Protein complex
Dotaz
Zobrazit nápovědu
Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.
- MeSH
- C-reaktivní protein analýza krev MeSH
- imunoenzymatické techniky MeSH
- nefelometrie a turbidimetrie MeSH
- Publikační typ
- srovnávací studie MeSH
- MeSH
- fluorescenční protilátková technika využití MeSH
- imunokomplex MeSH
- myši MeSH
- Check Tag
- myši MeSH
Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.
Light quality significantly influences plant metabolism, growth and development. Recently, we have demonstrated that leaves of barley and other plant species grown under monochromatic green light (500-590 nm) accumulated a large pool of chlorophyll a (Chl a) intermediates with incomplete hydrogenation of their phytyl chains. In this work, we studied accumulation of these geranylgeranylated Chls a and b in pigment-protein complexes (PPCs) of Arabidopsis plants acclimated to green light and their structural-functional consequences on the photosynthetic apparatus. We found that geranylgeranylated Chls are present in all major PPCs, although their presence was more pronounced in light-harvesting complex II (LHCII) and less prominent in supercomplexes of photosystem II (PSII). Accumulation of geranylgeranylated Chls hampered the formation of PSII and PSI super- and megacomplexes in the thylakoid membranes as well as their assembly into chiral macrodomains; it also lowered the temperature stability of the PPCs, especially that of LHCII trimers, which led to their monomerization and an anomaly in the photoprotective mechanism of non-photochemical quenching. Role of geranylgeranylated Chls in adverse effects on photosynthetic apparatus of plants acclimated to green light is discussed.
Translokace chromozómů jsou prokázány u 50–70 % případů lidské leukémie. Gen kódující protein PML (promyelocytární leukémie) se účastní přestavby chromozómů t(15;17) u akutní promyelocytární leukémie (APL). Gen PML kóduje protein, který se koncentruje v PML-jaderných tělíscích. Histonacetyltransferázy a histondeacetylázy, proteiny modifikující chromatin, se také hromadí v těchto nukleárních tělíscích v komplexech s proteinem PML a svědčí o úloze těchto komplexů v regulaci transkripce. Prokázané interakce proteinu PML s transkripčními faktory, koaktivátory a korepresory transkripce odpovídají účasti PML v regulaci transkripce. PML hraje důležitou úlohu v apoptóze, proliferaci a stárnutí buněk. Gen pro PML je genem potlačujícím vznik nádorů (tumour suppressor gene) a produkt jeho exprese ovlivňuje v negativním smyslu buněčné množení. Všechny tyto aktivity proteinu PML jsou připisovány jeho funkcím v jádře buněk. Cytoplazmatická forma PML (cPML) je také velmi důležitá a má významnou roli v přenosu signálu transformačního růstového faktoru-β (TGF-β). Cytoplazmatický PML reaguje s dvěma receptory pro TGF-β (TβRI a TβRII) na povrchu buňky a tvoří můstek mezi proteinem SARA (Smad anchor of receptor activation) a proteiny Smad a je důležitý pro dopravu celého komplexu do raných endozómů v přenosu signálu TGF-β. Ztráta funkčního cPML vede nejen k APL, ale přispívá obecně k rezistenci buněk na TGF-β a vzniku nádorů.
Chromosome translocations are detected in 50-70 % of human leukaemia. The promyelocytic leukaemia (PML) gene is involved in the t(15;17) chromosomal translocation of acute promyelocytic leukaemia (APL). PML gene encodes a protein, which was shown to be concentrated in PML-nuclear bodies. Histone acetyltransferases and deacetylases, and chromatin-modifying proteins are accumulated in complexes with PML protein in these nuclear bodies giving the evidence of their role in transcription regulation. Physical interactions of PML protein with transcription factors, co-activators and co-repressors of transcription correspond with the role of PML in transcription regulation. PML plays an important role in apoptosis, proliferation and senescence of cells. PML gene is a tumour-suppressor gene and a product of its expression acts as a potent cell growth suppressor. All these activities of PML protein are ascribed to its nuclear functions. Cytoplasmic form of PML (cPML) is also very important and it is critical for transforming growth factor-β (TGF-β) signalling. Cytoplasmic PML interacts with two TGF-β receptors (TβRI and TβRII) and acts as a bridging factor between protein called Smad anchor of receptor activation (SARA) and Smad proteins and it plays a role in the transport of whole complex into the early endosomes in TGF-β signalling. The loss of functional cPML induces not only APL but it might influence behaviour of cancer cells and their resistance to TGF-β.
- MeSH
- akutní myeloidní leukemie genetika patologie MeSH
- cytoplazmatické struktury fyziologie MeSH
- finanční podpora výzkumu jako téma MeSH
- genetická transkripce MeSH
- geny MeSH
- lidé MeSH
- nádorové proteiny genetika imunologie MeSH
- proteiny - lokalizační signály genetika MeSH
- transformující růstový faktor beta genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH
K udržování buněčné homeostázy je nutné, aby buněčné proteiny vytvářely složité a dynamické molekulární komplexy. Proto je i vysvětlení základních fyziologických procesů na molekulární úrovni založeno na studiu protein‑proteinových interakcí. Nejdříve probíhá kvalitativní analýza proteinových komplexů. Následně jsou identifikované proteinové interakce kvantifikovány po biochemické stránce. Detailní informace o strukturní podstatě daných protein‑proteinových interakcí pak mohou být získány pomocí krystalografických metod. Náhled do uspořádání proteinových komplexů na molekulární úrovni umožňuje racionálně navrhovat nové syntetické látky, které cíleně ovlivňují proteinové interakce a tím i nejrůznější fyziologické nebo patologické procesy. Tato souhrnná práce je zaměřena na popis nejčastěji používaných metod pro kvalitativní i kvantitativní hodnocení proteinových interakcí. Metody koimunoprecipitace (Co‑IP) a afinitní koprecipitace je možné využít jako prvotní nástroj pro identifikaci interakčních partnerů studovaného proteinu. Detailní biochemická analýza mezimolekulární interakce pak vyžaduje definování kinetických a termodynamických parametrů. Pro studium afinity dvou interakčních partnerů a kinetiky reakce je možné použít metodu rezonance povrchového plazmonu (surface plasmon resonance – SPR), pro studium afinity a inhibičního potenciálu inhibitorů metodu fluorescenční polarizace (FP) a pro detailní popis afinity a termodynamických parametrů interakce (∆G, ∆H a ∆S) metodu izotermální titrační kalorimetrie (isothermal titration calorimetry – ITC). Výzkum proteinových interakcí na molekulární úrovni je nejen významný pro základní výzkum, ale přináší i nové metodické přístupy, které otvírají další možnosti při racionálním navrhování nových terapeutických látek.
In order to maintain cellular homeostasis, cellular proteins coexist in complex and variable molecular assemblies. Therefore, understanding of major physiological processes at molecular level is based on analysis of protein‑protein interaction networks. Firstly, composition of the molecular assembly has to be qualitatively analyzed. In the next step, quantitative biochemical properties of the identified protein‑protein interactions are determined. Detailed information about the protein‑protein interaction interface can be obtained by crystallographic methods. Accordingly, the insight into the molecular architecture of these protein‑protein complexes allows us to rationally design new synthetic compounds that specifically influence various physiological or pathological processes by targeted modulation of protein interactions. This review is focused on description of the most used methods applied in both qualitative and quantitative analysis of protein‑protein interactions. Co‑immunoprecipitation and affinity co‑precipitation are basic methods designed for qualitative analysis of protein binding partners. Further biochemical analysis of the interaction requires definition of kinetic and thermodynamic parameters. Surface plasmon resonance (SPR) is used for description of affinity and kinetic profile of the interaction, fluorescence polarization (FP) method for fast determination of inhibition potential of inhibitors and isothermal titration calorimetry (ITC) for definition of thermodynamic parameters of the interaction (∆G, ∆H and ∆S). Besides the importance of uncovering the molecular basis of protein interactions for basic research, the same methodological approaches open new possibilities in rational design of novel therapeutic agents. Key words: protein interaction networks – co‑immunoprecipitation – pull‑down analysis – surface plasmon resonance – fluorescence polarization – isothermal titration calorimetry This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 31. 1. 2014 Accepted: 10. 3. 2014
- Klíčová slova
- koimunoprecipitace, izotermální titrační kalorimetrie, afinitní koprecipitace, pull-down analýza,
- MeSH
- fluorescenční polarizace metody MeSH
- imunoprecipitace metody MeSH
- kalorimetrie metody MeSH
- ligandy MeSH
- mapování interakce mezi proteiny * metody MeSH
- mapy interakcí proteinů MeSH
- povrchová plasmonová rezonance metody MeSH
- termodynamika MeSH
- vazba proteinů * MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
2nd ed. 415 s.
- Klíčová slova
- Proteiny,
- MeSH
- 2D gelová elektroforéza metody MeSH
- chromatografie metody MeSH
- imunoblotting metody MeSH
- isoelektrická fokusace metody MeSH
- proteiny MeSH
- Publikační typ
- laboratorní příručky MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biochemie