Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-52-26020
Russian Foundation for Basic Research
21-12132J
Czech Science Foundation
LM2018110
MEYS CR
"Biomedical materials and bioengineering"
Strategic Academic Leadership Program "Priority 2030" at NUST «MISiS»
PubMed
35209122
PubMed Central
PMC8878124
DOI
10.3390/molecules27041333
PII: molecules27041333
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, XPS, antiviral coating, copper, nanofibers, plasma, silver,
- MeSH
- antivirové látky chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- Cercopithecus aethiops MeSH
- COVID-19 prevence a kontrola přenos MeSH
- lidé MeSH
- měď chemie MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- SARS-CoV-2 chemie MeSH
- titan chemie MeSH
- Vero buňky MeSH
- zlato chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- biokompatibilní potahované materiály MeSH
- měď MeSH
- polyestery MeSH
- polyethylene oxide-polycaprolactone copolymer MeSH Prohlížeč
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- zlato MeSH
The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 μg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.
Central European Institute of Technology CEITEC BUT Purkyňova 123 61200 Brno Czech Republic
Emanuel Institute of Biochemical Physics RAS Kosygina 4 Moscow 119334 Russia
Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad Lavrentiev Ave Novosibirsk 630090 Russia
Zobrazit více v PubMed
Rakowska P.D., Tiddia M., Faruqui N., Bankier C., Pei Y., Pollard A.J., Zhang J., Gilmore I.S. Antiviral surfaces and coatings and their mechanisms of action. Commun. Mater. 2021;2:53. doi: 10.1038/s43246-021-00153-y. DOI
Ghodake G.S., Shinde S.K., Kadam A.A., Saratale R.G., Saratale G.D., Syed A., Elgorban A.M., Marraiki N., Kim D. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens. Bioelectron. 2021;177:112969. doi: 10.1016/j.bios.2021.112969. PubMed DOI PMC
Kumar M., Kumari N., Thakur N., Bhatia S.K., Saratale G.D., Ghodake G., Mistry B.M., Alavilli H., Kishor D.S., Du X., et al. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. Plants. 2021;10:1213. doi: 10.3390/plants10061213. PubMed DOI PMC
Greenhalgh T., Jimenez J.L., Prather K.A., Tufekci Z., Fisman D., Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 2021;397:1603–1605. doi: 10.1016/S0140-6736(21)00869-2. PubMed DOI PMC
Essa W., Yasin S., Saeed I., Ali G. Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review. Membranes. 2021;11:250. doi: 10.3390/membranes11040250. PubMed DOI PMC
Omori Y., Gu T., Bao L., Otani Y., Seto T. Performance of nanofiber/microfiber hybrid air filter prepared by wet paper processing. Aerosol Sci. Technol. 2019;53:1149–1157. doi: 10.1080/02786826.2019.1634243. DOI
Skaria S.D., Smaldone G.C. Respiratory Source Control Using Surgical Masks with Nanofiber Media. Ann. Occup. Hyg. 2014;58:771–781. PubMed PMC
Hashmi M., Ullah S., Kim I.S. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Curr. Res. Biotechnol. 2019;1:1–10. doi: 10.1016/j.crbiot.2019.07.001. DOI
Huang X., Jiao T., Liu Q., Zhang L., Zhou J., Li B., Peng Q. Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture. Sci. China Mater. 2019;62:423–436. doi: 10.1007/s40843-018-9320-4. DOI
Tian X., Xin B., Gao W., Jin S., Chen Z. Preparation and characterization of polyvinylidene fluoride/polysulfone-amide composite nanofiber mats. J. Text. Inst. 2019;110:815–821. doi: 10.1080/00405000.2018.1527514. DOI
Ullah S., Ullah A., Lee J., Jeong Y., Hashmi M., Zhu C., Joo K.I., Cha H.J., Kim I.S. Reusability Comparison of Melt-Blown vs Nanofiber Face Mask Filters for Use in the Coronavirus Pandemic. ACS Appl. Nano Mater. 2020;3:7231–7241. doi: 10.1021/acsanm.0c01562. PubMed DOI
Lee S., Cho A.R., Park D., Kim J.K., Han K.S., Yoon I.-J., Lee M.H., Nah J. Reusable Polybenzimidazole Nanofiber Membrane Filter for Highly Breathable PM 2.5 Dust Proof Mask. ACS Appl. Mater. Interfaces. 2019;11:2750–2757. doi: 10.1021/acsami.8b19741. PubMed DOI
Liwanag V. A Reusable Nanofiber Mask Ensuring High Breathability. [(accessed on 29 December 2021)]. Available online: https://emag.medicalexpo.com/a-reusable-nanofiber-mask-ensuring-high-breathability/
Zhou L., Ayeh S.K., Chidambaram V., Karakousis P.C. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect. Dis. 2021;21:496. doi: 10.1186/s12879-021-06222-4. PubMed DOI PMC
Babaahmadi V., Amid H., Naeimirad M., Ramakrishna S. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. Sci. Total Environ. 2021;798:149233. doi: 10.1016/j.scitotenv.2021.149233. PubMed DOI PMC
Jarach N., Dodiuk H., Kenig S. Polymers in the medical antiviral front-line. Polymers. 2020;12:1727. doi: 10.3390/polym12081727. PubMed DOI PMC
Liu Q., Zhang Y., Liu W., Wang L., Choi Y.W., Fulton M., Fuchs S., Shariati K., Qiao M., Bernat V., et al. A Broad-Spectrum Antimicrobial and Antiviral Membrane Inactivates SARS-CoV-2 in Minutes. Adv. Funct. Mater. 2021;31:2103477. doi: 10.1002/adfm.202103477. PubMed DOI PMC
Kwon K.Y., Cheeseman S., Frias-De-Diego A., Hong H., Yang J., Jung W., Yin H., Murdoch B.J., Scholle F., Crook N., et al. A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. Adv. Mater. 2021;33:2170352. doi: 10.1002/adma.202170352. PubMed DOI
Pemmada R., Zhu X., Dash M., Zhou Y., Ramakrishna S., Peng X., Thomas V., Jain S., Nanda H.S. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials. 2020;13:4041. doi: 10.3390/ma13184041. PubMed DOI PMC
Mantlo E.K., Paessler S., Seregin A., Mitchell A. Luminore coppertouch surface coating effectively inactivates SARS-CoV-2, Ebola virus, and Marburg virus in vitro. Antimicrob. Agents Chemother. 2021;65 doi: 10.1128/AAC.01390-20. PubMed DOI PMC
Kuzderová G., Rendošová M., Gyepes R., Sovová S., Sabolová D., Vilková M., Olejníková P., Bačová I., Stokič S., Kello M., et al. Antimicrobial and Anticancer Application of Silver(I) Dipeptide Complexes. Molecules. 2021;26:6335. doi: 10.3390/molecules26216335. PubMed DOI PMC
Al-Otibi F., Alkhudhair S.K., Alharbi R.I., Al-Askar A.A., Aljowaie R.M., Al-Shehri S. The antimicrobial activities of silver nanoparticles from aqueous extract of grape seeds against pathogenic bacteria and fungi. Molecules. 2021;26:6081. doi: 10.3390/molecules26196081. PubMed DOI PMC
Sousa B.C., Cote D.L. Antimicrobial Copper Cold Spray Coatings and SARS-CoV-2 Surface Inactivation. MRS Adv. 2020:2873–2880. doi: 10.1557/adv.2020.366. PubMed DOI PMC
Tremiliosi G.C., Simoes L.G.P., Minozzi D.T., Santos R.I., Vilela D.C.B., Durigon E.L., Machado R.R.G., Medina D.S., Ribeiro L.K., Rosa I.L.V., et al. Ag nanoparticles-based antimicrobial polycotton fabrics to prevent the transmission and spread of SARS-CoV-2. bioRxiv. 2020 doi: 10.1101/2020.06.26.152520. DOI
Zulfiqar H., Zafar A., Rasheed M.N., Ali Z., Mehmood K., Mazher A., Hasan M., Mahmood N. Synthesis of silver nanoparticles using Fagonia cretica and their antimicrobial activities. Nanoscale Adv. 2019;1:1707–1713. doi: 10.1039/C8NA00343B. PubMed DOI PMC
Homaeigohar S., Liu Q., Kordbacheh D. Biomedical applications of antiviral nanohybrid materials relating to the COVID-19 pandemic and other viral crises. Polymers. 2021;13:2833. doi: 10.3390/polym13162833. PubMed DOI PMC
Misra N., Bhatt S., Arefi-Khonsari F., Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? Plasma Process. Polym. 2021;18 doi: 10.1002/ppap.202000215. PubMed DOI PMC
Tučeková Z.K., Vacek L., Krumpolec R., Kelar J., Zemánek M., Černák M., Růžička F. Multi-hollow surface dielectric barrier discharge for bacterial biofilm decontamination. Molecules. 2021;26:910. doi: 10.3390/molecules26040910. PubMed DOI PMC
Liu Y., Li S., Lan W., Hossen M.A., Qin W., Lee K. Electrospun antibacterial and antiviral poly(ε-caprolactone)/zein/Ag bead-on-string membranes and its application in air filtration. Mater. Today Adv. 2021;12:100173. doi: 10.1016/j.mtadv.2021.100173. DOI
Park K., Kang S., Park J.-W., Hwang J. Fabrication of silver nanowire coated fibrous air filter medium via a two-step process of electrospinning and electrospray for anti-bioaerosol treatment. J. Hazard. Mater. 2021;411:125043. doi: 10.1016/j.jhazmat.2021.125043. PubMed DOI
Chatani Y., Okita Y., Tadokoro H., Yamashita Y. Structural Studies of Polyesters. III. Crystal Structure of Poly-ε-caprolactone. Polym. J. 1970;1:555–562. doi: 10.1295/polymj.1.555. DOI
Manakhov A.M., Sitnikova N.A., Tsygankova A.R., Alekseev A.Y., Adamenko L.S., Permyakova E., Baidyshev V.S., Popov Z.I., Blahová L., Eliáš M., et al. Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study. Membranes. 2021;11:965. doi: 10.3390/membranes11120965. PubMed DOI PMC
Kupka V., Dvořáková E., Manakhov A., Michlíček M., Petruš J., Vojtová L., Zajíčková L. Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers. 2020;12:1403. doi: 10.3390/polym12061403. PubMed DOI PMC
Solovieva A., Miroshnichenko S., Kovalskii A., Permyakova E., Popov Z., Dvořáková E., Kiryukhantsev-Korneev P., Obrosov A., Polčak J., Zajíčková L., et al. Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers. 2017;9:736. doi: 10.3390/polym9120736. PubMed DOI PMC
Manakhov A., Permyakova E.S., Ershov S., Sheveyko A., Kovalskii A., Polčák J., Zhitnyak I.Y., Gloushankova N.A., Zajíčková L., Shtansky D.V. Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Appl. Surf. Sci. 2019;479:796–802. doi: 10.1016/j.apsusc.2019.02.163. DOI
Ponomarev V.A., Sheveyko A.N., Permyakova E.S., Lee J., Voevodin A.A., Berman D., Manakhov A.M., Michlíček M., Slukin P.V., Firstova V.V., et al. TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity. ACS Appl. Mater. Interfaces. 2019;11:28699–28719. doi: 10.1021/acsami.9b09649. PubMed DOI
Permyakova E.S., Manakhov A.M., Kiryukhantsev-Korneev P.V., Sheveyko A.N., Gudz K.Y., Kovalskii A.M., Polčak J., Zhitnyak I.Y., Gloushankova N.A., Dyatlov I.A., et al. Different concepts for creating antibacterial yet biocompatible surfaces: Adding bactericidal element, grafting therapeutic agent through COOH plasma polymer and their combination. Appl. Surf. Sci. 2021;556:149751. doi: 10.1016/j.apsusc.2021.149751. DOI
Konopatsky A., Firestein K.L., Leybo D.V., Popov Z.I., Larionov K., Steinman A.E., Kovalskii A.M., Matveev A., Manakhov A., Sorokin P.B., et al. BN Nanoparticle/Ag Hybrids with Enhanced Catalytic Activity: Theory and Experiments. Catal. Sci. Technol. 2018;8:1652–1662. doi: 10.1039/C7CY02207G. DOI
Permyakova E.S., Kiryukhantsev-Korneev P.V., Gudz K.Y., Konopatsky A.S., Polčak J., Zhitnyak I.Y., Gloushankova N.A., Shtansky D.V., Manakhov A.M. Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds. Nanomaterials. 2019;9:1769. doi: 10.3390/nano9121769. PubMed DOI PMC
Alshabanah L.A., Hagar M., Al-Mutabagani L.A., Abozaid G.M., Abdallah S.M., Shehata N., Ahmed H., Hassanin A.H. Hybrid nanofibrous membranes as a promising functional layer for personal protection equipment: Manufacturing and antiviral/antibacterial assessments. Polymers. 2021;13:1776. doi: 10.3390/polym13111776. PubMed DOI PMC
Szymańska E., Orłowski P., Winnicka K., Tomaszewska E., Bąska P., Celichowski G., Grobełny J., Basa A., Krzyżowska M. Multifunctional tannic acid/silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection: In vitro and in vivo studies. Int. J. Mol. Sci. 2018;19:387. doi: 10.3390/ijms19020387. PubMed DOI PMC
Seino S., Imoto Y., Kosaka T., Nishida T., Nakagawa T., Yamamoto T.A. Antiviral Activity of Silver Nanoparticles Immobilized onto Textile Fabrics Synthesized by Radiochemical Process. MRS Adv. 2016;1:705–710. doi: 10.1557/adv.2016.43. DOI
Castro-Mayorga J.L., Randazzo W., Fabra M.J., Lagaron J.M., Aznar R., Sánchez G. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT Food Sci. Technol. 2017;79:503–510. doi: 10.1016/j.lwt.2017.01.065. DOI
Sánchez G., Aznar R. Evaluation of Natural Compounds of Plant Origin for Inactivation of Enteric Viruses. Food Environ. Virol. 2015;7:183–187. doi: 10.1007/s12560-015-9181-9. PubMed DOI
Ju Y., Han T., Yin J., Li Q., Chen Z., Wei Z., Zhang Y., Dong L. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property. Sci. Total Environ. 2021;777:145768. doi: 10.1016/j.scitotenv.2021.145768. PubMed DOI PMC
Sukhorukova I.V., Sheveyko A.N., Manakhov A., Zhitnyak I.Y., Gloushankova N.A., Denisenko E.A., Filippovich S.Y., Ignatov S.G., Shtansky D.V. Synergistic and long-lasting antibacterial effect of antibiotic-loaded TiCaPCON-Ag films against pathogenic bacteria and fungi. Mater. Sci. Eng. C. 2018;90:289–299. doi: 10.1016/j.msec.2018.04.068. PubMed DOI
Manakhov A., Landová M., Medalová J., Michlíček M., Polčák J., Nečas D., Zajíčková L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process. Polym. 2017;14:1600123. doi: 10.1002/ppap.201600123. DOI
Manakhov A., Moreno-Couranjou M., Choquet P., Boscher N.D., Pireaux J.-J.J. Diene functionalisation of atmospheric plasma copolymer thin films. Surf. Coatings Technol. 2011;205:S466–S469. doi: 10.1016/j.surfcoat.2011.02.066. DOI
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Lloyd A., Cornil D., van Duin A.C.T., van Duin D., Smith R., Kenny S.D., Cornil J., Beljonne D. Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO. Surf. Sci. 2016;645:67–73. doi: 10.1016/j.susc.2015.11.009. DOI
Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G., Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Keyaerts E., Vijgen L., Maes P., Neyts J., Ranst M. Van Growth kinetics of SARS-coronavirus in Vero E6 cells. Biochem. Biophys. Res. Commun. 2005;329:1147–1151. doi: 10.1016/j.bbrc.2005.02.085. PubMed DOI PMC
Gendrot M., Andreani J., Jardot P., Hutter S., Delandre O., Boxberger M., Mosnier J., Le Bideau M., Duflot I., Fonta I., et al. In Vitro Antiviral Activity of Doxycycline against SARS-CoV-2. Molecules. 2020;25:5064. doi: 10.3390/molecules25215064. PubMed DOI PMC