Overcoming antibiotic resistance: non-thermal plasma and antibiotics combination inhibits important pathogens
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
J4-3088
Slovenian Research and Innovation Agency
PubMed
38730561
PubMed Central
PMC11094553
DOI
10.1093/femspd/ftae007
PII: 7668468
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas aeruginosa, antimicrobial resistance (AMR), cold atmospheric plasma (CAP), combinatory therapy, methicillin-resistant Staphylococcus aureus,
- MeSH
- antibakteriální látky * farmakologie terapeutické užití MeSH
- antibiotická rezistence MeSH
- bakteriální léková rezistence MeSH
- biofilmy * účinky léků MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- plazmové plyny * farmakologie MeSH
- pseudomonádové infekce mikrobiologie farmakoterapie MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- stafylokokové infekce mikrobiologie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.
Zobrazit více v PubMed
Akter M, Jangra A, Choi SA et al. Non-thermal atmospheric pressure bio-compatible plasma stimulates apoptosis via p38/MAPK mechanism in U87 malignant glioblastoma. Cancers. 2020;12:245. PubMed PMC
Alemi PS, Atyabi SA, Sharifi F et al. Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering. Polym Adv Technol. 2019;30:1356–64.
Asl PJ, Rajulapati V, Gavahian M et al. Non-thermal plasma technique for preservation of fresh foods: a review. Food Control. 2022;134:108560.
Bagheri M, von Kohout M, Zoric A et al. Can cold atmospheric plasma be used for infection control in burns? a preclinical evaluation. Biomedicines. 2023;11:1239. PubMed PMC
Barjasteh A, Dehghani Z, Lamichhane P et al. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl Sci. 2021;11:3372.
Bayliss DL, Shama G, Kong MG. Restoration of antibiotic sensitivity in meticillin-resistant Staphylococcus aureus following treatment with a non-thermal atmospheric gas plasma. Int J Antimicrob Agents. 2013;41:398–9. PubMed
Bekeschus S. Medical gas plasma technology: roadmap on cancer treatment and immunotherapy. Redox Biol. 2023,65:102798. PubMed PMC
Bernhardt T, Semmler ML, Schäfer M et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Long. 2019;2019:3873928. PubMed PMC
Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa–Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019;44:100640. PubMed
Boyanova L, Dimitrov G, Gergova R et al. Clostridioides difficile resistance to antibiotics, including post-COVID-19 data. Expert Rev Clin Pharmacol. 2023;16:925–38. PubMed
Brun P, Bernabè G, Marchiori C et al. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol. 2018;125:398–408. PubMed
CDC . Centers for Disease Control and Prevention. AR Threats Report. 2019a.
CDC . Centers for Disease Control and Prevention. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS). 2019b.
Chutsirimongkol C, Boonyawan D, Polnikorn N et al. Non-thermal plasma for acne and aesthetic skin improvement. Plasma Med. 2014;4:4.
CIDRAP . Center for Infectious Disease Research and Policy. WHO report shows rising antibiotic resistance, need for better data. 2017.
Cieplik F, Jakubovics NS, Buchalla W et al. Resistance toward chlorhexidine in oral bacteria–is there cause for concern?. Front Microbiol. 2019;10:587. PubMed PMC
Congdon ST, Guaglione JA, Ricketts OMA et al. Prevalence and antibiotic resistance of Staphylococcus aureus associated with a college-aged cohort: life-style factors that contribute to nasal carriage. Front Cell Infect Microbiol. 2023;13:1195758. PubMed PMC
Cooley CR, McLain JM, Dupuy SD et al. Indirect, non-thermal atmospheric plasma promotes bacterial killing in vitro and wound disinfection in vivo using monogenic and polygenic models of type 2 diabetes (without adverse metabolic complications). Shock. 2020;54:681–7. PubMed
Costello KM, Smet C, Gutierrez-Merino J et al. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol. 2021;337:108948. PubMed
Craft KM, Nguyen JM, Berg LJ et al. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. MedChemComm. 2019;10:1231–41. PubMed PMC
Čtvrtečková L, Pichová A, Scholtz V et al. Non-thermal plasma-induced apoptosis in yeast Saccharomyces cerevisiae. Contrib Plasma Phys. 2019;59:e201800064.
Daikos GL, da Cunha CA, Rossolini GM et al. Review of ceftazidime-avibactam for the treatment of infections caused by Pseudomonas aeruginosa. Antibiotics. 2021;10:1126. PubMed PMC
Das S, Gajula VP, Mohapatra S et al. Role of cold atmospheric plasma in microbial inactivation and the factors affecting its efficacy. Health Sci Rev. 2022;4:100037.
De Oliveira DM, Forde BM, Kidd TJ et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33:e00181–19. PubMed PMC
Delben JA, Zago CE, Tyhovych N et al. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 2016;11:e0155427. PubMed PMC
Dong X, Chen M, Wang Y et al. A mechanistic study of plasma treatment effects on demineralized dentin surfaces for improved adhesive/dentin interface bonding. Clin Plasma Med. 2014;2:11–16. PubMed PMC
EDCD . European Centre for Disease Prevention and Control. Surveillance and disease data for antimicrobial resistance. 2023.
EFSA. European Food Safety Authority . The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA. 2022;20:7209. PubMed PMC
Ehlbeck J, Schnabel U, Polak M et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D: Appl Phys. 2010;44:013002.
Eladawy M, El-Mowafy M, El-Sokkary MM et al. Antimicrobial resistance and virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. Microb Pathog. 2021;158:105042. PubMed
Emmert S, Brehmer F, Hänßle H et al. Atmospheric pressure plasma in dermatology: ulcus treatment and much more. Clin Plasma Med. 2013;1:24–29.
Gajdács M, Baráth Z, Kárpáti K et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 2021;10:1134. PubMed PMC
Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics. 2019;8:52. PubMed PMC
Garza-Cervantes JA, Meza-Bustillos JF, Resendiz-Hernández H et al. Re-sensitizing ampicillin and kanamycin-resistant E. coli and S. aureus using synergistic metal micronutrients-antibiotic combinations. Front Bioeng Biotechnol. 2020;8:612. PubMed PMC
Gherardi M, Tonini R, Colombo V. Plasma in dentistry: brief history and current status. Trends Biotechnol. 2018;36:583–5. PubMed
Goering RV, Swartzendruber EA, Obradovich AE et al. Emergence of oxacillin resistance in stealth methicillin-resistant Staphylococcus aureus due to mecA sequence instability. Antimicrob Agents Chemother. 2019;63:8. PubMed PMC
Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D: Appl Phys. 2012;45:263001.
Guo L, Yang L, Qi Y et al. Low-temperature gas plasma combined with antibiotics for the reduction of methicillin-resistant Staphylococcus aureus biofilm both in vitro and in vivo. Life. 2021;11:828. PubMed PMC
Guo Y, Song G, Sun M et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. PubMed PMC
Ham DC, Fike L, Wolford H et al. Trimethoprim-sulfamethoxazole resistance patterns among Staphylococcus aureus in the United States, 2012–2018. Infect Control Hosp Epidemiol. 2023;44:794–7. PubMed PMC
Haseeb A, Ajit Singh V, Teh CSJ et al. Addition of ceftaroline fosamil or vancomycin to PMMA: an in vitro comparison of biomechanical properties and anti-MRSA efficacy. J Orthop Surg. 2019;27:2309499019850324. PubMed
Heinlin J, Isbary G, Stolz W et al. Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol. 2011;25:1–11. PubMed
İbiş F, Ercan UK. Inactivation of biofilms in endotracheal tube by cold atmospheric plasma treatment for control and prevention of ventilator-associated pneumonia. Plasma Processes Polym. 2020;17:2000065.
Isbary G, Morfill G, Schmidt H et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82. PubMed
Julák J, Vaňková E, Válková M et al. Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiol (Praha). 2020;65:863–9. PubMed
Kartaschew K, Baldus S, Mischo M et al. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy. J Phys D: Appl Phys. 2016;49:374003.
Kašparová P, Vaňková E, Paldrychová M et al. Non-thermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin. Front Cell Infect Microbiol. 2022;12:1393. PubMed PMC
Katiyar KS, Lin A, Fridman A et al. Non-thermal plasma accelerates astrocyte regrowth and neurite regeneration following physical trauma in vitro. Appl Sci. 2019;9:3747.
Khosravi S, Jafari S, Zamani H et al. Inactivation of Staphylococcus aureus and Escherichia coli biofilms by air-based atmospheric-pressure DBD plasma. Appl Biochem Biotechnol. 2021;193:3641–50. PubMed
Khosravi S, Jafari S, Zamani H et al. Synergistic antimicrobial effects of atmospheric pressure non-thermal argon plasma and ciprofloxacin antibiotic against multi-drug resistant P. aeruginosa biofilm. J Appl Phys. 2022;131:213301.
Lancet . Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629. PubMed PMC
Laroussi M. Cold plasma in medicine and healthcare: the new frontier in low temperature plasma applications. Front Phys. 2020;8:74.
Laroussi M. From killing bacteria to destroying cancer cells: 20 years of plasma medicine. Plasma Processes Polym. 2014;11:1138–41.
Li G, Li D, Li J et al. Promotion of the wound healing of in vivo rabbit wound infected with methicillin-resistant Staphylococcus aureus treated by a cold atmospheric plasma jet. IEEE Trans Plasma Sci. 2021a;49:2329–39.
Li H, Song R, Wang Y et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Water Res. 2021b;204:117630. PubMed
Li M, Gao J, Wang L et al. Basic research and clinical exploration of cold atmospheric plasma for skin wounds. Bioeng Transl Med. 2023,26:e10550. PubMed PMC
Liu D, Huang Q, Gu W et al. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr. 2022;62:3453–70. PubMed
Lux J, Dobiáš R, Kuklová I et al. Inactivation of dermatophytes causing onychomycosis and its therapy using non-thermal plasma. J Fungi. 2020;6:715. PubMed PMC
Ma C, Nikiforov A, De Geyter N et al. Plasma for biomedical decontamination: from plasma-engineered to plasma-active antimicrobial surfaces. Curr Opin Chem Eng. 2022;36:100764.
Machala Z, Chládeková L, Pelach M. Plasma agents in bio-decontamination by DC discharges in atmospheric air. J Phys D: Appl Phys. 2010;43:222001.
Machala Z, Tarabová B, Sersenová D et al. Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D: Appl Phys. 2018;52:034002.
Mancuso G, Midiri A, Gerace E et al. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021;10:1310. PubMed PMC
Maybin J-A, Thompson TP, Flynn PB et al. Cold atmospheric pressure plasma-antibiotic synergy in Pseudomonas aeruginosa biofilms is mediated via oxidative stress response. Biofilm. 2023;5:100122. PubMed PMC
Metelmann H-R, Nedrelow DS, Seebauer C et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3:17–23.
Miletić M, Mojsilović S, Đorđević IO et al. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells. J Phys D: Appl Phys. 2013;46:345401.
Mohanty S, Feemster K, Yu KC et al. Trends in Streptococcus pneumoniae antimicrobial resistance in US Children: a multicenter evaluation. Open Forum Infect Dis. 2023;10:ofad098. PubMed PMC
Moisan M, Barbeau J, Crevier M-C et al. Plasma sterilization. Methods and mechanisms. Pure Appl Chem. 2002;74:349–58.
Moreau M, Orange N, Feuilloley M. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26:610–7. PubMed
Moszczyńska J, Roszek K, Wiśniewski M. Non-thermal plasma application in medicine—focus on reactive species involvement. Int J Mol Sci. 2023;24:12667. PubMed PMC
Mozetič M. Surface modification to improve properties of materials. Materials. 2019;12:441. PubMed PMC
Muraca GS, Soler-Arango J, Castro GR et al. Improving ciprofloxacin antimicrobial activity through lipid nanoencapsulation or non-thermal plasma on Pseudomonas aeruginosa biofilms. J Drug Delivery Sci Technol. 2021;64:102644.
Murugesan P, Moses J, Anandharamakrishnan C. Water decontamination using non-thermal plasma: concepts, applications, and prospects. J Environ Chem Eng. 2020;8:104377.
Nguyen L, Lu P, Boehm D et al. Cold atmospheric plasma is a viable solution for treating orthopedic infection: a review. Biol Chem. 2018;400:77–86. PubMed
Nurjadi D, Klein S, Hannesen J et al. Molecular analysis of an increase in trimethoprim/sulfamethoxazole-resistant MRSA reveals multiple introductions into a tertiary care hospital, Germany 2012–19. J Antimicrob Chemother. 2022;77:38–48. PubMed
Paldrychová M, Vaňková E, Kašparová P et al. Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms. World J Microbiol Biotechnol. 2020;36:1–13. PubMed
Pan J, Sun K, Liang Y et al. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J Endod. 2013;39:105–10. PubMed
Park J, Lee H, Lee HJ et al. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci Rep. 2016;6:39298. PubMed PMC
Partecke LI, Evert K, Haugk J et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:1–10. PubMed PMC
Polianciuc SI, Gurzău AE, Kiss B et al. Antibiotics in the environment: causes and consequences. Med Pharm Rep. 2020;93:231. PubMed PMC
Portelli S, Myung Y, Furnham N et al. Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches. Sci Rep. 2020;10:18120. PubMed PMC
Qin S, Xiao W, Zhou C et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7:199. PubMed PMC
Reitberger HH, Czugala M, Chow C et al. Argon cold plasma–A novel tool to treat therapy-resistant corneal infections. Am J Ophthalmol. 2018;190:150–63. PubMed
Sakudo A, Misawa T. Antibiotic-resistant and non-resistant bacteria display similar susceptibility to dielectric barrier discharge plasma. Int J Mol Sci. 2020;21:6326. PubMed PMC
Schnall J, Rajkhowa A, Ikuta K et al. Surveillance and monitoring of antimicrobial resistance: limitations and lessons from the GRAM project. BMC Med. 2019;17:1–3. PubMed PMC
Scholtz V, Vaňková E, Kašparová P et al. Non-thermal plasma treatment of ESKAPE pathogens: a review. Front Microbiol. 2021;12:737635. PubMed PMC
Shan C, Wu H, Zhou J et al. Synergistic effects of Bacteriocin from Lactobacillus panis C-M2 combined with dielectric barrier discharged non-thermal plasma (DBD-NTP) on Morganella sp. in aquatic foods. Antibiotics. 2020;9:593. PubMed PMC
Silva A, Silva V, López M et al. Antimicrobial resistance, genetic lineages, and biofilm formation in Pseudomonas aeruginosa isolated from human infections: an emerging One Health concern. Antibiotics. 2023;12:1248. PubMed PMC
Šimončicová J, Kryštofová S, Medvecká V et al. Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol. 2019;103:5117–29. PubMed
Tag ElDein MA, Yassin AS, El-Tayeb O et al. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2021;40:2349–61. PubMed
Tang KWK, Millar BC, Moore JE. Antimicrobial resistance (AMR). Br J Biomed Sci. 2023;80:11387. PubMed PMC
Tendero C, Tixier C, Tristant P et al. Atmospheric pressure plasmas: a review. Spectrochim Acta, Part B. 2006;61:2–30.
Teng J, Imani S, Zhou A et al. Combatting resistance: understanding multi-drug resistant pathogens in intensive care units. Biomed Pharmacother. 2023;167:115564. PubMed
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics. 2015;40:277. PubMed PMC
Wang Y, Wang J, Wang R et al. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist. 2020;22:18–27. PubMed
WHO . Antimicrobial resistance. Geneva: World Health Organization. 2021.
WHO . One health. Toronto: World Health Organization, 2017.
Wirtz M, Stoffels I, Dissemond J et al. Actinic keratoses treated with cold atmospheric plasma. J Eur Acad Dermatol Venereol. 2018;32:e37–9. PubMed
Won H-R, Kang SU, Kim HJ et al. Non-thermal plasma treated solution with potential as a novel therapeutic agent for nasal mucosa regeneration. Sci Rep. 2018;8:13754. PubMed PMC
Wood GE, Bradshaw CS, Manhart LE. Update in epidemiology and management of Mycoplasma genitalium Infections. Infect Dis Clin North Am. 2023;37:311–33. PubMed
Wu S, Huang J, Zhang F et al. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front Microbiol. 2019;10:304. PubMed PMC
Xiong Z, Zhao S, Yan X. Nerve stem cell differentiation by a one-step cold atmospheric plasma treatment in vitro. J Vis Exp. 2019;11:e58663. PubMed
Yan D, Malyavko A, Wang Q et al. Cold atmospheric plasma cancer treatment, a critical review. Appl Sci. 2021;11:7757.
Yang B, Liu C, Pan X et al. Identification of novel phoP-phoQ regulated genes that contribute to polymyxin B tolerance in Pseudomonas aeruginosa. Microorganisms. 2021a;9:344. PubMed PMC
Yang L, Niyazi G, Qi Y et al. Plasma-activated saline promotes antibiotic treatment of systemic methicillin-resistant Staphylococcus aureus infection. Antibiotics. 2021b;10:1018. PubMed PMC
Zhang J, Xu J, Lei H et al. The development of variation-based rifampicin resistance in Staphylococcus aureus deciphered through genomic and transcriptomic study. J Hazard Mater. 2023a;442:130112. PubMed
Zhang H, Zhang C, Han Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl Microbiol Biotechnol. 2023b;107:5301–16. PubMed PMC
Zhou R, Zhou R, Wang P et al. Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D: Appl Phys. 2020;53:303001.
Zimmermann J, Shimizu T, Schmidt H et al. Test for bacterial resistance build-up against plasma treatment. New J Phys. 2012;14:073037.