Elucidation of protein interactions necessary for the maintenance of the BCR-ABL signaling complex

. 2020 Oct ; 77 (19) : 3885-3903. [epub] 20191209

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31820037

Grantová podpora
15-34405A Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund OP RDE

Odkazy

PubMed 31820037
PubMed Central PMC11104816
DOI 10.1007/s00018-019-03397-7
PII: 10.1007/s00018-019-03397-7
Knihovny.cz E-zdroje

Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR-ABL for binding, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR-ABL and its inositol phosphatase activity contributes to BCR-ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein-protein interactions within the BCR-ABL core complex and determines the contribution of particular BCR-ABL domains to downstream signaling. Understanding the structure and dynamics of BCR-ABL interactome is critical for the development of drugs targeting integrity of the BCR-ABL core complex.

Zobrazit více v PubMed

Zhao X, Ghaffari S, Lodish H, et al. Structure of the BCR–ABL oncoprotein oligomerization domain. Nat Struct Biol. 2002;9:117–120. doi: 10.1038/nsb747. PubMed DOI

Hantschel O. Structure, regulation, signaling, and targeting of Abl kinases in cancer. Genes Cancer. 2012;3:436–446. doi: 10.1177/1947601912458584. PubMed DOI PMC

Voncken JW, Kaartinen V, Pattengale PK, et al. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood. 1995;86:4603–4611. doi: 10.1182/blood.V86.12.4603.bloodjournal86124603. PubMed DOI

Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J. Signaling networks associated with BCR–ABL-dependent transformation. Cancer Control J Moffitt Cancer Cent. 2009;16:100–107. doi: 10.1177/107327480901600202. PubMed DOI

Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3 k/Akt-dependent pathway. EMBO J. 1997;16:6151–6161. doi: 10.1093/emboj/16.20.6151. PubMed DOI PMC

Shuai K, Halpern J, ten Hoeve J, et al. Constitutive activation of STAT5 by the BCR–ABL oncogene in chronic myelogenous leukemia. Oncogene. 1996;13:247–254. PubMed

Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR–ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218. doi: 10.1038/sj.leu.2403241. PubMed DOI

Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of BCR–ABL positive cells. Nat Med. 1996;2:561–566. doi: 10.1038/nm0596-561. PubMed DOI

Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science. 2001;293:876–880. doi: 10.1126/science.1062538. PubMed DOI

Modugno M. New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. Drug Discov Today Technol. 2014;11:5–10. doi: 10.1016/j.ddtec.2013.12.001. PubMed DOI

Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant BCR–ABL. Cancer Cell. 2005;7:129–141. doi: 10.1016/j.ccr.2005.01.007. PubMed DOI

Shah NP, Nicoll JM, Branford S, et al. Molecular analysis of dasatinib resistance mechanisms in CML patients identifies novel BCR–ABL mutations predicted to retain sensitivity to imatinib: rationale for combination tyrosine kinase inhibitor therapy. Blood. 2005;106:1093. doi: 10.1182/blood.V106.11.1093.1093. DOI

Hochhaus A, Baccarani M, Deininger M, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–1206. doi: 10.1038/leu.2008.84. PubMed DOI

Zhou T, Parillon L, Li F, et al. Crystal structure of the T315I mutant of Abl kinase. Chem Biol Drug Des. 2007;70:171–181. doi: 10.1111/j.1747-0285.2007.00556.x. PubMed DOI

Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–1796. doi: 10.1056/NEJMoa1306494. PubMed DOI PMC

Bewry NN, Nair RR, Emmons MF, et al. Stat3 contributes to resistance toward BCR–ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther. 2008;7:3169–3175. doi: 10.1158/1535-7163.MCT-08-0314. PubMed DOI PMC

Eide CA, Adrian LT, Tyner JW, et al. The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR–ABLT315I and exhibits a narrow resistance profile. Cancer Res. 2011;71:3189–3195. doi: 10.1158/0008-5472.CAN-10-3224. PubMed DOI PMC

Corbin AS, Agarwal A, Loriaux M, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR–ABL activity. J Clin Invest. 2011;121:396–409. doi: 10.1172/JCI35721. PubMed DOI PMC

Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:424–430. doi: 10.1200/JCO.2012.48.5797. PubMed DOI

Mitra A, Sasikumar K, Parthasaradhi BVV, Radha V. The tyrosine phosphatase TC48 interacts with and inactivates the oncogenic fusion protein BCR–ABL but not cellular Abl. Biochim Biophys Acta BBA Mol Basis Dis. 2013;1832:275–284. doi: 10.1016/j.bbadis.2012.10.014. PubMed DOI

Brehme M, Hantschel O, Colinge J, et al. Charting the molecular network of the drug target BCR–ABL. Proc Natl Acad Sci. 2009;106:7414–7419. doi: 10.1073/pnas.0900653106. PubMed DOI PMC

Pendergast AM, Quilliam LA, Cripe LD, et al. BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 1993;75:175–185. doi: 10.1016/S0092-8674(05)80094-7. PubMed DOI

Goga A, McLaughlin J, Afar DE, et al. Alternative signals to RAS for hematopoietic transformation by the BCR–ABL oncogene. Cell. 1995;82:981–988. doi: 10.1016/0092-8674(95)90277-5. PubMed DOI

Preyer M, Vigneri P, Wang JYJ. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR–ABL. PLoS One. 2011;6:e17020. doi: 10.1371/journal.pone.0017020. PubMed DOI PMC

Coutinho S, Jahn T, Lewitzky M, et al. Characterization of Grb4, an adapter protein interacting with BCR–ABL. Blood. 2000;96:618–624. doi: 10.1182/blood.V96.2.618. PubMed DOI

Preisinger C, Kolch W. The BCR–ABL kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway. Cell Signal. 2010;22:848–856. doi: 10.1016/j.cellsig.2009.12.012. PubMed DOI

Meyn MA, Wilson MB, Abdi FA, et al. Src family kinases phosphorylate the BCR–ABL SH3–SH2 region and modulate BCR–ABL transforming activity. J Biol Chem. 2006;281:30907–30916. doi: 10.1074/jbc.M605902200. PubMed DOI

Ren R, Ye Z-S, Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 1994;8:783–795. doi: 10.1101/gad.8.7.783. PubMed DOI

Lewitzky M, Kardinal C, Gehring NH, et al. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-X-X-P core motif. Oncogene. 2001;20:1052–1062. doi: 10.1038/sj.onc.1204202. PubMed DOI

Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol. 2001;2:294. doi: 10.1038/35067100. PubMed DOI

Dombrosky-Ferlan PM, Corey SJ. Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene. 1997;14:2019. doi: 10.1038/sj.onc.1201031. PubMed DOI

Buday L, Khwaja A, Sipeki S, et al. Interactions of Cbl with two adaptor proteins, Grb2 and Crk, upon T cell activation. J Biol Chem. 1996;271:6159–6163. doi: 10.1074/jbc.271.11.6159. PubMed DOI

Donovan JA, Wange RL, Langdon WY, Samelson LE. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem. 1994;269:22921–22924. PubMed

Meisner H, Conway BR, Hartley D, Czech MP. Interactions of Cbl with Grb2 and phosphatidylinositol 3′-kinase in activated Jurkat cells. Mol Cell Biol. 1995;15:3571–3578. doi: 10.1128/MCB.15.7.3571. PubMed DOI PMC

Panchamoorthy G, Fukazawa T, Miyake S, et al. p120 is a major substrate of tyrosine phosphorylation upon B cell antigen receptor stimulation and interacts in vivo with Fyn and Syk tyrosine kinases, Grb2 and Shc adaptors, and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1996;271:3187–3194. doi: 10.1074/jbc.271.6.3187. PubMed DOI

Bhat A, Kolibaba K, Oda T, et al. Interactions of CBL with BCR–ABL and CRKL in BCR–ABL-transformed myeloid cells. J Biol Chem. 1997;272:16170–16175. doi: 10.1074/jbc.272.26.16170. PubMed DOI

Johnson KJ, Griswold IJ, O’Hare T, et al. A BCR–ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS One. 2009;4:e7439. doi: 10.1371/journal.pone.0007439. PubMed DOI PMC

Buday L, Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993;73:611–620. doi: 10.1016/0092-8674(93)90146-h. PubMed DOI

Egan SE, Giddings BW, Brooks MW, et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature. 1993;363:45. doi: 10.1038/363045a0. PubMed DOI

Li N, Batzer A, Daly R, et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature. 1993;363:85–88. doi: 10.1038/363085a0. PubMed DOI

Rozakis-Adcock M, Fernley R, Wade J, et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993;363:83–85. doi: 10.1038/363083a0. PubMed DOI

Trb T, Choi WE, Wolf G, et al. Specificity of the PTB domain of Shc for β turn-forming pentapeptide motifs amino-terminal to phosphotyrosine. J Biol Chem. 1995;270:18205–18208. doi: 10.1074/jbc.270.31.18205. PubMed DOI

McWHIRTER JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of BCR–ABL oncoproteins. Mol Cell Biol. 1993;13:7587–7595. doi: 10.1128/MCB.13.12.7587. PubMed DOI PMC

Brasher BB, Roumiantsev S, Van Etten RA. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Oncogene. 2001;20:7744–7752. doi: 10.1038/sj.onc.1204978. PubMed DOI

Grebien F, Hantschel O, Wojcik J, et al. Targeting the SH2-kinase interface in BCR–ABL inhibits leukemogenesis. Cell. 2011;147:306–319. doi: 10.1016/j.cell.2011.08.046. PubMed DOI PMC

Oda T, Heaney C, Hagopian JR, et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem. 1994;269:22925–22928. PubMed

ten Hoeve J, Arlinghaus RB, Guo JQ, et al. Tyrosine phosphorylation of CRKL in philadelphia + leukemia. Blood. 1994;84:1731–1736. doi: 10.1182/blood.V84.6.1731.1731. PubMed DOI

Nichols GL, Raines MA, Vera JC, et al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood. 1994;84:2912–2918. doi: 10.1182/blood.V84.9.2912.2912. PubMed DOI

Odai H, Sasaki K, Iwamatsu A, et al. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and BCR–ABL. Blood. 1997;89:2745–2756. doi: 10.1182/blood.V89.8.2745. PubMed DOI

Wisniewski D, Strife A, Swendeman S, et al. A novel SH2-containing phosphatidylinositol 3, 4, 5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood. 1999;93:2707–2720. doi: 10.1182/blood.V93.8.2707. PubMed DOI

Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood. 1995;86:726–736. doi: 10.1182/blood.V86.2.726.bloodjournal862726. PubMed DOI

Ren S, Xue F, Feng J, Skorski T. Intrinsic regulation of the interactions between the SH3 domain of p85 subunit of phosphatidylinositol-3 kinase and the protein network of BCR/ABL oncogenic tyrosine kinase. Exp Hematol. 2005;33:1222–1228. doi: 10.1016/j.exphem.2005.06.030. PubMed DOI

Sattler M, Mohi MG, Pride YB, et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell. 2002;1:479–492. doi: 10.1016/S1535-6108(02)00074-0. PubMed DOI

Mian AA, Baumann I, Liebermann M, et al. The phosphatase UBASH3B/Sts-1 is a negative regulator of BCR–ABL kinase activity and leukemogenesis. Leukemia. 2019 doi: 10.1038/s41375-019-0468-y. PubMed DOI PMC

Reckel S, Hamelin R, Georgeon S, et al. Differential signaling networks of BCR–ABL p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502–1512. doi: 10.1038/leu.2017.36. PubMed DOI PMC

Cutler JA, Tahir R, Sreenivasamurthy SK, et al. Differential signaling through p190 and p210 BCR–ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia. 2017;31:1513–1524. doi: 10.1038/leu.2017.61. PubMed DOI

Reckel S, Gehin C, Tardivon D, et al. Structural and functional dissection of the DH and PH domains of oncogenic BCR–ABL tyrosine kinase. Nat Commun. 2017 doi: 10.1038/s41467-017-02313-6. PubMed DOI PMC

Suwa A, Yamamoto T, Sawada A, et al. Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol. 2009;158:879–887. doi: 10.1111/j.1476-5381.2009.00358.x. PubMed DOI PMC

Harrison-Findik D, Susa M, Varticovski L. Association of phosphatidylinositol 3-kinase with SHC in chronic myelogeneous leukemia cells. Oncogene. 1995;10:1385–1391. PubMed

Salgia R, Pisick E, Sattler M, et al. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem. 1996;271:25198–25203. doi: 10.1074/jbc.271.41.25198. PubMed DOI

Warmuth M, Bergmann M, Priess A, et al. The Src family kinase Hck interacts with BCR–ABL by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem. 1997;272:33260–33270. doi: 10.1074/jbc.272.52.33260. PubMed DOI

Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC

Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42:W401–W407. doi: 10.1093/nar/gku410. PubMed DOI PMC

Kunova Bosakova M, Nita A, Gregor T, et al. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci. 2019;116:4316–4325. doi: 10.1073/pnas.1800338116. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...