AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32150985
PubMed Central
PMC7153246
DOI
10.3390/nano10030471
PII: nano10030471
Knihovny.cz E-zdroje
- Klíčová slova
- AACVD, copper oxide, iron oxide, structured films, water contact angle, zinc oxide,
- Publikační typ
- časopisecké články MeSH
Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122 to 135 and 145 for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.
Zobrazit více v PubMed
Wang Z.L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano. 2008;2:1987–1992. doi: 10.1021/nn800631r. PubMed DOI
Dave P.Y., Patel K.H., Chauhan K.V., Chawla A.K., Rawal S.K. Examination of Zinc Oxide Films Prepared by Magnetron Sputtering. Procedia Technol. 2016;23:328–335. doi: 10.1016/j.protcy.2016.03.034. DOI
Stratakis E., Ranella A., Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics. 2011;5:13411. doi: 10.1063/1.3553235. PubMed DOI PMC
Srivastava A., Kumar N., Khare S. Enhancement in UV emission and band gap by Fe doping in ZnO thin films. Opto Electron. Rev. 2014;22:68–76. doi: 10.2478/s11772-014-0179-x. DOI
Vallejos S., Gràcia I., Pizúrová N., Figueras E., Čechal J., Hubálek J., Cané C. Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B Chem. 2019;301:127054. doi: 10.1016/j.snb.2019.127054. DOI
Sharma D., Jha R. Transition metal (Co, Mn) co-doped ZnO nanoparticles: Effect on structural and optical properties. J. Alloy. Compd. 2017;698:532–538. doi: 10.1016/j.jallcom.2016.12.227. DOI
Yulizar Y., Bakri R., Apriandanu D.O.B., Hidayat T. ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao. Nano Struct. Nano Objects. 2018;16:300–305. doi: 10.1016/j.nanoso.2018.09.003. DOI
Irshad K., Khan M.T., Murtaza A. Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method. Phys. B Condens. Matter. 2018;543:1–6. doi: 10.1016/j.physb.2018.05.006. DOI
Kumaresan N., Sinthiya M.M.A., Ramamurthi K., Ramesh Babu R., Sethuraman K. Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab. J. Chem. 2019;13:3910–3928. doi: 10.1016/j.arabjc.2019.03.002. DOI
Suryani S.E.I., Sa’Adah U., Amini W.N.L., Suprayogi T., Mustikasari A.A., Taufiq A., Sunaryono, Diantoro M., Nur H. Effect of ZnO and Annealing on the Hydrophobic Performance of x(ZnO)-CA-PLA. J. Phys. Conf. Ser. 2018;1093:12003. doi: 10.1088/1742-6596/1093/1/012003. DOI
Charinpanitkul T., Suthabanditpong W., Watanabe H., Shirai T., Faungnawakij K., Viriya-empikul N., Fuji M. Improved hydrophilicity of zinc oxide-incorporated layer-by-layer polyelectrolyte film fabricated by dip coating method. J. Ind. Eng. Chem. 2012;18:1441–1445. doi: 10.1016/j.jiec.2012.02.003. DOI
Boyer Q., Duluard S., Tenailleau C., Ansart F., Turq V., Bonino J.P. Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol-gel matrix. J. Mater. Sci. 2017;52:12677–12688. doi: 10.1007/s10853-017-1379-9. DOI
Ennaceri H., Wang L., Erfurt D., Riedel W., Mangalgiri G., Khaldoun A., El Kenz A., Benyoussef A., Ennaoui A. Water-resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property. Surf. Coat. Technol. 2016;299:169–176. doi: 10.1016/j.surfcoat.2016.04.056. DOI
Vuong N.M., Chinh N.D., Huy B.T., Lee Y.I. CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S Gas Sensors. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep26736. PubMed DOI PMC
Ramgir N.S., Sharma P.K., Datta N., Kaur M., Debnath A.K., Aswal D.K., Gupta S.K. Room temperature H2S sensor based on Au modified ZnO nanowires. Sens. Actuators B Chem. 2013;186:718–726. doi: 10.1016/j.snb.2013.06.070. DOI
Ghorbani H.R., Mehr F.P., Pazoki H., Rahmani B.M. Synthesis of ZnO nanoparticles by precipitation method. Orient J. Chem. 2015;31:1219–1221. doi: 10.13005/ojc/310281. DOI
Al-Gaashani R., Radiman S., Daud A.R., Tabet N., Al-Douri Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013;39:2283–2292. doi: 10.1016/j.ceramint.2012.08.075. DOI
Chen S., Wilson R.M., Binions R. Synthesis of highly surface-textured ZnO thin films by aerosol assisted chemical vapour deposition. J. Mater. Chem. A. 2015;3:5794–5797. doi: 10.1039/C5TA00446B. DOI
Palgrave R.G., Parkin I.P. Aerosol assisted chemical vapor deposition using nanoparticle precursors: A route to nanocomposite thin films. J. Am. Chem. Soc. 2006;128:1587–1597. doi: 10.1021/ja055563v. PubMed DOI
Powell M.J., Potter D.B., Wilson R.L., Darr J.A., Parkin I.P., Carmalt C.J. Scaling aerosol assisted chemical vapour deposition: Exploring the relationship between growth rate and film properties. Mater. Des. 2017;129:116–124. doi: 10.1016/j.matdes.2017.05.017. DOI
Vallejos S., Stoycheva T., Umek P., Navio C., Snyders R., Bittencourt C., Llobet E., Blackman C., Moniz S., Correig X. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem. Commun. 2011;47:565–567. doi: 10.1039/C0CC02398A. PubMed DOI
Annanouch F.E., Haddi Z., Ling M., Di Maggio F., Vallejos S., Vilic T., Zhu Y., Shujah T., Umek P., Bittencourt C., et al. Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen. ACS Appl. Mater. Interfaces. 2016;8:10413–10421. doi: 10.1021/acsami.6b00773. PubMed DOI
Vallejos S., Pizúrová N., Gràcia I., Sotelo-Vazquez C., Čechal J., Blackman C., Parkin I., Cané C. ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor-Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. ACS Appl. Mater. Interfaces. 2016;8:33335–33342. doi: 10.1021/acsami.6b12992. PubMed DOI
Wang X., Cai W., Lin Y., Wang G., Liang C. Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 2010;20:8582–8590. doi: 10.1039/c0jm01024c. DOI
Khan S.B., Rahman M.M., Marwani H.M., Asiri A.M., Alamry K.A. An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanoscale Res. Lett. 2013;8:1–8. doi: 10.1186/1556-276X-8-377. PubMed DOI PMC
Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI
[(accessed on 12 June 2019)]; Available online: https://srdata.nist.gov/xps/
Das J., Pradhan S.K., Sahu D.R., Mishra D.K., Sarangi S.N., Nayak B.B., Verma S., Roul B.K. Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter. 2010;405:2492–2497. doi: 10.1016/j.physb.2010.03.020. DOI
Zheng J.H., Jiang Q., Lian J.S. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011;257:5083–5087. doi: 10.1016/j.apsusc.2011.01.025. DOI
Tam K.H., Cheung C.K., Leung Y.H., Djurišić A.B., Ling C.C., Beling C.D., Fung S., Kwok W.M., Chan W.K., Phillips D.L., et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B. 2006;110:20865–20871. doi: 10.1021/jp063239w. PubMed DOI
Karamat S., Rawat R.S., Lee P., Tan T.L., Ramanujan R.V. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog. Nat. Sci. Mater. Int. 2014;24:142–149. doi: 10.1016/j.pnsc.2014.03.009. DOI
Vallejos S., Gràcia I., Figueras E., Cané C. Nanoscale Heterostructures Based on Fe2O3@WO3−x Nanoneedles and Their Direct Integration into Flexible Transducing Platforms for Toluene Sensing. ACS Appl. Mater. Interfaces. 2015;7:18638–18649. doi: 10.1021/acsami.5b05081. PubMed DOI
Karamat S., Rawat R.S., Tan T.L., Lee P., Springham S.V., Anis-Ur-Rehman, Chen R., Sun H.D. Exciting dilute magnetic semiconductor: Copper-doped ZnO. J. Supercond. Nov. Magn. 2013;26:187–195. doi: 10.1007/s10948-012-1710-2. DOI
Lee S.H., Sridhar V., Jung J.H., Karthikeyan K., Lee Y.S., Mukherjee R., Koratkar N., Oh I.K. Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano. 2013;7:4242–4251. doi: 10.1021/nn4007253. PubMed DOI
McIntyre N.S., Zetaruk D.G. X-ray Photoelectron Spectroscopic Studies of Iron Oxides. Anal. Chem. 1977;49:1521–1529. doi: 10.1021/ac50019a016. DOI
Mullet M., Khare V., Ruby C. XPS study of Fe(II)-Fe(III) (oxy)hydroxycarbonate green rust compounds. Surf. Interface Anal. 2008;40:323–328. doi: 10.1002/sia.2758. DOI
Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI
Wang M., Hu H.P., Chen Q.Y., Ji G.F. FT-IR, XPS, and DFT study of adsorption mechanism of sodium acetohydroxamate onto goethite or hematite. Chin. J. Chem. Phys. 2016;29:308–318. doi: 10.1063/1674-0068/29/cjcp1508182. DOI
Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004;36:1564–1574. doi: 10.1002/sia.1984. DOI
Liu Y., Yu L., Hu Y., Guo C., Zhang F., Wen L.X. A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale. 2012;4:183–187. doi: 10.1039/C1NR11114K. PubMed DOI
Zhu L., Li H., Liu Z., Xia P., Xie Y., Xiong D. Synthesis of the 0D/3D CuO/ZnO Heterojunction with Enhanced Photocatalytic Activity. J. Phys. Chem. C. 2018;122:9531–9539. doi: 10.1021/acs.jpcc.8b01933. DOI
Wang Y., Lü Y., Zhan W., Xie Z., Kuang Q., Zheng L. Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A. 2015;3:12796–12803. doi: 10.1039/C5TA01108F. DOI
Tay Y.Y., Li S., Sun C.Q., Chen P. Size dependence of Zn 2p 32 binding energy in nanocrystalline ZnO. Appl. Phys. Lett. 2006;88:173118. doi: 10.1063/1.2198821. DOI
Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 1976;32:751–767. doi: 10.1107/S0567739476001551. DOI
Biesinger M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017;49:1325–1334. doi: 10.1002/sia.6239. DOI
Shirtcliffe N.J., McHale G., Atherton S., Newton M.I. An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 2010;161:124–138. doi: 10.1016/j.cis.2009.11.001. PubMed DOI
Wang G., Zhang T.Y. Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface. J. Colloid Interface Sci. 2012;377:438–441. doi: 10.1016/j.jcis.2012.03.035. PubMed DOI
Saini C.P., Barman A., Das D., Satpati B., Bhattacharyya S.R., Kanjilal D., Ponomaryov A., Zvyagin S., Kanjilal A. Role of oxygen vacancy on the hydrophobic behavior of TiO2 nanorods on chemically etched Si pyramids. J. Phys. Chem. C. 2017;121:278–283. doi: 10.1021/acs.jpcc.6b08991. DOI
Celia E., Darmanin T., de Givenchy E.T., Amigoni S., Guittard F. Recent advances in designing superhydrophobic surfaces. J. Colloid Interface Sci. 2013;402:1–18. doi: 10.1016/j.jcis.2013.03.041. PubMed DOI
Hu H., Ji H.F., Sun Y. The effect of oxygen vacancies on water wettability of a ZnO surface. Phys. Chem. Chem. Phys. 2013;15:16557–16565. doi: 10.1039/c3cp51848e. PubMed DOI
Bajpai G., Srivastava T., Patra N., Moirangthem I., Jha S.N., Bhattacharyya D., Riyajuddin S., Ghosh K., Basaula D.R., Khan M., et al. Effect of ionic size compensation by Ag+ incorporation in homogeneous Fe-substituted ZnO: Studies on structural, mechanical, optical, and magnetic properties. RSC Adv. 2018;8:24355–24369. doi: 10.1039/C8RA02393J. PubMed DOI PMC
Mrabet C., Mahdhi N., Boukhachem A., Amlouk M., Manoubi T. Effects of surface oxygen vacancies content on wettability of zinc oxide nanorods doped with lanthanum. J. Alloy. Compd. 2016;688:122–132. doi: 10.1016/j.jallcom.2016.06.286. DOI