• This record comes from PubMed

Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration

. 2022 Nov 14 ; 13 (1) : 6949. [epub] 20221114

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
F32 GM117806 NIGMS NIH HHS - United States

Links

PubMed 36376278
PubMed Central PMC9663504
DOI 10.1038/s41467-022-34266-w
PII: 10.1038/s41467-022-34266-w
Knihovny.cz E-resources

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.

See more in PubMed

Joven, A., Elewa, A. & Simon, A. Model systems for regeneration: salamanders. Development146, 10.1242/dev.167700 (2019). PubMed PMC

Simon A, Tanaka EM. Limb regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2013;2:291–300. PubMed

Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell. 2016;165:1598–1608. PubMed

Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science362, 10.1126/science.aaq0681 (2018). PubMed PMC

Wang H, Simon A. Skeletal muscle dedifferentiation during salamander limb regeneration. Curr. Opin. Genet Dev. 2016;40:108–112. PubMed

Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science. 2007;318:772–777. PubMed PMC

Carr MJ, et al. Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and Regeneration. Cell Stem Cell. 2019;24:240–256.e249. PubMed

Dolan CP, Dawson LA, Muneoka K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl. Med. 2018;7:262–270. PubMed PMC

Johnston AP, et al. Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip. Cell Stem Cell. 2016;19:433–448. PubMed

Dolan CP, et al. Digit specific denervation does not inhibit mouse digit tip regeneration. Dev. Biol. 2022;486:71–80. PubMed PMC

Makanae A, Mitogawa K, Satoh A. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians. Dev. Biol. 2016;410:45–55. PubMed

Vieira WA, et al. FGF, BMP, and RA signaling are sufficient for the induction of complete limb regeneration from non-regenerating wounds on Ambystoma mexicanum limbs. Dev. Biol. 2019;451:146–157. PubMed PMC

Vincent, E. et al. BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs. Development147, 10.1242/dev.170829 (2020). PubMed

Diogo R, Nacu E, Tanaka EM. Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies. Anat. Rec. (Hoboken) 2014;297:1076–1089. PubMed

Frobisch NB, Bickelmann C, Witzmann F. Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proc. Biol. Sci. 2014;281:20141550. PubMed PMC

Currie JD, et al. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools. Dev. Cell. 2016;39:411–423. PubMed PMC

McCusker CD, Diaz-Castillo C, Sosnik J, A QP, Gardiner DM. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs. Dev. Biol. 2016;416:26–33. PubMed

Cosden RS, et al. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthr. Cartil. 2011;19:200–205. PubMed PMC

Abad V, et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology. 2002;143:1851–1857. PubMed

Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J. Biochem Cell Biol. 2008;40:46–62. PubMed

Mizuhashi K, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018;563:254–258. PubMed PMC

Newton PT, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019;567:234–238. PubMed

Kaucka, M. et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife6, 10.7554/eLife.25902 (2017). PubMed PMC

Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–336. PubMed

Cooper KL, et al. Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature. 2014;511:41–45. PubMed PMC

Michejda M. The role of basicranial synchondroses in flexure processes and ontogenetic development of the skull base. Am. J. Phys. Anthropol. 1972;37:143–150. PubMed

Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. PubMed PMC

Tesarova, M. et al. Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging. Gigascience11, 10.1093/gigascience/giac030 (2022). PubMed PMC

Tesarova M, et al. A quantitative analysis of 3D-cell distribution in regenerating muscle-skeletal system with synchrotron X-ray computed microtomography. Sci. Rep. 2018;8:14145. PubMed PMC

Kaucka, M. et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife7, 10.7554/eLife.34465 (2018). PubMed PMC

Matula, J. et al. X-ray microtomography-based atlas of mouse cranial development. Gigascience10, 10.1093/gigascience/giab012 (2021). PubMed PMC

St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13:2072–2086. PubMed PMC

Debnath S, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018;562:133–139. PubMed PMC

Joven, A. et al. Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development145, 10.1242/dev.160051 (2018). PubMed

Shindo, A. Models of convergent extension during morphogenesis. Wiley Interdiscip Rev Dev Biol7, 10.1002/wdev.293 (2018). PubMed PMC

Zeller R, Lopez-Rios J, Zuniga A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 2009;10:845–858. PubMed

Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep. 2017;6:87–100. PubMed PMC

Scammell BE, Roach HI. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. J. Bone Min. Res. 1996;11:737–745. PubMed

Lozito TP, Tuan RS. Lizard tail skeletal regeneration combines aspects of fracture healing and blastema-based regeneration. Development. 2016;143:2946–2957. PubMed PMC

Riquelme-Guzman C, et al. Postembryonic development and aging of the appendicular skeleton in Ambystoma mexicanum. Dev. Dyn. 2022;251:1015–1034. PubMed

Anthwal N, Urban DJ, Luo ZX, Sears KE, Tucker AS. Meckel’s cartilage breakdown offers clues to mammalian middle ear evolution. Nat. Ecol. Evol. 2017;1:93. PubMed PMC

Frobisch NB. Ossification patterns in the tetrapod limb–conservation and divergence from morphogenetic events. Biol. Rev. Camb. Philos. Soc. 2008;83:571–600. PubMed

Vassilieva AB, Serbinova IA, Poyarkov NA. Development of the bony skeleton in two salamander species (Mertensiella caucasica and Chioglossa lusitanica: Salamandridae) with partial embryonization. Dokl. Biol. Sci. 2011;438:168–170. PubMed

Riquelme-Guzman, C. et al. Postembryonic development and aging of the appendicular skeleton in Ambystoma mexicanum. Dev Dyn, 10.1002/dvdy.407 (2021). PubMed

Bothe V, Mahlow K, Frobisch NB. A histological study of normal and pathological limb regeneration in the Mexican axolotl Ambystoma mexicanum. J. Exp. Zool. B Mol. Dev. Evol. 2021;336:116–128. PubMed

Thompson S, Muzinic L, Muzinic C, Niemiller ML, Voss SR. Probability of Regenerating a Normal Limb After Bite Injury in the Mexican Axolotl (Ambystoma mexicanum). R. Regeneration (Oxf) 2014;1:27–32. PubMed PMC

Barresi, M. J. F. & Gilbert, S. F. Developmental biology. Twelfth edition. edn, (Sinauer Associates, 2020).

Xie, M. et al. Secondary ossification center induces and protects growth plate structure. Elife9, 10.7554/eLife.55212 (2020). PubMed PMC

Perez-Vale, K. Z. & Peifer, M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development147, 10.1242/dev.191049 (2020). PubMed PMC

Kobayashi T, et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development. 2002;129:2977–2986. PubMed

Hutchison C, Pilote M, Roy S. The axolotl limb: a model for bone development, regeneration and fracture healing. Bone. 2007;40:45–56. PubMed

Vortkamp A, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–622. PubMed

Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel’s Cartilage. Front Cell Dev. Biol. 2020;8:821. PubMed PMC

Joven A, Kirkham M, Simon A. Husbandry of Spanish ribbed newts (Pleurodeles waltl) Methods Mol. Biol. 2015;1290:47–70. PubMed

Khattak S, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 2014;9:529–540. PubMed

Laranjeira C, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 2011;121:3412–3424. PubMed PMC

Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev. Dyn. 2006;235:2603–2612. PubMed

Loulier K, et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron. 2014;81:505–520. PubMed

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC

Tesarova, M. et al. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J. Instrumentation.11, 1–12 (2016).

Wang F, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2012;14:22–29. PubMed PMC

Delmas, J., Assire, A. & Fournier, I. Salome-Meca: une plate-forme au service de lasimulation mécanique. 10e colloque national en calcul des structures, May 2011, Giens, France (2011).

Delbecq, J. M. The Alste Code. (1999).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...