Non-thermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin

. 2022 ; 12 () : 993029. [epub] 20220923

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36211963

The increasing risk of antibiotic failure in the treatment of Pseudomonas aeruginosa infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production. We evaluated the ability of four NTP-affected P. aeruginosa strains to re-form biofilm and produce Las-B elastase, proteases, lipases, haemolysins, gelatinase or pyocyanin. Highly strains-dependent inhibitory activity of NTP against extracellular virulence factors production was observed. Las-B elastase activity was reduced up to 82% after 15-min NTP treatment, protease activity and pyocyanin production by biofilm cells was completely inhibited after 60 min, in contrast to lipases and gelatinase production, which remained unchanged. However, for all strains tested, a notable reduction in biofilm re-development ability was depicted using spinning disc confocal microscopy. In addition, NTP exposure of mature biofilms caused disruption of biofilm cells and their dispersion into the environment, as shown by transmission electron microscopy. This appears to be a key step that could help overcome the high resistance of P. aeruginosa and its eventual elimination, for example in combination with antibiotics still highly effective against planktonic cells.

Zobrazit více v PubMed

Alkawareek M. Y., Algwari Q. T., Gorman S. P., Graham W. G., O'Connell D., Gilmore B. F. (2012). Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol. Med. Mic. 65 (2), 381–384. doi: 10.1111/j.1574-695X.2012.00942.x PubMed DOI

Balasubramanian D., Schneper L., Kumari H., Mathee K. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 41 (1), 1–20. doi: 10.1093/nar/gks1039 PubMed DOI PMC

Bandeira G., Sutili F. J., Gressler L. T., Ely V. L., Silveira B. P., Tasca C., et al. . (2018). Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J. Appl. Microbiol. 125 (3), 655–665. doi: 10.1111/jam.13906 PubMed DOI

Barakat M. M., Bashi Y. H. D., Carson L., Graham W. G., Gilmore B. F., Flynn P. B. (2019). Atmospheric pressure non-thermal plasma exposure reduces Pseudomonas aeruginosa lipopolysaccharide toxicity in vitro and in vivo . Microb. Pathogenesis 136, 1–6. doi: 10.1016/j.micpath.2019.103679 PubMed DOI

Barczak A. K., Hung D. T. (2009). Productive steps toward an antimicrobial targeting virulence. Curr. Op. Microbiol. 12 (5), 490–496. doi: 10.1016/j.mib.2009.06.012 PubMed DOI PMC

Baron C. (2010). Antivirulence drugs to target bacterial secretion systems. Curr. Op. Microbiol. 13 (1), 100–105. doi: 10.1016/j.mib.2009.12.003 PubMed DOI

Behzadi P., Barath Z., Gajdacs M. (2021). It's not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa . Antibiotics-Basel 10 (1), 1–29. doi: 10.3390/antibiotics10010042 PubMed DOI PMC

Bjarnsholt T., Jensen P. O., Fiandaca M. J., Pedersen J., Hansen C. R., Andersen C. B., et al. . (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Ped. Pulmonol. 44 (6), 547–558. doi: 10.1002/ppul.21011 PubMed DOI

Christophersen L. J., Trostrup H., Malling-Damlund D. S., Bjarnsholt T., Thomsen K., Jensen P. O., et al. . (2012). Bead-size directed distribution of Pseudomonas aeruginosa results in distinct inflammatory response in mouse model of chronic lung infection. Clin. Exp. Immun. 170, 222–230. doi: 10.1111/j.1365-2249.2012.04652.x PubMed DOI PMC

Costerton J. W., Stewart P. S., Greenberg E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science 284 (5418), 1318–1322. doi: 10.1126/science.284.5418.1318 PubMed DOI

Das M. C., Sandhu P., Gupta P., Rudrapaul P., De U. C., Tribedi P., et al. . (2016). Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: A combinatorial study with azithromycin and gentamicin. Sci. Rep. 6, 1–13. doi: 10.1038/srep23347 PubMed DOI PMC

Defoirdt T. (2018). Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol. 26 (4), 313–328. doi: 10.1016/j.tim.2017.10.005 PubMed DOI

Flynn P. B., Busetti A., Wielogorska E., Chevallier O. P., Elliott C. T., Laverty G., et al. . (2016). Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci. Rep. 6, 1–13. doi: 10.1038/srep26320 PubMed DOI PMC

Flynn P. B., Higginbotham S., Alshraiedeh N. H., Gorman S. P., Graham W. G., Gilmore B. F. (2015). Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int. J. Antimicrob. Agents 46 (1), 101–107. doi: 10.1016/j.ijantimicag.2015.02.026 PubMed DOI

Gabriel A. A., Aba R. P. M., Tayamora D. J. L., Colambo J. C. R., Siringan M. A. T., Rosario L. M. D., et al. . (2016). Reference organism selection for microwave atmospheric pressure plasma jet treatment of young coconut liquid endosperm. Food Control 69, 74–82. doi: 10.1016/j.foodcont.2016.04.034 DOI

Gellatly S. L., Hancock R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis. 67 (3), 159–173. doi: 10.1111/2049-632x.12033 PubMed DOI

Gupta T. T., Ayan H. (2019). Application of non-thermal plasma on biofilm: A review. Appl. Sci.-Basel 9 (17), 1–20. doi: 10.3390/app9173548 DOI

Gupta T. T., Karki S. B., Matson J. S., Gehling D. J., Ayan H. (2017). Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. BioMed. Res. Int. 2017, 1–11. doi: 10.1155/2017/6085741 PubMed DOI PMC

Haque S., Ahmad F., Dar S. A., Jawed A., Mandal R. K., Wahid M., et al. . (2018). Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb. Pathogenesis 121, 293–302. doi: 10.1016/j.micpath.2018.05.046 PubMed DOI

Helgadottir S., Pandit S., Mokkapati V., Westerlund F., Apell P., Mijakovic I. (2017). Vitamin c pretreatment enhances the antibacterial effect of cold atmospheric plasma. Front. Cell. Infect. Mi. 7. doi: 10.3389/fcimb.2017.00043 PubMed DOI PMC

Juhas M., Eberl L., Tummler B. (2005). Quorum sensing: the power of cooperation in the world of Pseudomonas . Environ. Microb. 7 (4), 459–471. doi: 10.1111/j.1462-2920.2005.00769.x PubMed DOI

Julák J., Janoušková O., Scholtz V., Holada K. (2011). Inactivation of prions using electrical DC discharges at atmospheric pressure and ambient temperature. Plasma Process. Polym. 8 (4), 316–323. doi: 10.1002/ppap.201000100 DOI

Julák J., Scholtz V., Kvasničková E., Kříha V., Jíra J. (2012). “Bactericidal properties of cometary discharge with inserted grid,” in Book of abstracts, 4th international conference on plasma medicine. Eds. Mikikian M., Rabat H., Robert E., Pouvesle J.-M. (Orléans: International Society for Plasma Medicine; ), 141.

Julák J., Scholtz V., Kvasničková E., Kříha V., Jíra J. (2013). Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin. Plasma Med. 1 (2), 31–34. doi: 10.1016/j.cpme.2013.09.002 DOI

Julák J., Scholtz V., Vaňková E. (2018). Medically important biofilms and non-thermal plasma. World J. Microb. Biot. 34 (12), 1–15. doi: 10.1007/s11274-018-2560-2 PubMed DOI

Julák J., Vaňková E., Válková M., Kašparová P., Masák J., Scholtz V. (2020). Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiol. 65 (5), 863–869. doi: 10.1007/s12223-020-00796-3 PubMed DOI

Kašparová P., Boková S., Rollová M., Paldrychová M., Vaňková E., Lokočová K., et al. . (2022). Addition time plays a major role in the inhibitory effect of chitosan on the production of Pseudomonas aeruginosa virulence factors. Braz. J. Microbiol. 2022, 1–12. doi: 10.1007/s42770-022-00707-3 PubMed DOI PMC

Kašparová P., Vaňková E., Brázdová L., Lokočová K., Maťátková O., Masák J. (2021). Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis . Microb. Pathogenesis 152, 1–11. doi: 10.1016/j.micpath.2020.104632 PubMed DOI

Khan F., Manivasagan P., Pham D. T. N., Oh J., Kim S. K., Kim Y. M. (2019). Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa . Microb. Pathogenesis 128, 363–373. doi: 10.1016/j.micpath.2019.01.033 PubMed DOI

Khun J., Scholtz V., Hozak P., Fitl P., Julák J. (2018). Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. T. 27 (6), 1–9. doi: 10.1088/1361-6595/aabdd0 DOI

Kim G., Dasagrandhi C., Kang E. H., Eom S. H., Kim Y. M. (2018). In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes . 3 Biotech. 8 (10), 1–8. doi: 10.1007/s13205-018-1451-4 PubMed DOI PMC

Kingsbury J. M., Heitman J., Pinnell S. R. (2012). Calcofluor white combination antifungal treatments for Trichophyton rubrum and Candida albicans . PloS One 7 (7), 1–9. doi: 10.1371/journal.pone.0039405 PubMed DOI PMC

Kočendová J., Vaňková E., Volejníková A., Nešuta O., Buděšínský M., Socha O., et al. . (2019). Antifungal activity of analogues of antimicrobial peptides isolated from bee venoms against vulvovaginal. Candida FEMS Yeast Res. spp 19 (3), 1–16. doi: 10.1093/femsyr/foz013 PubMed DOI

Lee J., Zhang L. H. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa . Protein Cell 6 (1), 26–41. doi: 10.1007/s13238-014-0100-x PubMed DOI PMC

Liao X. Y., Liu D. H., Xiang Q. S., Ahn J., Chen S. G., Ye X. Q., et al. . (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 75, 83–91. doi: 10.1016/j.foodcont.2016.12.021 DOI

Lokajová E., Julák J., Khun J., Soušková H., Dobiáš R., Lux J., et al. . (2021). Inactivation of dermatophytes causing onychomycosis using non-thermal plasma as a prerequisite for therapy. J. Fungi 7 (9), 715. doi: 10.3390/jof7090715 PubMed DOI PMC

Lopez M., Calvo T., Prieto M., Mugica-Vidal R., Muro-Fraguas I., Alba-Elias F., et al. . (2019). A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00622 PubMed DOI PMC

Ma L. M., Conover M., Lu H. P., Parsek M. R., Bayles K., Wozniak D. J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. Plos. Pathog. 5 (3), 1–8. doi: 10.1371/journal.ppat.1000354 PubMed DOI PMC

Mah T. F. C., O'Toole G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9 (1), 34–39. doi: 10.1016/s0966-842x(00)01913-2 PubMed DOI

Mai-Prochnow A., Bradbury M., Ostrikov K., Murphy A. B. (2015). Pseudomonas aeruginosa biofilm response and resistance to cold atmospheric pressure plasma is linked to the redox-active molecule phenazine. PloS One 10 (6), 1–16. doi: 10.1371/journal.pone.0130373 PubMed DOI PMC

Marra A., Dib-Hajj F., Lamb L., Kaczmarek F., Shang W. C., Beckius G., et al. . (2007). Enterococcal virulence determinants may be involved in resistance to clinical therapy. Diagn. Microbiol. Infect. Dis. 58 (1), 59–65. doi: 10.1016/j.diagmicrobio.2006.11.024 PubMed DOI

Matthes R., Bender C., Schluter R., Koban I., Bussiahn R., Reuter S., et al. . (2013). Antimicrobial efficacy of two surface barrier discharges with air plasma against In vitro biofilms. PloS One 8 (7), 1–11. doi: 10.1371/journal.pone.0070462 PubMed DOI PMC

Maura D., Ballok A. E., Rahme L. G. (2016). Considerations and caveats in anti-virulence drug development. Curr. Op. Microbiol. 33, 41–46. doi: 10.1016/j.mib.2016.06.001 PubMed DOI PMC

Moreau M., Orange N., Feuilloley M. G. J. (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 26 (6), 610–617. doi: 10.1016/j.biotechadv.2008.08.001 PubMed DOI

Mu H. B., Zhang A., Zhang L., Niu H., Duan J. Y. (2014). Inhibitory effects of chitosan in combination with antibiotics on Listeria monocytogenes biofilm. Food Control 38, 215–220. doi: 10.1016/j.foodcont.2013.10.032 DOI

Paldrychová M., Vaňková E., Kašparová P., Sembolová E., Maťátková O., Masák J., et al. . (2020). Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms. World J. Microb. Biot. 36 (8), 1–13. doi: 10.1007/s11274-020-02891-6 PubMed DOI

Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Maťátková O., et al. . (2019). Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. Aip Adv. 9 (5), 1–10. doi: 10.1063/1.5090451 DOI

Rice L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 197 (8), 1079–1081. doi: 10.1086/533452 PubMed DOI

Saising J., Singdam S., Ongsakul M., Voravuthikunchai S. P. (2012). Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions. Biosci.Trends 6 (4), 160–164. doi: 10.5582/bst.2012.v6.4.160 PubMed DOI

Scholtz V., Julák J. (2010. a). The “cometary” discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. J. Phys. Conf. Ser. 223, 1–4. doi: 10.1088/1742-6596/223/1/012005 DOI

Scholtz V., Julák J. (2010. b). Plasma jet-like point-to-point electrical discharge in air and its bactericidal properties. IEEE Trans. Plasma Sci. 38, 1978–1980. doi: 10.1109/TPS.2010.2051461 DOI

Scholtz V., Julák J., Kříha V. (2010). The microbicidal effect of low-temperature plasma generated by corona discharge: Comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process. Polym. 7 (3-4), 237–243. doi: 10.1002/ppap.200900072 DOI

Scholtz V., Kvasničková E., Julák J. (2013). Microbial inactivation by electric discharge with metallic grid. Acta Phys. Pol. A 124 (1), 62–65. doi: 10.12693/APhysPolA.124.62 DOI

Scholtz V., Pazlarová J., Sousková H., Khun J., Julák J. (2015). Nonthermal plasma - a tool for decontamination and disinfection. Biotechnol. Adv. 33 (6), 1108–1119. doi: 10.1016/j.biotechadv.2015.01.002 PubMed DOI

Scholtz V., Vaňková E., Kašparová P., Premanath R., Karunasagar I., Julák J. (2021). Non-thermal plasma treatment of ESKAPE pathogens: a review. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.737635 PubMed DOI PMC

Tre-Hardy M., Vanderbist F., Traore H., Devleeschouwer M. J. (2008). In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. Int. J. Antimicrob. Agents 31 (4), 329–336. doi: 10.1016/j.ijantimicag.2007.12.005 PubMed DOI

Vaňková E., Kašparová P., Dulíčková N., Čeřovský V. (2020. a). Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: Biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Res. 20 (3), 1–16. doi: 10.1093/femsyr/foaa020 PubMed DOI

Vaňková E., Kašparová P., Khun J., Machková A., Julák J., Sláma M., et al. . (2020. b). Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. Peerj 8, 1–20. doi: 10.7717/peerj.10259 PubMed DOI PMC

Vaňková E., Válková M., Kašparová P., Masák J., Scholtz V., Khun J., et al. . (2019). Prevention of biofilm re-development on Ti-6Al-4V alloy by cometary discharge with a metallic grid. Contrib. Plasm. Phys. 59 (2), 166–172. doi: 10.1002/ctpp.201800044 DOI

Wang L. Y., Xia C. K., Guo Y. J., Yang C. J., Cheng C., Zhao J., et al. . (2020). Bactericidal efficacy of cold atmospheric plasma treatment against multidrug-resistant Pseudomonas aeruginosa . Future Microbiol. 15 (2), 115–125. doi: 10.2217/fmb-2019-0265 PubMed DOI

Zhao L., Wang S., Li X., He X., Jian L. (2020). Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa . Antimicrob. Resist. Infect. Control 9, 1–8. doi: 10.1186/s13756-020-00793-8 PubMed DOI PMC

Ziuzina D., Boehm D., Patil S., Cullen P. J., Bourke P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PloS One 10 (9), 1–21. doi: 10.1371/journal.pone.0138209 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...