AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films

. 2020 Mar 05 ; 10 (3) : . [epub] 20200305

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32150985

Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122 to 135 and 145 for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.

Zobrazit více v PubMed

Wang Z.L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano. 2008;2:1987–1992. doi: 10.1021/nn800631r. PubMed DOI

Dave P.Y., Patel K.H., Chauhan K.V., Chawla A.K., Rawal S.K. Examination of Zinc Oxide Films Prepared by Magnetron Sputtering. Procedia Technol. 2016;23:328–335. doi: 10.1016/j.protcy.2016.03.034. DOI

Stratakis E., Ranella A., Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics. 2011;5:13411. doi: 10.1063/1.3553235. PubMed DOI PMC

Srivastava A., Kumar N., Khare S. Enhancement in UV emission and band gap by Fe doping in ZnO thin films. Opto Electron. Rev. 2014;22:68–76. doi: 10.2478/s11772-014-0179-x. DOI

Vallejos S., Gràcia I., Pizúrová N., Figueras E., Čechal J., Hubálek J., Cané C. Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B Chem. 2019;301:127054. doi: 10.1016/j.snb.2019.127054. DOI

Sharma D., Jha R. Transition metal (Co, Mn) co-doped ZnO nanoparticles: Effect on structural and optical properties. J. Alloy. Compd. 2017;698:532–538. doi: 10.1016/j.jallcom.2016.12.227. DOI

Yulizar Y., Bakri R., Apriandanu D.O.B., Hidayat T. ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao. Nano Struct. Nano Objects. 2018;16:300–305. doi: 10.1016/j.nanoso.2018.09.003. DOI

Irshad K., Khan M.T., Murtaza A. Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method. Phys. B Condens. Matter. 2018;543:1–6. doi: 10.1016/j.physb.2018.05.006. DOI

Kumaresan N., Sinthiya M.M.A., Ramamurthi K., Ramesh Babu R., Sethuraman K. Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab. J. Chem. 2019;13:3910–3928. doi: 10.1016/j.arabjc.2019.03.002. DOI

Suryani S.E.I., Sa’Adah U., Amini W.N.L., Suprayogi T., Mustikasari A.A., Taufiq A., Sunaryono, Diantoro M., Nur H. Effect of ZnO and Annealing on the Hydrophobic Performance of x(ZnO)-CA-PLA. J. Phys. Conf. Ser. 2018;1093:12003. doi: 10.1088/1742-6596/1093/1/012003. DOI

Charinpanitkul T., Suthabanditpong W., Watanabe H., Shirai T., Faungnawakij K., Viriya-empikul N., Fuji M. Improved hydrophilicity of zinc oxide-incorporated layer-by-layer polyelectrolyte film fabricated by dip coating method. J. Ind. Eng. Chem. 2012;18:1441–1445. doi: 10.1016/j.jiec.2012.02.003. DOI

Boyer Q., Duluard S., Tenailleau C., Ansart F., Turq V., Bonino J.P. Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol-gel matrix. J. Mater. Sci. 2017;52:12677–12688. doi: 10.1007/s10853-017-1379-9. DOI

Ennaceri H., Wang L., Erfurt D., Riedel W., Mangalgiri G., Khaldoun A., El Kenz A., Benyoussef A., Ennaoui A. Water-resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property. Surf. Coat. Technol. 2016;299:169–176. doi: 10.1016/j.surfcoat.2016.04.056. DOI

Vuong N.M., Chinh N.D., Huy B.T., Lee Y.I. CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S Gas Sensors. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep26736. PubMed DOI PMC

Ramgir N.S., Sharma P.K., Datta N., Kaur M., Debnath A.K., Aswal D.K., Gupta S.K. Room temperature H2S sensor based on Au modified ZnO nanowires. Sens. Actuators B Chem. 2013;186:718–726. doi: 10.1016/j.snb.2013.06.070. DOI

Ghorbani H.R., Mehr F.P., Pazoki H., Rahmani B.M. Synthesis of ZnO nanoparticles by precipitation method. Orient J. Chem. 2015;31:1219–1221. doi: 10.13005/ojc/310281. DOI

Al-Gaashani R., Radiman S., Daud A.R., Tabet N., Al-Douri Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013;39:2283–2292. doi: 10.1016/j.ceramint.2012.08.075. DOI

Chen S., Wilson R.M., Binions R. Synthesis of highly surface-textured ZnO thin films by aerosol assisted chemical vapour deposition. J. Mater. Chem. A. 2015;3:5794–5797. doi: 10.1039/C5TA00446B. DOI

Palgrave R.G., Parkin I.P. Aerosol assisted chemical vapor deposition using nanoparticle precursors: A route to nanocomposite thin films. J. Am. Chem. Soc. 2006;128:1587–1597. doi: 10.1021/ja055563v. PubMed DOI

Powell M.J., Potter D.B., Wilson R.L., Darr J.A., Parkin I.P., Carmalt C.J. Scaling aerosol assisted chemical vapour deposition: Exploring the relationship between growth rate and film properties. Mater. Des. 2017;129:116–124. doi: 10.1016/j.matdes.2017.05.017. DOI

Vallejos S., Stoycheva T., Umek P., Navio C., Snyders R., Bittencourt C., Llobet E., Blackman C., Moniz S., Correig X. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem. Commun. 2011;47:565–567. doi: 10.1039/C0CC02398A. PubMed DOI

Annanouch F.E., Haddi Z., Ling M., Di Maggio F., Vallejos S., Vilic T., Zhu Y., Shujah T., Umek P., Bittencourt C., et al. Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen. ACS Appl. Mater. Interfaces. 2016;8:10413–10421. doi: 10.1021/acsami.6b00773. PubMed DOI

Vallejos S., Pizúrová N., Gràcia I., Sotelo-Vazquez C., Čechal J., Blackman C., Parkin I., Cané C. ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor-Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. ACS Appl. Mater. Interfaces. 2016;8:33335–33342. doi: 10.1021/acsami.6b12992. PubMed DOI

Wang X., Cai W., Lin Y., Wang G., Liang C. Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 2010;20:8582–8590. doi: 10.1039/c0jm01024c. DOI

Khan S.B., Rahman M.M., Marwani H.M., Asiri A.M., Alamry K.A. An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. Nanoscale Res. Lett. 2013;8:1–8. doi: 10.1186/1556-276X-8-377. PubMed DOI PMC

Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI

[(accessed on 12 June 2019)]; Available online: https://srdata.nist.gov/xps/

Das J., Pradhan S.K., Sahu D.R., Mishra D.K., Sarangi S.N., Nayak B.B., Verma S., Roul B.K. Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter. 2010;405:2492–2497. doi: 10.1016/j.physb.2010.03.020. DOI

Zheng J.H., Jiang Q., Lian J.S. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011;257:5083–5087. doi: 10.1016/j.apsusc.2011.01.025. DOI

Tam K.H., Cheung C.K., Leung Y.H., Djurišić A.B., Ling C.C., Beling C.D., Fung S., Kwok W.M., Chan W.K., Phillips D.L., et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B. 2006;110:20865–20871. doi: 10.1021/jp063239w. PubMed DOI

Karamat S., Rawat R.S., Lee P., Tan T.L., Ramanujan R.V. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog. Nat. Sci. Mater. Int. 2014;24:142–149. doi: 10.1016/j.pnsc.2014.03.009. DOI

Vallejos S., Gràcia I., Figueras E., Cané C. Nanoscale Heterostructures Based on Fe2O3@WO3−x Nanoneedles and Their Direct Integration into Flexible Transducing Platforms for Toluene Sensing. ACS Appl. Mater. Interfaces. 2015;7:18638–18649. doi: 10.1021/acsami.5b05081. PubMed DOI

Karamat S., Rawat R.S., Tan T.L., Lee P., Springham S.V., Anis-Ur-Rehman, Chen R., Sun H.D. Exciting dilute magnetic semiconductor: Copper-doped ZnO. J. Supercond. Nov. Magn. 2013;26:187–195. doi: 10.1007/s10948-012-1710-2. DOI

Lee S.H., Sridhar V., Jung J.H., Karthikeyan K., Lee Y.S., Mukherjee R., Koratkar N., Oh I.K. Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano. 2013;7:4242–4251. doi: 10.1021/nn4007253. PubMed DOI

McIntyre N.S., Zetaruk D.G. X-ray Photoelectron Spectroscopic Studies of Iron Oxides. Anal. Chem. 1977;49:1521–1529. doi: 10.1021/ac50019a016. DOI

Mullet M., Khare V., Ruby C. XPS study of Fe(II)-Fe(III) (oxy)hydroxycarbonate green rust compounds. Surf. Interface Anal. 2008;40:323–328. doi: 10.1002/sia.2758. DOI

Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI

Wang M., Hu H.P., Chen Q.Y., Ji G.F. FT-IR, XPS, and DFT study of adsorption mechanism of sodium acetohydroxamate onto goethite or hematite. Chin. J. Chem. Phys. 2016;29:308–318. doi: 10.1063/1674-0068/29/cjcp1508182. DOI

Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004;36:1564–1574. doi: 10.1002/sia.1984. DOI

Liu Y., Yu L., Hu Y., Guo C., Zhang F., Wen L.X. A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale. 2012;4:183–187. doi: 10.1039/C1NR11114K. PubMed DOI

Zhu L., Li H., Liu Z., Xia P., Xie Y., Xiong D. Synthesis of the 0D/3D CuO/ZnO Heterojunction with Enhanced Photocatalytic Activity. J. Phys. Chem. C. 2018;122:9531–9539. doi: 10.1021/acs.jpcc.8b01933. DOI

Wang Y., Lü Y., Zhan W., Xie Z., Kuang Q., Zheng L. Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A. 2015;3:12796–12803. doi: 10.1039/C5TA01108F. DOI

Tay Y.Y., Li S., Sun C.Q., Chen P. Size dependence of Zn 2p 32 binding energy in nanocrystalline ZnO. Appl. Phys. Lett. 2006;88:173118. doi: 10.1063/1.2198821. DOI

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 1976;32:751–767. doi: 10.1107/S0567739476001551. DOI

Biesinger M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017;49:1325–1334. doi: 10.1002/sia.6239. DOI

Shirtcliffe N.J., McHale G., Atherton S., Newton M.I. An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 2010;161:124–138. doi: 10.1016/j.cis.2009.11.001. PubMed DOI

Wang G., Zhang T.Y. Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface. J. Colloid Interface Sci. 2012;377:438–441. doi: 10.1016/j.jcis.2012.03.035. PubMed DOI

Saini C.P., Barman A., Das D., Satpati B., Bhattacharyya S.R., Kanjilal D., Ponomaryov A., Zvyagin S., Kanjilal A. Role of oxygen vacancy on the hydrophobic behavior of TiO2 nanorods on chemically etched Si pyramids. J. Phys. Chem. C. 2017;121:278–283. doi: 10.1021/acs.jpcc.6b08991. DOI

Celia E., Darmanin T., de Givenchy E.T., Amigoni S., Guittard F. Recent advances in designing superhydrophobic surfaces. J. Colloid Interface Sci. 2013;402:1–18. doi: 10.1016/j.jcis.2013.03.041. PubMed DOI

Hu H., Ji H.F., Sun Y. The effect of oxygen vacancies on water wettability of a ZnO surface. Phys. Chem. Chem. Phys. 2013;15:16557–16565. doi: 10.1039/c3cp51848e. PubMed DOI

Bajpai G., Srivastava T., Patra N., Moirangthem I., Jha S.N., Bhattacharyya D., Riyajuddin S., Ghosh K., Basaula D.R., Khan M., et al. Effect of ionic size compensation by Ag+ incorporation in homogeneous Fe-substituted ZnO: Studies on structural, mechanical, optical, and magnetic properties. RSC Adv. 2018;8:24355–24369. doi: 10.1039/C8RA02393J. PubMed DOI PMC

Mrabet C., Mahdhi N., Boukhachem A., Amlouk M., Manoubi T. Effects of surface oxygen vacancies content on wettability of zinc oxide nanorods doped with lanthanum. J. Alloy. Compd. 2016;688:122–132. doi: 10.1016/j.jallcom.2016.06.286. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...