ZnO Structures with Surface Nanoscale Interfaces Formed by Au, Fe2O3, or Cu2O Modifier Nanoparticles: Characterization and Gas Sensing Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2019-107697RB-C42 (AEI/FEDER, EU)
Ministerio de Ciencia e Innovación
Ramón y Cajal
Ministerio de Ciencia e Innovación
20-20123S
Grantová Agentura České Republiky
PubMed
34209427
PubMed Central
PMC8271897
DOI
10.3390/s21134509
PII: s21134509
Knihovny.cz E-zdroje
- Klíčová slova
- Schottky junctions, copper oxide, gas sensing, gold, heterojunctions, interfaces, iron oxide, nitrogen dioxide, zinc oxide,
- Publikační typ
- časopisecké články MeSH
Zinc oxide rod structures are synthetized and subsequently modified with Au, Fe2O3, or Cu2O to form nanoscale interfaces at the rod surface. X-ray photoelectron spectroscopy corroborates the presence of Fe in the form of oxide-Fe2O3; Cu in the form of two oxides-CuO and Cu2O, with the major presence of Cu2O; and Au in three oxidation states-Au3+, Au+, and Au0, with the content of metallic Au being the highest among the other states. These structures are tested towards nitrogen dioxide, ethanol, acetone, carbon monoxide, and toluene, finding a remarkable increase in the response and sensitivity of the Au-modified ZnO films, especially towards nitrogen dioxide and ethanol. The results for the Au-modified ZnO films report about 47 times higher response to 10 ppm of nitrogen dioxide as compared to the non-modified structures with a sensitivity of 39.96% ppm-1 and a limit of detection of 26 ppb to this gas. These results are attributed to the cumulative effects of several factors, such as the presence of oxygen vacancies, the gas-sensing mechanism influenced by the nano-interfaces formed between ZnO and Au, and the catalytic nature of the Au nanoparticles.
Zobrazit více v PubMed
Potyrailo R.A. Multivariable sensors for ubiquitous monitoring of gases in the era of Internet of Things and industrial internet. Chem. Rev. 2016;116:11877–11923. doi: 10.1021/acs.chemrev.6b00187. PubMed DOI
Sun Y.F., Liu S.B., Meng F.L., Liu J.Y., Jin Z., Kong L.T., Liu J.H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors. 2012;12:2610–2631. doi: 10.3390/s120302610. PubMed DOI PMC
Tomić M., Šetka M., Vojkůvka L., Vallejos S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials. 2021;11:552. doi: 10.3390/nano11020552. PubMed DOI PMC
Nunes D., Pimente A., Gonçalves A., Pereira S., Branquinho R., Barquinha P., Fortunato E., Martins R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019;34:043001. doi: 10.1088/1361-6641/ab011e. DOI
Yamazoe N., Sakai G., Shimanoe K. Oxide semiconductor gas sensors. Catal. Surv. Asia. 2003;7:63–75. doi: 10.1023/A:1023436725457. DOI
Gurlo A. Nanosensors: Towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3:154–165. doi: 10.1039/C0NR00560F. PubMed DOI
Miller D.R., Akbar S.A., Morris P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014;204:250–272. doi: 10.1016/j.snb.2014.07.074. DOI
Djurisic A.B., Chen X., Leung Y.H., Man A., Ng C. ZnO nanostructures: Growth, properties and applications. J. Mater. Chem. 2012;22:6526–6535. doi: 10.1039/c2jm15548f. DOI
Zhang S., Byun H., Lim J., Huh J., Lee W. Controlled synthesis of ZnO nanostructures for sub-ppm-level VOC detection. IEEE Sens. J. 2012;12:3149–3155. doi: 10.1109/JSEN.2012.2208950. DOI
Arunkumar S., Hou T., Kim Y.-B., Choi B., Park S.H., Jung S., Lee D.-W. Au Decorated ZnO hierarchical architectures: Facile synthesis, tunable morphology and enhanced CO detection at room temperature. Sens. Actuators B Chem. 2017;243:990–1001. doi: 10.1016/j.snb.2016.11.152. DOI
Li Z., Zhang G., Gao W., Zhao R., Wang Y. Ag decorated ZnO nanocrystallines synthesized by a low-temperature solvothermal method and their application for high response H2 gas sensor. J. Mater. Sci. Mater. Electron. 2019;30:18959–18969. doi: 10.1007/s10854-019-02253-5. DOI
Xuan J., Zhao G., Gong Q., Wang L., Ren J., Sun M., Zhou T., Xing F., Yin G., Liua B. Fabrication of in-situ grown and Pt-decorated ZnO nanoclusters on new-type FTO electrode for room-temperature detection of low-concentration H2S. J. Alloys Compd. 2021;860:158499–158510. doi: 10.1016/j.jallcom.2020.158499. DOI
Dilova T., Atanasova G., Dikovska A.O., Avdeev G., Machida M., Terakawa M., Stefanov P., Nedyalkovb N.N. Effect of Pd-decoration on the sensing properties of ZnO nanostructures. Thin Solid Films. 2020;693:137693. doi: 10.1016/j.tsf.2019.137693. DOI
Vuong N.M., Chinh N.D., Huy B.T., Lee Y.I. CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S Gas Sensors. Sci. Rep. 2016;6:26736. doi: 10.1038/srep26736. PubMed DOI PMC
Powell M.J., Potter D.B., Wilson R.L., Darr J.A., Parkin I.P., Carmalt C.J. Scaling aerosol assisted chemical vapour deposition: Exploring the relationship between growth rate and film properties. Mater. Des. 2017;129:116–124. doi: 10.1016/j.matdes.2017.05.017. DOI
Taylor M., Pullar R.C., Parkin I.P., Piccirillo C. Nanostructured titanium dioxide coatings prepared by Aerosol Assisted Chemical Vapour Deposition (AACVD) J. Photochem. Photobiol. A Chem. 2020;400:112727. doi: 10.1016/j.jphotochem.2020.112727. DOI
Vallejos S., Pizúrová N., Čechal J., Gràcia I., Cané C. Aerosol-assisted Chemical Vapor Deposition of Metal Oxide Structures: Zinc Oxide Rods. JoVE. 2017;127:e56127. doi: 10.3791/56127. PubMed DOI PMC
Palgrave R.G., Parkin I.P. Aerosol assisted chemical vapor deposition using nanoparticle precursors: A route to nanocomposite thin films. J. Am. Chem. Soc. 2006;128:1587–1597. doi: 10.1021/ja055563v. PubMed DOI
Vallejos S., Stoycheva T., Umek P., Navio C., Snyders R., Bittencourt C., Llobet E., Blackman C., Moniz S., Correig X. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem. Commun. 2011;47:565–567. doi: 10.1039/C0CC02398A. PubMed DOI
Tomić M., Šetka M., Chmela O., Gràcia I., Figueras E., Cané C., Vallejos S. Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone. Biosensors. 2018;8:116. doi: 10.3390/bios8040116. PubMed DOI PMC
Rodríguez-Martínez C., García-Domínguez Á.E., Guerrero-Robles F., Saavedra-Díaz R.O., Torres-Torres G., Felipe C., Ojeda-López R., Silahua-Pavón A., Cervantes-Uribe A. Synthesis of Supported Metal Nanoparticles (Au/TiO2) by the Suspension Impregnation Method. J. Compos. Sci. 2020;4:89. doi: 10.3390/jcs4030089. DOI
Laugel G., Arichi J., Bernhardt P., Molière M., Kiennemann A., Garin F., Louisa B. Preparation and characterisation of metal oxides supported on SBA-15 as methane combustion catalysts. Comptes Rendus Chim. 2009;12:731–739. doi: 10.1016/j.crci.2008.09.031. DOI
Savastenko N.A., Filatova I.I., Lyushkevich V.A., Chubrik N.I., Brüser V., Shcherbovich A.A., Maskevich S.A. Effect of impregnation by silver nanoparticles on the efficiency of plasma-treated ZnO-based photocatalysts. High Temp. Mater. Process. 2020;24:21–45. doi: 10.1615/HighTempMatProc.2020033434. DOI
Ponnuvelu D.V., Dhakshinamoorthy J., Prasad A.K., Dhara S., Kamruddin M., Pullithadathil B. Geometrically Controlled Au-Decorated ZnO Heterojunction Nanostructures for NO2 Detection. ACS Appl. Nano Mater. 2020;3:5898–5909. doi: 10.1021/acsanm.0c01053. DOI
Claros M., Setka M., Jimenez Y.P., Vallejos S. AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films. Nanomaterials. 2020;10:471. doi: 10.3390/nano10030471. PubMed DOI PMC
Vallejos S., Umek P., Stoycheva T., Annanouch F., Llobet E., Correig X., De Marco P., Bittencourt C., Blackman C. Single-step deposition of Au- and Pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Funct. Mater. 2013;23:1313–1322. doi: 10.1002/adfm.201201871. DOI
Sari W.P., Blackman C., Zhu Y., Covington J.A. AACVD Grown WO3 Nanoneedles Decorated with Ag/Ag2O Nanoparticles for Oxygen Measurement in a Humid Environment. IEEE Sens. J. 2019;19:826–832. doi: 10.1109/JSEN.2018.2878051. DOI
Turkevich J., Stevenson P.C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55–75. doi: 10.1039/df9511100055. DOI
Mulfinger L., Solomon S.D., Bahadory M., Jeyarajasingam A.V., Rutkowsky S.A., Boritz C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007;84:322. doi: 10.1021/ed084p322. DOI
Feng J., Liu J., Cheng X., Liu J., Xu M., Zhang J. Hydrothermal cation exchange enabled gradual evolution of Au@ZnS–AgAuS yolk–shell nanocrystals and their visible light photocatalytic applications. Adv. Sci. 2018;5:1700376. doi: 10.1002/advs.201700376. PubMed DOI PMC
Jain S., Shah J., Negi N., Sharma C., Kotnala R.K. Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting. Int. J. Energy Res. 2019;43:4743–4755. doi: 10.1002/er.4613. DOI
Wang H., Baek S., Song J., Lee J., Lim S. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays. Nanotechnology. 2008;19:075607. doi: 10.1088/0957-4484/19/7/075607. PubMed DOI
De La Rosa E., Sepúlveda-Guzman S., Reeja-Jayan B., Torres A., Salas P., Elizondo N., Jose Yacaman M. Controlling the growth and luminescence properties of well-faceted ZnO nanorods. J. Phys. Chem. C. 2007;111:8489–8495. doi: 10.1021/jp071846t. DOI
Meng L.J., Moreira de Sá C.P., dos Santos M.P. Study of the structural properties of ZnO thin films by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 1994;78:57–61. doi: 10.1016/0169-4332(94)90031-0. DOI
Song K.W., Park M.H., Kim T.H., Lim S.H., Yang C.W. UV enhanced synthesis of high density Au coated ZnO nanocomposite. J. Nanosci. Nanotechnol. 2014;14:8766–8770. doi: 10.1166/jnn.2014.10013. PubMed DOI
Casaletto M.P., Longo A., Martorana A., Prestianni A., Venezia A.M. XPS study of supported gold catalysts: The role of Au0 and Au+δ species as active sites. Surf. Interface Anal. 2006;38:215–218. doi: 10.1002/sia.2180. DOI
Wang T., Jin B., Jiao Z., Lu G., Ye J., Bi Y. Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. J. Mater. Chem. A. 2014;2:15553–15559. doi: 10.1039/C4TA02960G. DOI
Miller J.T., Kropf A.J., Zha Y., Regalbuto J.R., Delannoy L., Louis C., Bus E., van Bokhoven J.A. The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J. Catal. 2006;240:222–234. doi: 10.1016/j.jcat.2006.04.004. DOI
Vallejos S., Gràcia I., Figueras E., Cané C. Nanoscale Heterostructures Based on Fe2O3@WO3-x Nanoneedles and Their Direct Integration into Flexible Transducing Platforms for Toluene Sensing. ACS Appl. Mater. Interfaces. 2015;7:18638–18649. doi: 10.1021/acsami.5b05081. PubMed DOI
McIntyre N.S., Zetaruk D.G. X-ray Photoelectron Spectroscopic Studies of Iron Oxides. Anal. Chem. 1977;49:1521–1529. doi: 10.1021/ac50019a016. DOI
Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI
An X., Li K., Tang J. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem. 2014;7:1086–1093. doi: 10.1002/cssc.201301194. PubMed DOI PMC
Ma X., Zhang J., Wang B., Li Q., Chu S. Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production. Appl. Surf. Sci. 2018;427:907–916. doi: 10.1016/j.apsusc.2017.09.075. DOI
Vallejos S., Gràcia I., Pizúrová N., Figueras E., Čechal J., Hubálek J., Cané C. Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B Chem. 2019;301:127054. doi: 10.1016/j.snb.2019.127054. DOI
Barsan N., Weimar U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics. 2001;7:143–167. doi: 10.1023/A:1014405811371. DOI
Zou C.W., Wang J., Xie W. Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites. J. Colloid Interface Sci. 2016;478:22–28. doi: 10.1016/j.jcis.2016.05.061. PubMed DOI
Ge Y., Wei Z., Li Y., Qu J., Zu B., Dou X. Highly sensitive and rapid chemiresistive sensor towards trace nitro-explosive vapors based on oxygen vacancy-rich and defective crystallized In-doped ZnO. Sens. Actuators B Chem. 2017;244:983–991. doi: 10.1016/j.snb.2017.01.092. DOI
Pati S., Majumder S.B., Banerji P. Role of oxygen vacancy in optical and gas sensing characteristics of ZnO thin films. J. Alloys Compd. 2012;541:376–379. doi: 10.1016/j.jallcom.2012.07.014. DOI
Tian H., Fan H., Ma J., Liu Z., Ma L., Lei S., Fang J., Long C. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 2018;341:102–111. doi: 10.1016/j.jhazmat.2017.07.056. PubMed DOI
Gutmann S., Conrad M., Wolak M.A., Beerbom M.M., Schlaf R. Work function measurements on nano-crystalline zinc oxide surfaces. J. Appl. Phys. 2012;111:123710. doi: 10.1063/1.4729527. DOI
Cao P.J., Huang Q.G., Navale S.T., Fang M., Liu X.K., Zeng Y.X., Liu W.J., Stadler F.J., Lu Y.M. Integration of mesoporous ZnO and Au@ZnO nanospheres into sensing device for the ultrasensitive CH3COCH3 detection down to ppb levels. Appl. Surf. Sci. 2020;518:146223. doi: 10.1016/j.apsusc.2020.146223. DOI
Lopez N., Nørskov J.K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002;124:11262–11263. doi: 10.1021/ja026998a. PubMed DOI
Carabineiro S.A.C. Supported gold nanoparticles as catalysts for the oxidation of alcohols and alkanes. Front. Chem. 2019;7:702. doi: 10.3389/fchem.2019.00702. PubMed DOI PMC
Deuermeier J., Liu H., Rapenne L., Calmeiro T., Renou G., Martins R., Muñoz-Rojas D., Fortunato E. Visualization of nanocrystalline CuO in the grain boundaries of Cu2O thin films and effect on band bending and film resistivity. APL Mater. 2018;6:113704. doi: 10.1063/1.5042046. DOI
Zhang J., Liu X., Wang L., Yang T., Guo X., Wu S., Wang S., Zhang S. Synthesis and gas sensing properties of α-Fe2O3@ZnO core-shell nanospindles. Nanotechnology. 2011;22:185501. doi: 10.1088/0957-4484/22/18/185501. PubMed DOI
Qin Y.X., Yang Z.Z., Wang J.J., Xie Z.Y., Cui M.Y., Tian C.M., Du Y.G., Zhang K.H.L. Epitaxial growth and band alignment of p-NiO/n-Fe2O3 heterojunction on Al2O3 (0 0 0 1) Appl. Surf. Sci. 2019;464:488–493. doi: 10.1016/j.apsusc.2018.09.106. DOI
Aghgonbad M.M., Sedghi H. Spectroscopic-ellipsometry measurement of the optical properties of zinc oxide thin films prepared by sol-gel method: Coating speed effect. Micro Nano Lett. 2018;13:959–964. doi: 10.1049/mnl.2017.0882. DOI
Abideen Z.U., Kim J.H., Lee J.H., Kim J.Y., Mirzaei A., Kim H.W., Kim S.S. Electrospun metal oxide composite nanofibers gas sensors: A review. J. Korean Ceram. Soc. 2017;54:366–379. doi: 10.4191/kcers.2017.54.5.12. DOI
Woo H.S., Na C.W., Kim I.D., Lee J.H. Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2O3 hetero-nanostructures. Nanotechnology. 2012;23:245501. doi: 10.1088/0957-4484/23/24/245501. PubMed DOI