Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Progress Q25
Charles University
17-15936S
GA CR
PubMed
32424471
DOI
10.1007/s12223-020-00796-3
PII: 10.1007/s12223-020-00796-3
Knihovny.cz E-zdroje
- MeSH
- antibiotická rezistence MeSH
- antiinfekční látky farmakologie MeSH
- biofilmy účinky léků růst a vývoj MeSH
- Candida albicans účinky léků MeSH
- druhová specificita MeSH
- Escherichia coli účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- plazmové plyny farmakologie MeSH
- slitiny MeSH
- Staphylococcus epidermidis účinky léků MeSH
- titan MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- plazmové plyny MeSH
- slitiny MeSH
- titan MeSH
- titanium alloy (TiAl6V4) MeSH Prohlížeč
The influence of non-thermal plasma (NTP) treatment on the prevention of antibiotic resistance of microbial biofilms was studied. Staphylococcus epidermidis and Escherichia coli bacteria and a yeast Candida albicans, grown on the surface of Ti-6Al-4V alloy used in the manufacture of prosthetic implants, were employed. Their biofilms were exposed to NTP produced by DC cometary discharge and subsequently treated with antibiotics commonly used for the treatment of infections caused by them: erythromycin (ERY), polymyxin B (PMB), or amphotericin B (AMB), respectively. All biofilms displayed significant reduction of their metabolic activity after NTP exposure, the most sensitive was S. epidermidis. The subsequent action of antibiotics caused significant decrease in the metabolic activity of S. epidermidis and E. coli, but not C. albicans, although the area covered by biofilm decreased in all cases. The combined effect of NTP with antibiotics was thus proved to be a promising strategy in bacterial pathogen treatment.
Department of Biotechnology University of Chemistry and Technology Prague Czech Republic
Department of Physics and Measurements University of Chemistry and Technology Prague Czech Republic
Zobrazit více v PubMed
Abramzon N, Joaquin JC, Bray J, Brelles-Mariño G (2006) Biofilm destruction by RF high-pressure cold plasma jet. IEEE Transaction on Plasma Science 34:1304–1309. https://doi.org/10.1109/TPS.2006.877515 DOI
Abu-Gharbieh E, Vasina V, Poluzzi E, De Ponti F (2004) Antibacterial macrolides: a drug class with a complex pharmacological profile. Pharmacol Res 50:211–222 https://europepmc.org/article/med/15225662 DOI
Alkawareek MY, Algwari QT, Gorman SP, Graham WG, O’Connell D, Brendan F, Gilmore BF (2012) Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol Med Microbiol 65:381–384. https://doi.org/10.1111/j.1574-695X.2012.00942.x PubMed DOI
Alkawareek MY, Gorman SP, Graham WG, Gilmore BF (2014) Eradication of marine biofilms by atmospheric pressure non-thermal plasma: a potential approach to control biofouling? Int Biodeterior Biodegradation 86(2014):14–18. https://doi.org/10.1016/j.ibiod.2013.05.030 DOI
Ayrapetyan M, Williams TC, Baxter R, Oliver JD (2015) Viable but nonculturable and persister cells coexist stochastically and are induced by human serum. Infect Immun 83(11):4194–4203. https://doi.org/10.1128/IAI.00404-15 https://www.ncbi.nlm.nih.gov/pubmed/26283335 PubMed DOI PMC
Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF (2017) Microbiological interactions with cold plasma. J Appl Microbiol 123:308–324. https://doi.org/10.1111/jam.13429 DOI
Carmen JC, Roeder BL, Nelson JL, Ogilvie RLR, Robison RA, Schaalje GB, Pitt WG (2005) Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control 33(5):78–82. https://doi.org/10.1016/jajic.2004.08.002 PubMed DOI PMC
Chakraborti S, Chakraborti T, Chattopadhyay D, Shaha C (Eds) (2019) Oxidative stress in microbial diseases. Springer, Singapore. https://www.springer.com/gp/book/9789811387623 https://books.google.cz/books?id = Tka5DwAAQBAJ&pg = PA120&lpg = PA120&dq = antibiotic+uptake+boost&source = bl&ots = od1NVpXhEX&sig = ACfU3U3ySSnwMujSpCI8ECj6EqzvVxLkZw&hl = cs&sa = X&ved = 2ahUKEwiXranPxeroAhWITsAKHTVHAU0Q6AEwCHoECAoQAQ#v = onepage&q = antibiotic%20uptake%20boost&f = false
Chung PY, Toh YS (2014) Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathogens and Disease 70:231–239. https://doi.org/10.1111/2049-632X.12141 PubMed DOI
Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140. https://doi.org/10.1007/BF01569816 PubMed DOI
Daeschlein G (2018) Antimicrobial activity of plasma. In: Metelmann HR, von Woedtke T, Weltmann KD (eds) Comprehensive clinical plasma medicine. Springer, Cham, pp 113–125. https://link.springer.com/chapter/10.1007%2F978-3-319-67627-2_6
Drago L, Agrappi S, Bortolin M, Toscano M, Romano CL, De Vecchi E (2016) How to study biofilms after microbial colonization of materials used in orthopaedic implants. Int J Mol Sci 17(3):293. https://doi.org/10.3390/ijms17030293 PubMed DOI PMC
Ehlbeck J, Schnabel U, Polak MJ, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D:Applied Physics 44:013002. https://doi.org/10.1088/0022-3727/44/1/013002 DOI
Gilmore BF, Flynn PB, O'Brien S, Hickok N, Freeman T, Bourke P (2018) Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol 36(6):627–638. https://doi.org/10.1016/j.tibtech.2018.03.007 https://www.ncbi.nlm.nih.gov/pubmed/29729997 PubMed DOI
Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D:Applied Physics 45:263001. https://doi.org/10.1088/0022-3727/45/26/263001 DOI
Guo J, Huang K, Wang J (2015) Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control 50:482–490 https://www.sciencedirect.com/science/article/abs/pii/S0956713514005581 DOI
Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301. https://doi.org/10.1093/femsre/fux010 https://academic.oup.com/femsre/article/41/3/276/3089981 PubMed DOI
Hornemann JA, Lysova AA, Codd SL, Seymour JD, Busse SC, Stewart PS, Brown JR (2008) Biopolymer and water dynamics in microbial biofilm extracellular polymeric substance. Biomacromolecules 9:2322–2328. https://doi.org/10.1021/bm800269h PubMed DOI PMC
Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105 https://www.ncbi.nlm.nih.gov/pubmed/1763187 PubMed
Julák J, Scholtz V, Vaňková E (2018) Medically important biofilms and non-thermal plasma. World J Microbiol Biotechnol 34:178. https://doi.org/10.1007/s11274-018-2560-2 PubMed DOI
Khun J, Scholtz V, Hozák P, Fitl P, Julák J (2018) Various DC driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci Technol 27(6):065002. https://doi.org/10.1088/1361-6595/aabdd0 DOI
Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J (2018) Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol 63(3):261. https://doi.org/10.1007/s12223-017-0549-0 DOI
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755. https://doi.org/10.1038/nrmicro.2017.99 PubMed DOI PMC
Kovalova Z, Leroy M, Kirkpatrick MJ, Odic E, Machala Z (2016) Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface. Bioelectrochemistry 112:91–99. https://doi.org/10.1016/j.bioelechem.2016.05.002 PubMed DOI
Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001 PubMed DOI PMC
Liu DX, Liu ZC, Chen C, Yang AJ, Li D, Rong MZ, Chen HL, Kong MG (2016) Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways. Sci Rep 6:23737. https://doi.org/10.1038/srep23737 PubMed DOI PMC
Metelmann H-R, von Woedtke T, Weltmann K-D (eds) (2018) Comprehensive clinical plasma medicine: cold physical plasma for medical applications. Springer, Cham. ISBN: 978-3-319-67626-5. https://doi.org/10.1007/978-3-319-67627-2
Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224 https://www.ncbi.nlm.nih.gov/pubmed/19067751 DOI
Paldrychová M, Vaňková E, Scholtz V, Julák J, Sembolová E, Mat’átková O, Masák J (2019) Effect of non-thermal plasma on AHLdependent QS systems and biofilm formation in Pseudomonas aeruginosa: difference between non-hospital and clinical isolates. AIP Adv 9:055117. https://doi.org/10.1063/1.5090451 DOI
Pan J, Sun K, Liang Y, Sun P, Yang X, Wang J, Zhang J, Zhu W, Fang J, Becker KH (2013) Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. Cold Plasma Therapy 39:105–110. https://doi.org/10.1016/j.joen.2012.08.017 DOI
Puligundla P, Mok C (2017) Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. J Appl Microbiol 122:1134–1148. https://doi.org/10.1111/jam.13404 PubMed DOI
Retsema J, Fu WC (2001) Macrolides: structures and microbial targets. Int J Antimicrob Agents 18:3–10 https://europepmc.org/article/med/11574188 DOI
Sadekuzzaman M, Yang S, Mizan MFR, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 14:491–509. https://doi.org/10.1111/1541-4337.12144 DOI
Sarangapani C, Ziuzina D, Behan P, Boehm D, Gilmore BF, Cullen PJ, Bourke P (2019) Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity. Sci Rep 9:3955. https://doi.org/10.1038/s41598-019-40352-9 PubMed DOI PMC
Scholtz V, Julák J (2010) Plasma jet-like point-to-point electrical discharge in air and its bactericidal properties. IEEE Transactions on Plasma Science 38:1978–1980. https://doi.org/10.1109/TPS.2010.2051461 DOI
Scholtz V, Julák J, Kříha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process Polym 7:237–243. https://doi.org/10.1002/ppap.200900072 DOI
Scholtz V, Kvasničková E, Julák J (2013) Microbial inactivation by electric discharge with metallic grid. Acta Phys Pol A 124:62–65 http://przyrbwn.icm.edu.pl/APP/ABSTR/124/a124-1-12.html DOI
Steenackers HP, Parijs I, Foster KR, Vanderleyden J (2016) Experimental evolution in biofilm populations. FEMS Microbiol Rev 40:373–397. https://doi.org/10.1093/femsre/fuw002 PubMed DOI PMC
Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 https://www.ncbi.nlm.nih.gov/pubmed/11463434 DOI
Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30. https://doi.org/10.1016/j.sab.2005.10.003 DOI
Traba C, Liang JF (2015) The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach. Biofouling 31(1):39–48. https://doi.org/10.1080/08927014.2014.995643 PubMed DOI PMC
Vaňková E, Válková M, Kašparová P, Masák J, Scholtz V, Khun J, Julák J (2019) Prevention of biofilm redevelopment on Ti-6Al-4V alloy by cometary discharge with metallic grid. Contributions to Plasma Physics 59:166–172. https://doi.org/10.1002/ctpp.201800044 DOI
Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for treatment of multidrug-resistant pathogens: a critical review. Journal ofAntimicrobial Chemotherapy 60:1206–1215 https://www.ncbi.nlm.nih.gov/pubmed/17878146