Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-52-26020
Russian Foundation for Basic Research
21-12132J
Czech Science Foundation
PubMed
34940466
PubMed Central
PMC8708309
DOI
10.3390/membranes11120965
PII: membranes11120965
Knihovny.cz E-zdroje
- Klíčová slova
- PCL nanofibers, XPS, antibacterial coating, copper, cytotoxicity, ion release,
- Publikační typ
- časopisecké články MeSH
Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.
Central European Institute of Technology CEITEC BUT Purkyňova 123 61200 Brno Czech Republic
Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad Lavrentiev Ave 630090 Novosibirsk Russia
Zobrazit více v PubMed
Xie L., Li Z., Li X., Wenlong W., Hanjiang Y. Electrospun copper oxide nanofibers and catalysis for combustion of ammonium perchlorate. Ferroelectrics. 2019;549:23–28. doi: 10.1080/00150193.2019.1592540. DOI
Wang H., Fu Q., Zhang G., Sun Y. The Synthesis of Ni–Cu Alloy Nanofibers via Vacuum Thermal Co-reduction Toward Hydrogen Generation from Hydrazine Decomposition. Catal. Lett. 2019;149:77–83. doi: 10.1007/s10562-018-2575-1. DOI
Zheng X., Shen Z., Cheng C., Shi L., Cheng R., Dong J. Electrospinning Cu–TiO2 nanofibers used for photocatalytic disinfection of bacteriophage f2: Preparation, optimization and characterization. RSC Adv. 2017;7:52172–52179. doi: 10.1039/C7RA07770J. DOI
Cui W.Y., Yoo H.J., Li Y.G., Baek C., Min J. Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function. J. Nanosci. Nanotechnol. 2021;21:4174–4178. doi: 10.1166/jnn.2021.19379. PubMed DOI
Abedalwafa M.A., Zhang H., Mei Q., Li Y., Wang F. A novel method to construct antimicrobial surface by decorating polyacrylonitrile nanofibrous membrane with nanoparticles. J. Ind. Text. 2020 doi: 10.1177/1528083720934198. DOI
Ghasemian Lemraski E., Jahangirian H., Dashti M., Khajehali E., Sharafinia M.S., Rafiee-Moghaddam R., Webster T.J. Antimicrobial Double-Layer Wound Dressing Based on Chitosan/Polyvinyl Alcohol/Copper: In vitro and in vivo Assessment. Int. J. Nanomed. 2021;16:223–235. doi: 10.2147/IJN.S266692. PubMed DOI PMC
Choi S.-W., Katoch A., Zhang J., Kim S.S. Electrospun nanofibers of CuOSnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens. Actuators B Chem. 2013;176:585–591. doi: 10.1016/j.snb.2012.09.035. DOI
Ju W., Jiang F., Ma H., Pan Z., Zhao Y., Pagani F., Rentsch D., Wang J., Battaglia C. Electrocatalytic Reduction of Gaseous CO2 to CO on Sn/Cu-Nanofiber-Based Gas Diffusion Electrodes. Adv. Energy Mater. 2019;9:1901514. doi: 10.1002/aenm.201901514. DOI
Nami-Ana S.F., Nasresfahani S., Tashkhourian J., Shamsipur M., Zargarpour Z., Sheikhi M.H. Nanofibers of Polyaniline and Cu(II)–L-Aspartic Acid for a Room-Temperature Carbon Monoxide Gas Sensor. ACS Appl. Mater. Interfaces. 2021;13:39791–39805. doi: 10.1021/acsami.1c07116. PubMed DOI
Khan M.Q., Kharaghani D., Nishat N., Sanaullah, Shahzad A., Hussain T., Kim K.O., Kim I.S. The fabrications and characterizations of antibacterial PVA/Cu nanofibers composite membranes by synthesis of Cu nanoparticles from solution reduction, nanofibers reduction and immersion methods. Mater. Res. Express. 2019;6:075051. doi: 10.1088/2053-1591/ab1688. DOI
Liu X., Xu H., Zhang M., Yu D.-G. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes. 2021;11:770. doi: 10.3390/membranes11100770. PubMed DOI PMC
Mousavi S., Nejad Z.M., Hashemi S.A., Salari M., Gholami A., Ramakrishna S., Chiang W., Lai C.W. Bioactive Agent-Loaded Electrospun Nanofiber Membranes for Accelerating Healing Process: A Review. Membranes. 2021;11:702. doi: 10.3390/membranes11090702. PubMed DOI PMC
Essa W., Yasin S., Saeed I., Ali G. Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review. Membrranes. 2021;11:250. doi: 10.3390/membranes11040250. PubMed DOI PMC
Ullah S., Ullah A., Lee J., Jeong Y., Hashmi M., Zhu C., Joo K., II, Cha H.J., Kim I.S. Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Appl. Nano Mater. 2020;3:7231–7241. doi: 10.1021/acsanm.0c01562. PubMed DOI
Mozaffari A., Gashti M.P., Mirjalili M., Parsania M. Argon and Argon–Oxygen Plasma Surface Modification of Gelatin Nanofibers for Tissue Engineering Applications. Membranes. 2021;11:31. doi: 10.3390/membranes11010031. PubMed DOI PMC
Ramírez-Cedillo E., Ortega-Lara W., Rocha-Pizaña M., Gutierrez-Uribe J., Elías-Zúñiga A., Rodríguez C. Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO2 and Na2Ti6O13 Particles for Potential Use in Bone Regeneration. Membranes. 2019;9:12. doi: 10.3390/membranes9010012. PubMed DOI PMC
Haider M.K., Ullah A., Sarwar M.N., Yamaguchi T., Wang Q., Ullah S., Park S., Kim I.S. Fabricating Antibacterial and Antioxidant Electrospun Hydrophilic Polyacrylonitrile Nanofibers Loaded with AgNPs by Lignin-Induced In-Situ Method. Polymers. 2021;13:748. doi: 10.3390/polym13050748. PubMed DOI PMC
Haider M.K., Sun L., Ullah A., Ullah S., Suzuki Y., Park S., Kato Y., Tamada Y., Kim I.S. Polyacrylonitrile/Carbon Black nanoparticle/Nano-Hydroxyapatite (PAN/nCB/HA) composite nanofibrous matrix as a potential biomaterial scaffold for bone regenerative applications. Mater. Today Commun. 2021;27:102259. doi: 10.1016/j.mtcomm.2021.102259. DOI
Phan D.-N., Dorjjugder N., Saito Y., Khan M.Q., Ullah A., Bie X., Taguchi G., Kim I.-S. Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Mater. Today Commun. 2020;25:101377. doi: 10.1016/j.mtcomm.2020.101377. DOI
Haider A., Kwak S., Gupta K.C., Kang I.-K. Antibacterial Activity and Cytocompatibility of PLGA/CuO Hybrid Nanofiber Scaffolds Prepared by Electrospinning. J. Nanomater. 2015;2015:1–10. doi: 10.1155/2015/832762. DOI
Hashmi M., Ullah S., Kim I.S. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Curr. Res. Biotechnol. 2019;1:1–10. doi: 10.1016/j.crbiot.2019.07.001. DOI
Permyakova E.S., Kiryukhantsev-Korneev P.V., Gudz K.Y., Konopatsky A.S., Polčak J., Zhitnyak I.Y., Gloushankova N.A., Shtansky D.V., Manakhov A.M. Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds. Nanomaterials. 2019;9:1769. doi: 10.3390/nano9121769. PubMed DOI PMC
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Lloyd A., Cornil D., van Duin A.C.T., van Duin D., Smith R., Kenny S.D., Cornil J., Beljonne D. Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO. Surf. Sci. 2016;645:67–73. doi: 10.1016/j.susc.2015.11.009. DOI
Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Chatani Y., Okita Y., Tadokoro H., Yamashita Y. Structural Studies of Polyesters. III. Crystal Structure of Poly-ε-caprolactone. Polym. J. 1970;1:555–562. doi: 10.1295/polymj.1.555. DOI
Claros M., Setka M., Jimenez Y.P., Vallejos S. AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films. Nanomaterials. 2020;10:471. doi: 10.3390/nano10030471. PubMed DOI PMC
Parmigiani F., Sangaletti L. The Cu2p X-ray photoelectron core-lines in copper oxide based high temperature superconductors. J. Electron Spectros. Relat. Phenom. 1994;66:223–239. doi: 10.1016/0368-2048(93)01854-8. DOI
Biesinger M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017:1325–1334. doi: 10.1002/sia.6239. DOI
Nakamura T., Tomizuka H., Takahashi M., Hoshi T. Methods of Powder Sample Mounting and Their Evaluations in XPS Analysis. Hyomen. Kagaku. 1995;16:515–520. doi: 10.1380/jsssj.16.515. DOI
Manakhov A., Kiryukhantsev-Korneev P., Michlíček M., Permyakova E., Dvořáková E., Polčák J., Popov Z., Visotin M., Shtansky D.V. Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization. Appl. Surf. Sci. 2018;435:1220–1227. doi: 10.1016/j.apsusc.2017.11.174. DOI
Yang Z., Peng H., Wang W., Liu T. Copper (II) Ions and Copper Nanoparticles-Loaded Chemically Modified Cotton Cellulose Fibers with Fair Antibacterial Properties. J. Appl. Polym. Sci. 2009;113:757–766.
Cui H., Liu M., Yu W., Cao Y., Zhou H., Yin J., Liu H., Que S., Wang J., Huang C., et al. Copper Peroxide-Loaded Gelatin Sponges for Wound Dressings with Antimicrobial and Accelerating Healing Properties. ACS Appl. Mater. Interfaces. 2021;13:26800–26807. doi: 10.1021/acsami.1c07409. PubMed DOI
Fowler L., Engqvist H., Öhman-Mägi C. Effect of Copper Ion Concentration on Bacteria and Cells. Materials. 2019;12:3798. doi: 10.3390/ma12223798. PubMed DOI PMC
Lei J., Yao G., Sun Z., Wang B., Yu C., Zheng S. Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. J. Mater. Sci. 2019;54:11682–11693. doi: 10.1007/s10853-019-03727-x. DOI
Chaturvedi K.S., Henderson J.P. Pathogenic adaptations to host-derived antibacterial copper. Front. Cell. Infect. Microbiol. 2014;5:1–12. doi: 10.3389/fcimb.2014.00003. PubMed DOI PMC
Achard M.E.S., Tree J.J., Holden J.A., Simpfendorfer K.R., Wijburg O.L.C., Strugnell R.A., Schembri M.A., Sweet M.J., Jennings M.P., McEwan A.G. The multi-copper-ion oxidase CueO of Salmonella enterica serovar typhimurium is required for systemic virulence. Infect. Immun. 2010;78:2312–2319. doi: 10.1128/IAI.01208-09. PubMed DOI PMC
Figueiredo R., Card R.M., Nunez-Garcia J., Mendonça N., Da Silva G.J., Anjum M.F. Multidrug-Resistant Salmonella enterica Isolated from Food Animal and Foodstuff May Also Be Less Susceptible to Heavy Metals. Foodborne Pathog. Dis. 2019;16:166–172. doi: 10.1089/fpd.2017.2418. PubMed DOI
Molteni C., Abicht H.K., Solioz M. Killing of bacteria by copper surfaces involves dissolved copper. Appl. Environ. Microbiol. 2010;76:4099–4101. doi: 10.1128/AEM.00424-10. PubMed DOI PMC
Harris E.D., Rayton J.K., Balthrop J.E., DiSilvestro R.A., Garcia-de-Quevedo M. Copper and the synthesis of elastin and collagen. Ciba Found. Symp. 1980;79:163–182. PubMed
Cucci L.M., Satriano C., Marzo T., La Mendola D. Angiogenin and copper crossing in wound healing. Int. J. Mol. Sci. 2021;22:704. doi: 10.3390/ijms221910704. PubMed DOI PMC
Manakhov A., Permyakova E., Ershov S., Miroshnichenko S., Pykhtina M., Beklemishev A., Kovalskii A., Solovieva A. XPS Modeling of Immobilized Recombinant Angiogenin and Apoliprotein A1 on Biodegradable Nanofibers. Nanomaterials. 2020;10:879. doi: 10.3390/nano10050879. PubMed DOI PMC
Solovieva A., Miroshnichenko S., Kovalskii A., Permyakova E., Popov Z., Dvořáková E., Kiryukhantsev-Korneev P., Obrosov A., Polčak J., Zajíčková L., et al. Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers. 2017;9:736. doi: 10.3390/polym9120736. PubMed DOI PMC
Chaturvedi K.S., Hung C.S., Crowley J.R., Stapleton A.E., Henderson J.P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 2012;8:731–736. doi: 10.1038/nchembio.1020. PubMed DOI PMC