Addition time plays a major role in the inhibitory effect of chitosan on the production of Pseudomonas aeruginosa virulence factors

. 2022 Jun ; 53 (2) : 535-546. [epub] 20220302

Jazyk angličtina Země Brazílie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35235193
Odkazy

PubMed 35235193
PubMed Central PMC9151934
DOI 10.1007/s42770-022-00707-3
PII: 10.1007/s42770-022-00707-3
Knihovny.cz E-zdroje

Pseudomonas aeruginosa is a gram-negative bacterium capable of forming persistent biofilms that are extremely difficult to eradicate. The species is most infamously known due to complications in cystic fibrosis patients. The high mortality of cystic fibrosis is caused by P. aeruginosa biofilms occurring in pathologically overly mucous lungs, which are the major cause facilitating the organ failure. Due to Pseudomonas biofilm-associated infections, remarkably high doses of antibiotics must be administered, eventually contributing to the development of antibiotic resistance. Nowadays, multidrug resistant P. aeruginosa is one of the most terrible threats in medicine, and the search for novel antimicrobial drugs is of the utmost importance. We have studied the effect of low molecular weight chitosan (LMWCH) on various stages of P. aeruginosa ATCC 10145 biofilm formation and eradication, as well as on production of other virulence factors. LMWCH is a well-known naturally occurring agent with a vast antimicrobial spectrum, which has already found application in various fields of medicine and industry. LMWCH at a concentration of 40 mg/L was able to completely prevent biofilm formation. At a concentration of 60 mg/L, this agent was capable to eradicate already formed biofilm in most studied times of addition (2-12 h of cultivation). LMWCH (50 mg/L) was also able to suppress pyocyanin production when added 2 and 4 h after cultivation. The treatment resulted in reduced formation of cell clusters. LMWCH was proved to be an effective antibiofilm agent worth further clinical research with the potential to become a novel drug for the treatment of P. aeruginosa infections.

Zobrazit více v PubMed

Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–1081. doi: 10.1086/533452. PubMed DOI

Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Non-thermal plasma treatment of ESKAPE pathogens: a review. Front Microbiol. 2021 doi: 10.3389/fmicb.2021.737635. PubMed DOI PMC

Fazeli N, Momtaz H (2014) Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections, Iran. Red Crescent Me. 16:10.5812/ircmj.15722 PubMed PMC

Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 2013;41:1–20. doi: 10.1093/nar/gks1039. PubMed DOI PMC

Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Hoiby N. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Ped Pulmonol. 2009;44:547–558. doi: 10.1002/ppul.21011. PubMed DOI

Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol. 2004;186:4449–4456. doi: 10.1128/jb.186.14.4449-4456.2004. PubMed DOI PMC

Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol. 2004;186:4466–4475. doi: 10.1128/jb.186.14.4466-4475.2004. PubMed DOI PMC

Lee J et al (2013) A cell-cell communication signal integrates quorum sensing and stress response, Nature chemical biology 9:339–343. PubMed

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Nguyen HA, Denis O, Vergison A, Tulkens PM, Struelens MJ, Van Bambeke F. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: study of antibiotic combinations. Antimicrob Agents Chemother. 2009;53:1443–1449. doi: 10.1128/aac.01146-08. PubMed DOI PMC

Paldrychova M, Vankova E, Scholtz V, Julak J, Sembolova E, Mat'atkova O, Masak J. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: difference between non-hospital and clinical isolates. AIP Adv. 2019;9:1–10. doi: 10.1063/1.5090451. DOI

Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria. Antibiotics-Basel. 2019;8:1–21. doi: 10.3390/antibiotics8020037. PubMed DOI PMC

Zhao L, Wang S, Li X, He X, Jian L (2020) Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa, Antimicrob. Resist. Infect. Control 9:1–8. PubMed PMC

Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–1215. doi: 10.1093/jac/dkm357. PubMed DOI

Devlieghere F, Vermeulen A, Debevere J. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004;21:703–714. doi: 10.1016/j.fm.2004.02.008. DOI

Goy RC, de Britto D, Assis OBG. A review of the antimicrobial activity of chitosan. Polimeros. 2009;19:241–247. doi: 10.1590/S0104-14282009000300013. DOI

Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63. doi: 10.1016/j.ijfoodmicro.2010.09.012. PubMed DOI

Kumar M. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27. doi: 10.1016/S1381-5148(00)00038-9. DOI

Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–678. doi: 10.1016/j.progpolymsci.2009.04.001. DOI

Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L: Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Nati. C. Biotechnol. Inf. 2013.

Kašparová P, Vaňková E, Brázdová L, Lokočová K, Maťátková O, J M, Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb Pathogen. 2021;152:1–11. doi: 10.1016/j.micpath.2020.104632. PubMed DOI

Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Meth. 2014;105:134–140. doi: 10.1016/j.mimet.2014.07.024. PubMed DOI

Vaňková E, Paldrychová M, Kašparová P, Lokočová K, Kodeš Z, Maťátková O, Kolouchová I, Masák J. Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci, World. J Microbiol Biotech. 2020;30:101–114. doi: 10.1007/s11274-020-02876-5. PubMed DOI

Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114:1173–1182. doi: 10.1016/j.foodchem.2008.11.047. DOI

Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001. DOI

Kim G, Dasagrandhi C, Kang EH, Eom SH, Kim YM (2018) In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes, 3 Biotech 8:1–8. 10.1007/s13205-018-1451-4 PubMed PMC

Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM. Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathogenesis. 2019;128:363–373. doi: 10.1016/j.micpath.2019.01.033. PubMed DOI

He XJ, Hwang HM, Aker WG, Wang PF, Lin YF, Jiang XL, He XY. Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiol Res. 2014;169:759–767. doi: 10.1016/j.micres.2014.01.001. PubMed DOI

Dotto GL, Vieira MLG, Pinto LAA. Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature, Lwt-Food Sci. Technol. 2015;64:126–130. doi: 10.1016/j.lwt.2015.05.042. DOI

Carlson RP, Taffs R, Davison WM, Stewart PS. Anti-biofilm properties of chitosan-coated surfaces. J Biomat Sci-polym E. 2008;19:1035–1046. doi: 10.1163/156856208784909372. PubMed DOI

Machul A, Mikolajczyk D, Regiel-Futyra A, Heczko PB, Strus M, Arruebo M, Stochel G, Kyziol A. Study on inhibitory activity of chitosan-based materials against biofilm producing Pseudomonas aeruginosa strains. J Biomater Appl. 2015;30:269–278. doi: 10.1177/0885328215578781. PubMed DOI

Kandimalla KK, Borden E, Omtri RS, Boyapati SP, Smith M, Lebby K, Mulpuru M, Gadde M. Ability of chitosan gels to disrupt bacterial biofilms and their applications in the treatment of bacterial vaginosis. J Pharm Sci. 2013;102:2096–2101. doi: 10.1002/jps.23571. PubMed DOI

Tan YL, Han F, Ma S, Yu WG. Carboxymethyl chitosan prevents formation of broad-spectrum biofilm. Carbohyd Polym. 2011;84:1365–1370. doi: 10.1016/j.carbpol.2011.01.036. DOI

Liu YH, Jiang Y, Zhu JL, Huang JY, Zhang HJ. Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa. Carbohyd Polym. 2019;206:412–419. doi: 10.1016/j.carbpol.2018.11.015. PubMed DOI

Muslim SN, Al Kadmy IMS, Ali ANM, Salman BK, Ahmad M, Khazaal SS, Hussein NH, Muslim SN. Chitosan extracted from Aspergillus flavus shows synergistic effect, eases quorum sensing mediated virulence factors and biofilm against nosocomial pathogen Pseudomonas aeruginosa. Int J Biol Macromol. 2018;107:52–58. doi: 10.1016/j.ijbiomac.2017.08.146. PubMed DOI

Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol. 2001;71:235–244. doi: 10.1016/s0168-1605(01)00609-2. PubMed DOI

Kašparová P, Zmuda M, Vaňková E, Maťátková O, Masák J (2021) Low molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells. Folia Microbiol 1-14. 10.1007/s12223-021-00898-6 PubMed

Rubini D, Banu SF, Subramani P, Hari BNV, Gowrishankar S, Pandian SK, Wilson A, Nithyanand P. Extracted chitosan disrupts quorum sensing mediated virulence factors in urinary tract infection causing pathogens. Pathog Dis. 2019;77:1–12. doi: 10.1093/femspd/ftz009. PubMed DOI

Badawy M, Riad OKM, Taher FA, Zaki SA. Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int J Biol Macromol. 2020;149:1109–1117. doi: 10.1016/j.ijbiomac.2020.02.019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...