Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
F32 GM117806
NIGMS NIH HHS - United States
PubMed
36376278
PubMed Central
PMC9663504
DOI
10.1038/s41467-022-34266-w
PII: 10.1038/s41467-022-34266-w
Knihovny.cz E-resources
- MeSH
- Cell Division MeSH
- Cartilage MeSH
- Bone and Bones MeSH
- Osteogenesis * MeSH
- Mammals MeSH
- Caudata * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
Astrid Lindgren Children's Hospital Karolinska University Hospital Solna Sweden
Central European Institute of Technology Brno University of Technology Brno 61200 Czech Republic
Department of Biology Wake Forest University Winston Salem NC USA
Department of Cell and Molecular Biology Biomedicum Karolinska Institute Stockholm 17165 Sweden
Department of Information Technology Uppsala University Uppsala Sweden
Department of Mathematical Sciences The University of Texas at El Paso El Paso TX 79902 USA
Department of Neuroscience Biomedicum Karolinska Institute Stockholm 17165 Sweden
Department of Orthodontics University of Leipzig Medical Center Leipzig 04103 Germany
Department of Physiology and Pharmacology Karolinska Institutet Stockholm 17165 Sweden
Department of Women's and Children's Health Karolinska Institute Solna Sweden
Max Planck Institute for Evolutionary Biology Plön 24306 Germany
The Research Institute of Molecular Pathology Vienna 1030 Austria
See more in PubMed
Joven, A., Elewa, A. & Simon, A. Model systems for regeneration: salamanders. Development146, 10.1242/dev.167700 (2019). PubMed PMC
Simon A, Tanaka EM. Limb regeneration. Wiley Interdiscip. Rev. Dev. Biol. 2013;2:291–300. PubMed
Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell. 2016;165:1598–1608. PubMed
Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science362, 10.1126/science.aaq0681 (2018). PubMed PMC
Wang H, Simon A. Skeletal muscle dedifferentiation during salamander limb regeneration. Curr. Opin. Genet Dev. 2016;40:108–112. PubMed
Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science. 2007;318:772–777. PubMed PMC
Carr MJ, et al. Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and Regeneration. Cell Stem Cell. 2019;24:240–256.e249. PubMed
Dolan CP, Dawson LA, Muneoka K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl. Med. 2018;7:262–270. PubMed PMC
Johnston AP, et al. Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip. Cell Stem Cell. 2016;19:433–448. PubMed
Dolan CP, et al. Digit specific denervation does not inhibit mouse digit tip regeneration. Dev. Biol. 2022;486:71–80. PubMed PMC
Makanae A, Mitogawa K, Satoh A. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians. Dev. Biol. 2016;410:45–55. PubMed
Vieira WA, et al. FGF, BMP, and RA signaling are sufficient for the induction of complete limb regeneration from non-regenerating wounds on Ambystoma mexicanum limbs. Dev. Biol. 2019;451:146–157. PubMed PMC
Vincent, E. et al. BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs. Development147, 10.1242/dev.170829 (2020). PubMed
Diogo R, Nacu E, Tanaka EM. Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies. Anat. Rec. (Hoboken) 2014;297:1076–1089. PubMed
Frobisch NB, Bickelmann C, Witzmann F. Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proc. Biol. Sci. 2014;281:20141550. PubMed PMC
Currie JD, et al. Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools. Dev. Cell. 2016;39:411–423. PubMed PMC
McCusker CD, Diaz-Castillo C, Sosnik J, A QP, Gardiner DM. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs. Dev. Biol. 2016;416:26–33. PubMed
Cosden RS, et al. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthr. Cartil. 2011;19:200–205. PubMed PMC
Abad V, et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology. 2002;143:1851–1857. PubMed
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J. Biochem Cell Biol. 2008;40:46–62. PubMed
Mizuhashi K, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018;563:254–258. PubMed PMC
Newton PT, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019;567:234–238. PubMed
Kaucka, M. et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife6, 10.7554/eLife.25902 (2017). PubMed PMC
Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–336. PubMed
Cooper KL, et al. Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature. 2014;511:41–45. PubMed PMC
Michejda M. The role of basicranial synchondroses in flexure processes and ontogenetic development of the skull base. Am. J. Phys. Anthropol. 1972;37:143–150. PubMed
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. PubMed PMC
Tesarova, M. et al. Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging. Gigascience11, 10.1093/gigascience/giac030 (2022). PubMed PMC
Tesarova M, et al. A quantitative analysis of 3D-cell distribution in regenerating muscle-skeletal system with synchrotron X-ray computed microtomography. Sci. Rep. 2018;8:14145. PubMed PMC
Kaucka, M. et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife7, 10.7554/eLife.34465 (2018). PubMed PMC
Matula, J. et al. X-ray microtomography-based atlas of mouse cranial development. Gigascience10, 10.1093/gigascience/giab012 (2021). PubMed PMC
St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13:2072–2086. PubMed PMC
Debnath S, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018;562:133–139. PubMed PMC
Joven, A. et al. Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development145, 10.1242/dev.160051 (2018). PubMed
Shindo, A. Models of convergent extension during morphogenesis. Wiley Interdiscip Rev Dev Biol7, 10.1002/wdev.293 (2018). PubMed PMC
Zeller R, Lopez-Rios J, Zuniga A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 2009;10:845–858. PubMed
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep. 2017;6:87–100. PubMed PMC
Scammell BE, Roach HI. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. J. Bone Min. Res. 1996;11:737–745. PubMed
Lozito TP, Tuan RS. Lizard tail skeletal regeneration combines aspects of fracture healing and blastema-based regeneration. Development. 2016;143:2946–2957. PubMed PMC
Riquelme-Guzman C, et al. Postembryonic development and aging of the appendicular skeleton in Ambystoma mexicanum. Dev. Dyn. 2022;251:1015–1034. PubMed
Anthwal N, Urban DJ, Luo ZX, Sears KE, Tucker AS. Meckel’s cartilage breakdown offers clues to mammalian middle ear evolution. Nat. Ecol. Evol. 2017;1:93. PubMed PMC
Frobisch NB. Ossification patterns in the tetrapod limb–conservation and divergence from morphogenetic events. Biol. Rev. Camb. Philos. Soc. 2008;83:571–600. PubMed
Vassilieva AB, Serbinova IA, Poyarkov NA. Development of the bony skeleton in two salamander species (Mertensiella caucasica and Chioglossa lusitanica: Salamandridae) with partial embryonization. Dokl. Biol. Sci. 2011;438:168–170. PubMed
Riquelme-Guzman, C. et al. Postembryonic development and aging of the appendicular skeleton in Ambystoma mexicanum. Dev Dyn, 10.1002/dvdy.407 (2021). PubMed
Bothe V, Mahlow K, Frobisch NB. A histological study of normal and pathological limb regeneration in the Mexican axolotl Ambystoma mexicanum. J. Exp. Zool. B Mol. Dev. Evol. 2021;336:116–128. PubMed
Thompson S, Muzinic L, Muzinic C, Niemiller ML, Voss SR. Probability of Regenerating a Normal Limb After Bite Injury in the Mexican Axolotl (Ambystoma mexicanum). R. Regeneration (Oxf) 2014;1:27–32. PubMed PMC
Barresi, M. J. F. & Gilbert, S. F. Developmental biology. Twelfth edition. edn, (Sinauer Associates, 2020).
Xie, M. et al. Secondary ossification center induces and protects growth plate structure. Elife9, 10.7554/eLife.55212 (2020). PubMed PMC
Perez-Vale, K. Z. & Peifer, M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development147, 10.1242/dev.191049 (2020). PubMed PMC
Kobayashi T, et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development. 2002;129:2977–2986. PubMed
Hutchison C, Pilote M, Roy S. The axolotl limb: a model for bone development, regeneration and fracture healing. Bone. 2007;40:45–56. PubMed
Vortkamp A, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–622. PubMed
Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel’s Cartilage. Front Cell Dev. Biol. 2020;8:821. PubMed PMC
Joven A, Kirkham M, Simon A. Husbandry of Spanish ribbed newts (Pleurodeles waltl) Methods Mol. Biol. 2015;1290:47–70. PubMed
Khattak S, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 2014;9:529–540. PubMed
Laranjeira C, et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 2011;121:3412–3424. PubMed PMC
Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev. Dyn. 2006;235:2603–2612. PubMed
Loulier K, et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron. 2014;81:505–520. PubMed
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Tesarova, M. et al. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J. Instrumentation.11, 1–12 (2016).
Wang F, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2012;14:22–29. PubMed PMC
Delmas, J., Assire, A. & Fournier, I. Salome-Meca: une plate-forme au service de lasimulation mécanique. 10e colloque national en calcul des structures, May 2011, Giens, France (2011).
Delbecq, J. M. The Alste Code. (1999).