Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30966035
PubMed Central
PMC6418517
DOI
10.3390/polym9120736
PII: polym9120736
Knihovny.cz E-zdroje
- Klíčová slova
- COOH plasma, PRP immobilization, cell viability, nanofibers, platelet-rich plasma, polycaprolactone,
- Publikační typ
- časopisecké články MeSH
The scaffolds made of polycaprolactone (PCL) are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO₂/C₂H₄ plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP). The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times) of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS), after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258 ± 12.9 and 364 ± 34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering.
National University of Science and Technology MISiS Leninsky pr 4 119049 Moscow Russia
Research Institute of Biochemistry 2 Timakova str 630117 Novosibirsk Russia
Zobrazit více v PubMed
Yao Q., Cosme J.G.L., Xu T., Miszuk J.M., Picciani P.H.S., Fong H., Sun H. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–127. doi: 10.1016/j.biomaterials.2016.11.018. PubMed DOI PMC
Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI
Ghasemi-Mobarakeh L., Prabhakaran M.P., Morshed M., Nasr-Esfahani M.H., Ramakrishna S. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–4539. doi: 10.1016/j.biomaterials.2008.08.007. PubMed DOI
Tokiwa Y., Calabia B.P., Ugwu C.U., Aiba S. Biodegradability of plastics. Int. J. Mol. Sci. 2009;10:3722–3742. doi: 10.3390/ijms10093722. PubMed DOI PMC
Feng Y., Liu W., Ren X., Lu W., Guo M., Behl M., Lendlein A., Zhang W. Evaluation of electrospun PCL-PIBMD meshes modified with plasmid complexes in vitro and in vivo. Polymers. 2016;8:1–14. doi: 10.3390/polym8030058. PubMed DOI PMC
Liu Y., Liang X., Zhang R., Lan W., Qin W. Fabrication of electrospun polylactic acid/Cinnamaldehyde/β-cyclodextrin fibers as an antimicrobialwound dressing. Polymers. 2017;9 doi: 10.3390/polym9100464. PubMed DOI PMC
Torres-Lagares D., Castellanos-Cosano L., Serrera-Figallo M.Á., García-García F.J., López-Santos C., Barranco A., Rodríguez-Gonzalez Elipe A., Rivera-Jiménez C., Gutiérrez-Pérez J.L. In vitro and in vivo study of poly(lactic-co-glycolic) (PLGA)membranes treated with oxygen plasma and coated with nanostructured hydroxyapatite ultrathin films for guided bone regeneration processes. Polymers. 2017;9 doi: 10.3390/polym9090410. PubMed DOI PMC
Phan L.T., Yoon S.M., Moon M.W. Plasma-based nanostructuring of polymers: A review. Polymers. 2017;9:1–24. doi: 10.3390/polym9090417. PubMed DOI PMC
Zaplotnik R., Vesel A., Primc G., Liu X., Chen K.C., Wei C., Xu K., Mozetic M. Rapid hydrophilization of model polyurethane/urea (PURPEG) polymer scaffolds using oxygen plasma treatment. Polymers. 2016;8 doi: 10.3390/polym8040144. PubMed DOI PMC
Manakhov A., Makhneva E., Skládal P., Nečas D., Čechal J., Kalina L., Eliáš M., Zajíčková L. The robust bio-immobilization based on pulsed plasma polymerization of cyclopropylamine and glutaraldehyde coupling chemistry. Appl. Surf. Sci. 2016;360:28–36. doi: 10.1016/j.apsusc.2015.10.178. DOI
Manakhov A., Landová M., Medalová J., Michlíček M., Polčák J., Nečas D., Zajíčková L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process. Polym. 2016:1–12. doi: 10.1002/ppap.201600123. DOI
Choi J.S., Leong K.W., Yoo H.S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF) Biomaterials. 2008;29:587–596. doi: 10.1016/j.biomaterials.2007.10.012. PubMed DOI
Martins A., Pinho E.D., Faria S., Pashkuleva I., Marques A.P., Reis R.L., Neves N.M. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small. 2009;5:1195–1206. doi: 10.1002/smll.200801648. PubMed DOI
Norouzi M., Boroujeni S.M., Omidvarkordshouli N., Soleimani M. Advances in Skin Regeneration: Application of Electrospun Scaffolds. Adv. Healthc. Mater. 2015;4:1114–1133. doi: 10.1002/adhm.201500001. PubMed DOI
Shen H., Hu X., Bei J., Wang S. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide) Biomaterials. 2008;29:2388–2399. doi: 10.1016/j.biomaterials.2008.02.008. PubMed DOI
Chen J.P., Su C.H. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011;7:234–243. doi: 10.1016/j.actbio.2010.08.015. PubMed DOI
Hassiba A.J., El Zowalaty M.E., Nasrallah G.K., Webster T.J., Luyt A.S., Abdullah A.M., Elzatahry A.A. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine. 2016;11:715–737. doi: 10.2217/nnm.15.211. PubMed DOI
Li J., Chen M., Wei X., Hao Y., Wang J. Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration. Materials. 2017;10 doi: 10.3390/ma10070831. PubMed DOI PMC
Chen M., Le D.Q.S., Kjems J., Bünger C., Lysdahl H. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro. BioRes. Open Access. 2015;4:363–373. doi: 10.1089/biores.2015.0021. PubMed DOI PMC
Singh S., Wu B.M., Dunn J.C.Y. Delivery of VEGF using collagen-coated polycaprolactone scaffolds stimulates angiogenesis. J. Biomed. Mater. Res. Part A. 2012;100:720–727. doi: 10.1002/jbm.a.34010. PubMed DOI PMC
Agrawal A.A. Evolution, current status and advances in application of platelet concentrate in periodontics and implantology. World J. Clin. Cases. 2017;5:159. doi: 10.12998/wjcc.v5.i5.159. PubMed DOI PMC
Freymiller E.G. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 2004;62:1046. doi: 10.1016/j.joms.2004.05.205. PubMed DOI
Rožman P., Bolta Z. Use of platelet growth factors in treating wounds and soft-tissue injuries. Dermatovenerologica Alpina Panonica et Adriatica. 2007;16:156–165. PubMed
Fekete N., Gadelorge M., Fürst D., Maurer C., Dausend J., Fleury-Cappellesso S., Mailänder V., Lotfi R., Ignatius A., Sensebé L., Bourin P., Schrezenmeier H., Rojewski M.T. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: Production process, content and identification of active comp. Cytotherapy. 2012;14:540–554. doi: 10.3109/14653249.2012.655420. PubMed DOI PMC
Harrison P., Cramer E.M. Platelet alpha-granules. Blood Rev. 1993;7:52–62. doi: 10.1016/0268-960X(93)90024-X. PubMed DOI
Schallmoser K., Strunk D. Preparation of Pooled Human Platelet Lysate (pHPL) as an Efficient Supplement for Animal Serum-Free Human Stem Cell Cultures. J. Vis. Exp. 2009 doi: 10.3791/1523. PubMed DOI PMC
Bacakova M., Pajorova J., Stranska D., Hadraba D., Lopot F., Riedel T., Brynda E., Zaloudkova M., Bacakova L. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells. Int. J. Nanomed. 2017;12:1143–1160. doi: 10.2147/IJN.S121299. PubMed DOI PMC
Hattori H., Ishihara M. Feasibility of improving platelet-rich plasma therapy by using chitosan with high platelet activation ability. Exp. Ther. Med. 2017;13:1176–1180. doi: 10.3892/etm.2017.4041. PubMed DOI PMC
Liu J., Nie H., Xu Z., Guo F., Guo S., Yin J., Wang Y., Zhang C. Construction of PRP-containing nanofibrous scaffolds for controlled release and their application to cartilage regeneration. J. Mater. Chem. B. 2015;3:581–591. doi: 10.1039/C4TB00515E. PubMed DOI
Bertoncelj V., Pelipenko J., Kristl J., Jeras M., Cukjati M., Kocbek P. Development and bioevaluation of nanofibers with blood-derived growth factors for dermal wound healing. Eur. J. Pharm. Biopharm. 2014;88:64–74. doi: 10.1016/j.ejpb.2014.06.001. PubMed DOI
Manakhov A., Kedroňová E., Medalová J., Černochová P., Obrusník A., Michlíček M., Shtansky D.V., Zajíčková L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017;132:257–265. doi: 10.1016/j.matdes.2017.06.057. DOI
Amable P.R., Teixeira M.V.T., Carias R.B.V., Granjeiro J.M., Borojevic R. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0104662. PubMed DOI PMC
Diaz-Gomez L., Alvarez-Lorenzo C., Concheiro A., Silva M., Dominguez F., Sheikh F.A., Cantu T., Desai R., Garcia V.L., Macossay J. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Mater. Sci. Eng. C. 2014;40:180–188. doi: 10.1016/j.msec.2014.03.065. PubMed DOI PMC
Beamson G., Briggs D. High Resolution XPS of Organic Polymers. John Wiley & Sons; Chichester, UK: 1992.
Manakhov A., Michlíček M., Nečas D., Polčák J., Makhneva E., Eliáš M., Zajíčková L. Carboxyl-rich coatings deposited by atmospheric plasma co-polymerization of maleic anhydride and acetylene. Surf. Coat. Technol. 2016;295:37–45. doi: 10.1016/j.surfcoat.2015.11.039. DOI
Chilkoti A., Ratner B., Briggs D. Plasma-deposited polymeric films prepared from carbonyl-containing volatile precursors: XPS chemical derivatization and static SIMS surface characterization. Chem. Mater. 1991;3:51–61. doi: 10.1021/cm00013a016. DOI
Sakaguchi Y., Sekiya I., Yagishita K., Ichinose S., Shinomiya K., Muneta T. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood. 2004;104:2728–2735. doi: 10.1182/blood-2003-12-4452. PubMed DOI
Körner E., Fortunato G., Hegemann D. Influence of RF plasma reactor setup on carboxylated hydrocarbon coatings. Plasma Process. Polym. 2009;6:119–125. doi: 10.1002/ppap.200800102. DOI
Manakhov A., Michlíček M., Felten A., Pireaux J.-J., Nečas D., Zajíčková L. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Appl. Surf. Sci. 2017;394:578–585. doi: 10.1016/j.apsusc.2016.10.099. DOI
Cell type specific adhesion to surfaces functionalised by amine plasma polymers