X-ray microtomography-based atlas of mouse cranial development

. 2021 Mar 02 ; 10 (3) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33677535

BACKGROUND: X-ray microtomography (μCT) has become an invaluable tool for non-destructive analysis of biological samples in the field of developmental biology. Mouse embryos are a typical model for investigation of human developmental diseases. By obtaining 3D high-resolution scans of the mouse embryo heads, we gain valuable morphological information about the structures prominent in the development of future face, brain, and sensory organs. The development of facial skeleton tracked in these μCT data provides a valuable background for further studies of congenital craniofacial diseases and normal development. FINDINGS: In this work, reusable tomographic data from 7 full 3D scans of mouse embryo heads are presented and made publicly available. The ages of these embryos range from E12.5 to E18.5. The samples were stained by phosphotungstic acid prior to scanning, which greatly enhanced the contrast of various tissues in the reconstructed images and enabled precise segmentation. The images were obtained on a laboratory-based μCT system. Furthermore, we provide manually segmented masks of mesenchymal condensations (for E12.5 and E13.5) and cartilage present in the nasal capsule of the scanned embryos. CONCLUSION: We present a comprehensive dataset of X-ray 3D computed tomography images of the developing mouse head with high-quality manual segmentation masks of cartilaginous nasal capsules. The provided μCT images can be used for studying any other major structure within the developing mouse heads. The high quality of the manually segmented models of nasal capsules may be instrumental to understanding the complex process of the development of the face in a mouse model.

Zobrazit více v PubMed

Kaucka  M, Zikmund  T, Tesarova  M, et al.  Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife. 2017;6:e25902. PubMed PMC

Kaucka  M, Petersen  J, Tesarova  M, et al.  Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife. 2018;7:e34465. PubMed PMC

Zollikofer  CPE, Ponce de León  MS. Visualizing patterns of craniofacial shape variation in Homo sapiens. Proc Biol Sci. 2002;269(1493):801–7. PubMed PMC

Metscher  BD. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn. 2009;238:632. PubMed

Balto  K, Muller  R, Carrington  DC, et al.  Quantification of periapical bone destruction in mice by micro-computed tomography. J Dent Res. 2000;79:35. PubMed

Sabolova  V, Brinek  A, Sladek  V. The effect of hydrochloric acid on microstructure of porcine (Sus scrofa domesticus) cortical bone tissue. Forensic Sci Int. 2018;291:260. PubMed

Dosedelova  H, Stepankova  K, Zikmund  T, et al.  Age-related changes in the tooth–bone interface area of acrodont dentition in the chameleon. J Anat. 2016;229:356. PubMed PMC

Landova Sulcova  M, Zahradnicek  O, Dumkova  J, et al.  Developmental mechanisms driving complex tooth shape in reptiles. Dev Dyn. 2020;249:441. PubMed

Metscher  BD. Micro CT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. PubMed PMC

Choi  JP, Foley  M, Zhou  Z, et al.  Micro-CT imaging reveals Mekk3 heterozygosity prevents cerebral cavernous malformations in Ccm2Deficient mice. PLoS One. 2016;11:e0160833. PubMed PMC

Pai  VM, Kozlowski  M, Donahue  D, et al.  Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT). J Anat. 2012;220:514. PubMed PMC

Degenhardt  K, Wright  AC, Horng  D, et al.  Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging. 2010;3:314–22. PubMed PMC

Choi  JP, Yang  X, Foley  M, et al.  Induction and micro-CT imaging of cerebral cavernous malformations in mouse model. J Vis Exp. 2017(127), doi: 10.3791/56476. PubMed DOI PMC

Tesarova  M, Zikmund  T, Kaucka  M, et al.  Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J Instrum. 2016;11, doi:10.1088/1748-0221/11/03/C03006. DOI

Theiler  K. The House Mouse: Atlas of Embryonic Development. 2nd ed. Springer; 1989.

Ronneberger  O, Fischer  P, Brox  T. U-net: Convolutional networks for biomedical image segmentation. In: Navab  M, Hornegger  J, Wells  W  et al.., et al., eds. Medical Image Computing and Computer-Assisted Intervention - MICCAI. Cham: Springer; 2015, doi:10.1007/978-3-319-24574-4_28. DOI

Matula  J, Tesarova  M, Zikmund  T, et al.  Supporting data for “X-ray microtomography-based atlas of mouse cranial development.”. GigaScience Database. 2021. 10.5524/100862. PubMed DOI PMC

Schindelin  J, Arganda-Carreras  I, Frise  E, et al.  Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;96:76. PubMed PMC

Cignoni  P, Callieri  M, Corsini  M, et al.  MeshLab: An open-source mesh processing tool. In: 6th Eurographics Ital Chapter Conf 2008, Salerno, Italy. Eurographics Association; 2008, doi:10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136. DOI

Sketchfab. https://sketchfab.com/GigaDB/collections/mouse-embryo. Accessed 23 Feb 2021.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...