11:415–429. doi: 10.1128/CMR.11.3.415. PubMed DOI PMC
Roberts D.T., Taylor W.D., Boyle J. Guidelines for treatment of onychomycosis. Br. J. Dermatol. 2003;148:402–410. doi: 10.1046/j.1365-2133.2003.05242.x. PubMed DOI
Gupta A.K., Foley K.A., Versteeg S.G. New antifungal agents and new formulations against dermatophytes. Mycopathologia. 2017;182:127–141. doi: 10.1007/s11046-016-0045-0. PubMed DOI
Asz-Sigall D., Tosti A., Arenas R. Tinea unguium: Diagnosis and treatment in practice. Mycopathologia. 2017;182:95–100. doi: 10.1007/s11046-016-0078-4. PubMed DOI
Bristow I.R. The effectiveness of lasers in the treatment of onychomycosis: A systematic review. J. Foot Ankle Res. 2014;7:34. doi: 10.1186/1757-1146-7-34. PubMed DOI PMC
Francuzik W., Fritz K., Salavastru C. Laser therapies for onychomycosis—Critical evaluation of methods and effectiveness. J. Eur. Acad. Dermatol. 2016;30:936–942. doi: 10.1111/jdv.13593. PubMed DOI
Gilaberte Y., Aspiroz C., Martes M.P., Alcalde V., Espinel-Ingroff A., Rezusta A. Treatment of refractory fingernail onychomycosis caused by nondermatophyte molds with methylaminolevulinate photodynamic therapy. J. Am. Acad. Dermatol. 2011;65:669–671. doi: 10.1016/j.jaad.2010.06.008. PubMed DOI
Morgado L.F., Trávolo A.R.F., Muehlmann L.A., Narcizo P.S., Nunes R.B., Pereira P.A.G., Py-Daniel K.R., Jiang C.S., Gu J., Azevedo R.B., et al. Photodynamic therapy treatment of onychomycosis with aluminium-phthalocyanine chloride nanoemulsions: A proof of concept clinical trial. J. Photochem. Photobiol. B Biol. 2017;173:266–270. doi: 10.1016/j.jphotobiol.2017.06.010. PubMed DOI
Ghannoum M., Isham N. Fungal nail infections (onychomycosis): A never-ending story? PLoS Pathog. 2014;10:e1004105. doi: 10.1371/journal.ppat.1004105. PubMed DOI PMC
Scholtz V., Julák J. Journal of Physics: Conference Series. IOP Publishing; Bristol, UK: 2010. The “cometary” discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties; p. 012005.
Scholtz V., Julák J. Plasma jetlike point-to-point electrical discharge in air and its bactericidal properties. IEEE Trans. Plasma Sci. 2010;38:1978–1980. doi: 10.1109/TPS.2010.2051461. DOI
Yousfi M., Merbahi N., Sarrette J., Eichwald O., Ricard A., Gardou J., Ducasse O., Benhenni M. Biomedical Engineering—Frontiers and Challenges. IntechOpen; London, UK: 2011. Non thermal plasma sources of production of active species for biomedical uses: Analyses, optimization and prospect.
Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2018;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI
Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Kelly S., Turner M.M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI
Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Processes Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI
Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., Dejneka A., Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials. 2016;82:71–83. doi: 10.1016/j.biomaterials.2015.12.027. PubMed DOI
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta B. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Julák J., Scholtz V. The potential for use of non-thermal plasma in microbiology and medicine. Epidemiol. Microbiol. Im. Cas. Spol. Epidemiol. Mikrobiol. Ceske Lek. Spol. J.E. Purkyne. 2020;69:29–37. PubMed
Zhao Y.M., Ojha S., Burgess C.M., Sun D.W., Tiwari B.K. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. J. Appl. Microbiol. 2020 doi: 10.1111/jam.14677. PubMed DOI
Metelmann H.-R., Von Woedtke T., Weltmann K.-D. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application. Springer; Berlin/Heidelberg, Germany: 2018.
Gweon B., Kim K., Choe W., Shin J.H. Biomedical Engineering: Frontier Research and Converging Technologies. Springer; Berlin/Heidelberg, Germany: 2016. Therapeutic uses of atmospheric pressure plasma: Cancer and wound; pp. 357–385.
Keidar M., Yan D., Beilis I.I., Trink B., Sherman J.H. Plasmas for treating cancer: Opportunities for adaptive and self-adaptive approaches. Trends Biotechnol. 2018;36:586–593. doi: 10.1016/j.tibtech.2017.06.013. PubMed DOI
Ali A., Hong Y.J., Park J., Lee S., Choi E., Kwon G.C., Park B. A novel approach to inactivate the clinical isolates of Trichophyton mentagrophytes and Trichophyton rubrum by using non-thermal plasma. J. Microb. Biochem. Technol. 2014;6:314–319.
Shapourzadeh A., Rahimi-Verki N., Atyabi S.M., Shams-Ghahfarokhi M., Jahanshiri Z., Irani S., Razzaghi-Abyaneh M. Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum. Arch. Biochem. Biophys. 2016;608:27–33. doi: 10.1016/j.abb.2016.07.012. PubMed DOI
Dasan B.G., Boyaci I.H., Mutlu M. Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: Impact of process parameters and surveillance of the residual viability of spores. J. Food Eng. 2017;196:139–149. doi: 10.1016/j.jfoodeng.2016.09.028. DOI
Borges A.C., Lima G.M.G., Nishime T.M.C., Gontijo A.V.L., Kostov K.G., Koga-Ito C.Y. Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study. PLoS ONE. 2018;13:e0199832. doi: 10.1371/journal.pone.0199832. PubMed DOI PMC
Hojnik N., Modic M., Ni Y., Filipič G., Cvelbar U., Walsh J.L. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ. Sci. Technol. 2019;53:1893–1904. doi: 10.1021/acs.est.8b05386. PubMed DOI PMC
Misra N., Yadav B., Roopesh M., Jo C. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI
Julák J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microb Biot. 2018;34:178. doi: 10.1007/s11274-018-2560-2. PubMed DOI
Soušková H., Scholtz V., Julák J., Kommová L., Savická D., Pazlarová J. The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiol. 2011;56:77–79. doi: 10.1007/s12223-011-0005-5. PubMed DOI
Scholtz V., Soušková H., Hubka V., Švarcová M., Julák J. Inactivation of human pathogenic dermatophytes by non-thermal plasma. J. Microbiol. Methods. 2015;119:53–58. doi: 10.1016/j.mimet.2015.09.017. PubMed DOI
Xiong Z., Roe J., Grammer T.C., Graves D.B. Plasma treatment of onychomycosis. Plasma Processes Polym. 2016;13:588–597. doi: 10.1002/ppap.201600010. DOI
Daeschlein G., Scholz S., von Woedtke T., Niggemeier M., Kindel E., Brandenburg R., Weltmann K.-D., Junger M. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans. Plasma Sci. 2010;39:815–821. doi: 10.1109/TPS.2010.2063441. DOI
Scholtz V., Soušková H., Švarcová M., Kríha V., Živná H., Julák J. Inactivation of dermatophyte infection by nonthermal plasma on animal model. Med. Mycol. 2017;55:422–428. doi: 10.1093/mmy/myw094. PubMed DOI
Švarcová M., Julák J., Hubka V., Soušková H., Scholtz V. Treatment of a superficial mycosis by low-temperature plasma: A case report. Prague Med. Rep. 2014;115:73–78. doi: 10.14712/23362936.2014.8. PubMed DOI
[(accessed on 1 October 2020)];ClinicalTrials.gov. National Library of Medicine (Bethesda, MD, USA) (2013). Pilot Study to Evaluate Plasma Treatment of Onychomycosis. NCT01819051. Available online: https://clinicaltrials.gov/ct2/show/NCT01819051.
[(accessed on 1 October 2020)];ClinicalTrials.gov. National Library of Medicine (Bethesda, MD, USA) (2016-2019). Evaluating the Safety, Tolerability and Preliminary Efficacy of Plasma in Improving the Appearance of Onychomycosis. NCT02724384. Available online: https://clinicaltrials.gov/ct2/show/NCT02724384.
[(accessed on 1 October 2020)];ClinicalTrials.gov. National Library of Medicine (Bethesda, MD, USA) (2017-2018). Early Feasibility Study to Evaluate the Efficacy of the RenewalNail™ Plasma Treatment System in Patients With Onychomycosis (Fungal Nail) NCT03216200. Available online: https://clinicaltrials.gov/ct2/show/NCT03216200.
Lux J., Dobiáš R., Scholtz V., Khun J., Soušková H., Mrázková E., Julák J. Možnosti terapie onychomykózy nízkoteplotním plazmatem. Cesk. Dermatol. 2018;93:266–271.
Julák J., Scholtz V. Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin. Plasma Med. 2013;1:31–34. doi: 10.1016/j.cpme.2013.09.002. DOI
Haertel B., von Woedtke T., Weltmann K.D., Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 2014;22:477–490. doi: 10.4062/biomolther.2014.105. PubMed DOI PMC
Heinlin J., Morfill G., Landthaler M., Stolz W., Isbary G., Zimmermann J.L., Shimizu T., Karrer S. Plasma medicine: Possible applications in dermatology. J. Dtsch. Dermatol. Ges. 2010;8:968–976. doi: 10.1111/j.1610-0387.2010.07495.x. PubMed DOI
Hubka V., Čmoková A., Peano A., Větrovský T., Dobiáš R., Mallátová N., Lysková P., Mencl K., Janouškovcová H., Stará J. Zoonotické dermatofytózy: Klinický obraz, diagnostika, etiologie, léčba, epidemiologická situace u nás. Cesk. Dermatol. 2018;93:205–292.
Hubka V., Větrovský T., Dobiášová S., Skořepová M., Lysková P., Mencl K., Mallátová N., Janouškovcová H., Hanzlíčková J., Dobiáš R. Molekulární epidemiologie dermatofytóz v České republice—Výsledky dvouleté studie. Cesk. Dermatol. 2014;89:167–174.
Scholtz V., Kvasničková E., Julák J. Microbial inactivation by electric discharge with metallic grid. Acta Phys. Pol. A. 2013;124:62–65. doi: 10.12693/APhysPolA.124.62. DOI
Dobiáš R., Kantorová M., Jaworská P., Hamal P., Mrázek J. Využití PCR-HRMA při přímé detekci a identifikaci původců dermatofytóz z klinických vzorků. Cesk. Dermatol. 2018;93:259–265.
Didehdar M., Khansarinejad B., Amirrajab N., Shokohi T. Development of a high-resolution melting analysis assay for rapid and high-throughput identification of clinically important dermatophyte species. Mycoses. 2016;59:442–449. doi: 10.1111/myc.12492. PubMed DOI
Bergmans A.M., van der Ent M., Klaassen A., Bohm N., Andriesse G.I., Wintermans R.G. Evaluation of a single-tube real-time PCR for detection and identification of 11 dermatophyte species in clinical material. Clin. Microbiol. Infect. 2010;16:704–710. doi: 10.1111/j.1469-0691.2009.02991.x. PubMed DOI
Ohst T., Kupsch C., Graser Y. Detection of common dermatophytes in clinical specimens using a simple quantitative real-time TaqMan polymerase chain reaction assay. Br. J. Dermatol. 2016;174:602–609. doi: 10.1111/bjd.14198. PubMed DOI
Gupta A.K., Studholme C. How do we measure efficacy of therapy in onychomycosis: Patient, physician, and regulatory perspectives. J. Dermatol. Treat. 2016;27:498–504. doi: 10.3109/09546634.2016.1161156. PubMed DOI
Lipner S.R., Scher R.K. Onychomycosis: Treatment and prevention of recurrence. J. Am. Acad. Dermatol. 2019;80:853–867. doi: 10.1016/j.jaad.2018.05.1260. PubMed DOI
Lipner S.R., Friedman G., Scher R.K. Pilot study to evaluate a plasma device for the treatment of onychomycosis. Clin. Exp. Dermatol. 2017;42:295–298. doi: 10.1111/ced.12973. PubMed DOI
Di Chiacchio N., Kadunc B.V., de Almeida A.R., Madeira C.L. Nail abrasion. J. Cosmet. Dermatol. 2003;2:150–152. doi: 10.1111/j.1473-2130.2004.00095.x. PubMed DOI
Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied plasma medicine. Plasma Processes Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154. DOI
Friedman P.C., Miller V., Fridman G., Lin A., Fridman A. Successful treatment of actinic keratoses using nonthermal atmospheric pressure plasma: A case series. J. Am. Acad. Dermatol. 2017;76:349–350. doi: 10.1016/j.jaad.2016.09.004. PubMed DOI
Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges