Elucidation of protein interactions necessary for the maintenance of the BCR-ABL signaling complex
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-34405A
Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund OP RDE
PubMed
31820037
PubMed Central
PMC11104816
DOI
10.1007/s00018-019-03397-7
PII: 10.1007/s00018-019-03397-7
Knihovny.cz E-zdroje
- Klíčová slova
- BCR–ABL, Chronic myeloid leukemia, Protein complex, Signaling,
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- aminokyselinové motivy MeSH
- bcr-abl fúzní proteiny chemie genetika metabolismus MeSH
- chronická myeloidní leukemie metabolismus patologie MeSH
- čipová analýza proteinů MeSH
- fosfatidylinositol-3,4,5-trisfosfát-5-fosfatasy metabolismus MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- pyrimidiny farmakologie MeSH
- signální transdukce * účinky léků MeSH
- src homologní domény MeSH
- transformující protein 1 obsahující src homologní doménu 2 metabolismus MeSH
- vazba proteinů účinky léků MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- bcr-abl fúzní proteiny MeSH
- CRKL protein MeSH Prohlížeč
- fosfatidylinositol-3,4,5-trisfosfát-5-fosfatasy MeSH
- inhibitory proteinkinas MeSH
- INPPL1 protein, human MeSH Prohlížeč
- nilotinib MeSH Prohlížeč
- pyrimidiny MeSH
- transformující protein 1 obsahující src homologní doménu 2 MeSH
Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR-ABL for binding, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR-ABL and its inositol phosphatase activity contributes to BCR-ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein-protein interactions within the BCR-ABL core complex and determines the contribution of particular BCR-ABL domains to downstream signaling. Understanding the structure and dynamics of BCR-ABL interactome is critical for the development of drugs targeting integrity of the BCR-ABL core complex.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Institute of Animal Physiology and Genetics of the CAS 60200 Brno Czech Republic
Institute of Organic Chemistry and Biochemistry of the CAS 16610 Prague Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Zhao X, Ghaffari S, Lodish H, et al. Structure of the BCR–ABL oncoprotein oligomerization domain. Nat Struct Biol. 2002;9:117–120. doi: 10.1038/nsb747. PubMed DOI
Hantschel O. Structure, regulation, signaling, and targeting of Abl kinases in cancer. Genes Cancer. 2012;3:436–446. doi: 10.1177/1947601912458584. PubMed DOI PMC
Voncken JW, Kaartinen V, Pattengale PK, et al. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood. 1995;86:4603–4611. doi: 10.1182/blood.V86.12.4603.bloodjournal86124603. PubMed DOI
Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J. Signaling networks associated with BCR–ABL-dependent transformation. Cancer Control J Moffitt Cancer Cent. 2009;16:100–107. doi: 10.1177/107327480901600202. PubMed DOI
Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3 k/Akt-dependent pathway. EMBO J. 1997;16:6151–6161. doi: 10.1093/emboj/16.20.6151. PubMed DOI PMC
Shuai K, Halpern J, ten Hoeve J, et al. Constitutive activation of STAT5 by the BCR–ABL oncogene in chronic myelogenous leukemia. Oncogene. 1996;13:247–254. PubMed
Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR–ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218. doi: 10.1038/sj.leu.2403241. PubMed DOI
Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of BCR–ABL positive cells. Nat Med. 1996;2:561–566. doi: 10.1038/nm0596-561. PubMed DOI
Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science. 2001;293:876–880. doi: 10.1126/science.1062538. PubMed DOI
Modugno M. New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. Drug Discov Today Technol. 2014;11:5–10. doi: 10.1016/j.ddtec.2013.12.001. PubMed DOI
Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant BCR–ABL. Cancer Cell. 2005;7:129–141. doi: 10.1016/j.ccr.2005.01.007. PubMed DOI
Shah NP, Nicoll JM, Branford S, et al. Molecular analysis of dasatinib resistance mechanisms in CML patients identifies novel BCR–ABL mutations predicted to retain sensitivity to imatinib: rationale for combination tyrosine kinase inhibitor therapy. Blood. 2005;106:1093. doi: 10.1182/blood.V106.11.1093.1093. DOI
Hochhaus A, Baccarani M, Deininger M, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–1206. doi: 10.1038/leu.2008.84. PubMed DOI
Zhou T, Parillon L, Li F, et al. Crystal structure of the T315I mutant of Abl kinase. Chem Biol Drug Des. 2007;70:171–181. doi: 10.1111/j.1747-0285.2007.00556.x. PubMed DOI
Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–1796. doi: 10.1056/NEJMoa1306494. PubMed DOI PMC
Bewry NN, Nair RR, Emmons MF, et al. Stat3 contributes to resistance toward BCR–ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther. 2008;7:3169–3175. doi: 10.1158/1535-7163.MCT-08-0314. PubMed DOI PMC
Eide CA, Adrian LT, Tyner JW, et al. The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR–ABLT315I and exhibits a narrow resistance profile. Cancer Res. 2011;71:3189–3195. doi: 10.1158/0008-5472.CAN-10-3224. PubMed DOI PMC
Corbin AS, Agarwal A, Loriaux M, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR–ABL activity. J Clin Invest. 2011;121:396–409. doi: 10.1172/JCI35721. PubMed DOI PMC
Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:424–430. doi: 10.1200/JCO.2012.48.5797. PubMed DOI
Mitra A, Sasikumar K, Parthasaradhi BVV, Radha V. The tyrosine phosphatase TC48 interacts with and inactivates the oncogenic fusion protein BCR–ABL but not cellular Abl. Biochim Biophys Acta BBA Mol Basis Dis. 2013;1832:275–284. doi: 10.1016/j.bbadis.2012.10.014. PubMed DOI
Brehme M, Hantschel O, Colinge J, et al. Charting the molecular network of the drug target BCR–ABL. Proc Natl Acad Sci. 2009;106:7414–7419. doi: 10.1073/pnas.0900653106. PubMed DOI PMC
Pendergast AM, Quilliam LA, Cripe LD, et al. BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 1993;75:175–185. doi: 10.1016/S0092-8674(05)80094-7. PubMed DOI
Goga A, McLaughlin J, Afar DE, et al. Alternative signals to RAS for hematopoietic transformation by the BCR–ABL oncogene. Cell. 1995;82:981–988. doi: 10.1016/0092-8674(95)90277-5. PubMed DOI
Preyer M, Vigneri P, Wang JYJ. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR–ABL. PLoS One. 2011;6:e17020. doi: 10.1371/journal.pone.0017020. PubMed DOI PMC
Coutinho S, Jahn T, Lewitzky M, et al. Characterization of Grb4, an adapter protein interacting with BCR–ABL. Blood. 2000;96:618–624. doi: 10.1182/blood.V96.2.618. PubMed DOI
Preisinger C, Kolch W. The BCR–ABL kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway. Cell Signal. 2010;22:848–856. doi: 10.1016/j.cellsig.2009.12.012. PubMed DOI
Meyn MA, Wilson MB, Abdi FA, et al. Src family kinases phosphorylate the BCR–ABL SH3–SH2 region and modulate BCR–ABL transforming activity. J Biol Chem. 2006;281:30907–30916. doi: 10.1074/jbc.M605902200. PubMed DOI
Ren R, Ye Z-S, Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 1994;8:783–795. doi: 10.1101/gad.8.7.783. PubMed DOI
Lewitzky M, Kardinal C, Gehring NH, et al. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-X-X-P core motif. Oncogene. 2001;20:1052–1062. doi: 10.1038/sj.onc.1204202. PubMed DOI
Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol. 2001;2:294. doi: 10.1038/35067100. PubMed DOI
Dombrosky-Ferlan PM, Corey SJ. Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene. 1997;14:2019. doi: 10.1038/sj.onc.1201031. PubMed DOI
Buday L, Khwaja A, Sipeki S, et al. Interactions of Cbl with two adaptor proteins, Grb2 and Crk, upon T cell activation. J Biol Chem. 1996;271:6159–6163. doi: 10.1074/jbc.271.11.6159. PubMed DOI
Donovan JA, Wange RL, Langdon WY, Samelson LE. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem. 1994;269:22921–22924. PubMed
Meisner H, Conway BR, Hartley D, Czech MP. Interactions of Cbl with Grb2 and phosphatidylinositol 3′-kinase in activated Jurkat cells. Mol Cell Biol. 1995;15:3571–3578. doi: 10.1128/MCB.15.7.3571. PubMed DOI PMC
Panchamoorthy G, Fukazawa T, Miyake S, et al. p120 is a major substrate of tyrosine phosphorylation upon B cell antigen receptor stimulation and interacts in vivo with Fyn and Syk tyrosine kinases, Grb2 and Shc adaptors, and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 1996;271:3187–3194. doi: 10.1074/jbc.271.6.3187. PubMed DOI
Bhat A, Kolibaba K, Oda T, et al. Interactions of CBL with BCR–ABL and CRKL in BCR–ABL-transformed myeloid cells. J Biol Chem. 1997;272:16170–16175. doi: 10.1074/jbc.272.26.16170. PubMed DOI
Johnson KJ, Griswold IJ, O’Hare T, et al. A BCR–ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS One. 2009;4:e7439. doi: 10.1371/journal.pone.0007439. PubMed DOI PMC
Buday L, Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993;73:611–620. doi: 10.1016/0092-8674(93)90146-h. PubMed DOI
Egan SE, Giddings BW, Brooks MW, et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature. 1993;363:45. doi: 10.1038/363045a0. PubMed DOI
Li N, Batzer A, Daly R, et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature. 1993;363:85–88. doi: 10.1038/363085a0. PubMed DOI
Rozakis-Adcock M, Fernley R, Wade J, et al. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993;363:83–85. doi: 10.1038/363083a0. PubMed DOI
Trb T, Choi WE, Wolf G, et al. Specificity of the PTB domain of Shc for β turn-forming pentapeptide motifs amino-terminal to phosphotyrosine. J Biol Chem. 1995;270:18205–18208. doi: 10.1074/jbc.270.31.18205. PubMed DOI
McWHIRTER JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of BCR–ABL oncoproteins. Mol Cell Biol. 1993;13:7587–7595. doi: 10.1128/MCB.13.12.7587. PubMed DOI PMC
Brasher BB, Roumiantsev S, Van Etten RA. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Oncogene. 2001;20:7744–7752. doi: 10.1038/sj.onc.1204978. PubMed DOI
Grebien F, Hantschel O, Wojcik J, et al. Targeting the SH2-kinase interface in BCR–ABL inhibits leukemogenesis. Cell. 2011;147:306–319. doi: 10.1016/j.cell.2011.08.046. PubMed DOI PMC
Oda T, Heaney C, Hagopian JR, et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem. 1994;269:22925–22928. PubMed
ten Hoeve J, Arlinghaus RB, Guo JQ, et al. Tyrosine phosphorylation of CRKL in philadelphia + leukemia. Blood. 1994;84:1731–1736. doi: 10.1182/blood.V84.6.1731.1731. PubMed DOI
Nichols GL, Raines MA, Vera JC, et al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood. 1994;84:2912–2918. doi: 10.1182/blood.V84.9.2912.2912. PubMed DOI
Odai H, Sasaki K, Iwamatsu A, et al. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and BCR–ABL. Blood. 1997;89:2745–2756. doi: 10.1182/blood.V89.8.2745. PubMed DOI
Wisniewski D, Strife A, Swendeman S, et al. A novel SH2-containing phosphatidylinositol 3, 4, 5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood. 1999;93:2707–2720. doi: 10.1182/blood.V93.8.2707. PubMed DOI
Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood. 1995;86:726–736. doi: 10.1182/blood.V86.2.726.bloodjournal862726. PubMed DOI
Ren S, Xue F, Feng J, Skorski T. Intrinsic regulation of the interactions between the SH3 domain of p85 subunit of phosphatidylinositol-3 kinase and the protein network of BCR/ABL oncogenic tyrosine kinase. Exp Hematol. 2005;33:1222–1228. doi: 10.1016/j.exphem.2005.06.030. PubMed DOI
Sattler M, Mohi MG, Pride YB, et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell. 2002;1:479–492. doi: 10.1016/S1535-6108(02)00074-0. PubMed DOI
Mian AA, Baumann I, Liebermann M, et al. The phosphatase UBASH3B/Sts-1 is a negative regulator of BCR–ABL kinase activity and leukemogenesis. Leukemia. 2019 doi: 10.1038/s41375-019-0468-y. PubMed DOI PMC
Reckel S, Hamelin R, Georgeon S, et al. Differential signaling networks of BCR–ABL p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502–1512. doi: 10.1038/leu.2017.36. PubMed DOI PMC
Cutler JA, Tahir R, Sreenivasamurthy SK, et al. Differential signaling through p190 and p210 BCR–ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia. 2017;31:1513–1524. doi: 10.1038/leu.2017.61. PubMed DOI
Reckel S, Gehin C, Tardivon D, et al. Structural and functional dissection of the DH and PH domains of oncogenic BCR–ABL tyrosine kinase. Nat Commun. 2017 doi: 10.1038/s41467-017-02313-6. PubMed DOI PMC
Suwa A, Yamamoto T, Sawada A, et al. Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol. 2009;158:879–887. doi: 10.1111/j.1476-5381.2009.00358.x. PubMed DOI PMC
Harrison-Findik D, Susa M, Varticovski L. Association of phosphatidylinositol 3-kinase with SHC in chronic myelogeneous leukemia cells. Oncogene. 1995;10:1385–1391. PubMed
Salgia R, Pisick E, Sattler M, et al. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem. 1996;271:25198–25203. doi: 10.1074/jbc.271.41.25198. PubMed DOI
Warmuth M, Bergmann M, Priess A, et al. The Src family kinase Hck interacts with BCR–ABL by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem. 1997;272:33260–33270. doi: 10.1074/jbc.272.52.33260. PubMed DOI
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42:W401–W407. doi: 10.1093/nar/gku410. PubMed DOI PMC
Kunova Bosakova M, Nita A, Gregor T, et al. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci. 2019;116:4316–4325. doi: 10.1073/pnas.1800338116. PubMed DOI PMC