Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin

E. Bártová, S. Legartová, J. Krejčí, P. Řezníčková, AS. Kovaříková, J. Suchánková, R. Fedr, E. Smirnov, M. Hornáček, I. Raška,

. 2018 ; 119 (10) : 8146-8162. [pub] 20180619

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

We studied how deficiency in lamins A/C and lamina-associated polypeptide 2α (Lap2α) affects DNA repair after irradiation. A-type lamins and Lap2α were not recruited to local DNA lesions and did not accumulate to γ-irradiation-induced foci (IRIF), as it is generally observed for well-known marker of DNA lesions, 53BP1 protein. At micro-irradiated chromatin of lmna double knockout (dn) and Lap2α dn cells, 53BP1 protein levels were reduced, compared to locally irradiated wild-type counterpart. Decreased levels of 53BP1 we also observed in whole populations of lmna dn and Lap2α dn cells, irradiated by UV light. We also studied distribution pattern of 53BP1 protein in a genome outside micro-irradiated region. In Lap2α deficient cells, identical fluorescence of mCherry-tagged 53BP1 protein was found at both microirradiated region and surrounding chromatin. However, a well-known marker of double strand breaks, γH2AX, was highly abundant in the lesion-surrounding genome of Lap2α deficient cells. Described changes, induced by irradiation in Lap2α dn cells, were not accompanied by cell cycle changes. In Lap2α dn cells, we additionally performed analysis by FLIM (Fluorescence Lifetime Imaging Microscopy) that showed different dynamic behavior of mCherry-tagged 53BP1 protein pools when it was compared with wild-type (wt) fibroblasts. This analysis revealed three different fractions of mCherry-53BP1 protein. Two of them showed identical exponential decay times (τ1 and τ3), but the decay rate of τ2 and amplitudes of fluorescence decays (A1-A3) were statistically different in wt and Lap2α dn fibroblasts. Moreover, γ-irradiation weakened an interaction between A-type lamins and Lap2α. Together, our results demonstrate how depletion of Lap2α affects DNA damage response (DDR) and how chromatin compactness is changed in Lap2α deficient cells exposed to radiation.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045406
003      
CZ-PrNML
005      
20200115082555.0
007      
ta
008      
200109s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jcb.26770 $2 doi
035    __
$a (PubMed)29923310
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bártová, Eva $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
245    10
$a Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin / $c E. Bártová, S. Legartová, J. Krejčí, P. Řezníčková, AS. Kovaříková, J. Suchánková, R. Fedr, E. Smirnov, M. Hornáček, I. Raška,
520    9_
$a We studied how deficiency in lamins A/C and lamina-associated polypeptide 2α (Lap2α) affects DNA repair after irradiation. A-type lamins and Lap2α were not recruited to local DNA lesions and did not accumulate to γ-irradiation-induced foci (IRIF), as it is generally observed for well-known marker of DNA lesions, 53BP1 protein. At micro-irradiated chromatin of lmna double knockout (dn) and Lap2α dn cells, 53BP1 protein levels were reduced, compared to locally irradiated wild-type counterpart. Decreased levels of 53BP1 we also observed in whole populations of lmna dn and Lap2α dn cells, irradiated by UV light. We also studied distribution pattern of 53BP1 protein in a genome outside micro-irradiated region. In Lap2α deficient cells, identical fluorescence of mCherry-tagged 53BP1 protein was found at both microirradiated region and surrounding chromatin. However, a well-known marker of double strand breaks, γH2AX, was highly abundant in the lesion-surrounding genome of Lap2α deficient cells. Described changes, induced by irradiation in Lap2α dn cells, were not accompanied by cell cycle changes. In Lap2α dn cells, we additionally performed analysis by FLIM (Fluorescence Lifetime Imaging Microscopy) that showed different dynamic behavior of mCherry-tagged 53BP1 protein pools when it was compared with wild-type (wt) fibroblasts. This analysis revealed three different fractions of mCherry-53BP1 protein. Two of them showed identical exponential decay times (τ1 and τ3), but the decay rate of τ2 and amplitudes of fluorescence decays (A1-A3) were statistically different in wt and Lap2α dn fibroblasts. Moreover, γ-irradiation weakened an interaction between A-type lamins and Lap2α. Together, our results demonstrate how depletion of Lap2α affects DNA damage response (DDR) and how chromatin compactness is changed in Lap2α deficient cells exposed to radiation.
650    _2
$a zvířata $7 D000818
650    _2
$a transformované buněčné linie $7 D002461
650    _2
$a chromatin $x chemie $x účinky záření $x ultrastruktura $7 D002843
650    _2
$a poškození DNA $7 D004249
650    12
$a oprava DNA $7 D004260
650    _2
$a DNA vazebné proteiny $x nedostatek $x genetika $7 D004268
650    _2
$a embryo savčí $7 D004622
650    _2
$a fibroblasty $x cytologie $x metabolismus $x účinky záření $7 D005347
650    _2
$a FRAP $7 D036681
650    _2
$a záření gama $7 D005720
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a reportérové geny $7 D017930
650    _2
$a histony $x genetika $x metabolismus $7 D006657
650    _2
$a lamin typ A $x nedostatek $x genetika $7 D034904
650    _2
$a luminescentní proteiny $x genetika $x metabolismus $7 D008164
650    _2
$a membránové proteiny $x nedostatek $x genetika $7 D008565
650    _2
$a myši $7 D051379
650    _2
$a rekombinantní fúzní proteiny $x genetika $x metabolismus $7 D011993
650    _2
$a signální transdukce $7 D015398
650    _2
$a 53BP1 $x genetika $x metabolismus $7 D000071857
650    _2
$a ultrafialové záření $7 D014466
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Legartová, Soňa $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Krejčí, Jana $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Řezníčková, Petra $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Kovaříková, Alena Svobodová $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Suchánková, Jana $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Fedr, Radek $u Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
700    1_
$a Smirnov, Evgeny $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Hornáček, Matúš $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Raška, Ivan $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
773    0_
$w MED00002577 $t Journal of cellular biochemistry $x 1097-4644 $g Roč. 119, č. 10 (2018), s. 8146-8162
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29923310 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200115082929 $b ABA008
999    __
$a ok $b bmc $g 1483675 $s 1084079
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 119 $c 10 $d 8146-8162 $e 20180619 $i 1097-4644 $m Journal of cellular biochemistry $n J Cell Biochem $x MED00002577
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...